
Netbench: Framework for Evaluation of Packet Processing
Algorithms

Viktor Puš
CESNET, a. l. e.

Zikova 4, Prague, Czech Republic

pus@cesnet.cz

Jiří Tobola, Vlastimil Košař, Jan Kaštil,
Jan Kořenek

Faculty of Information Technology
Brno University of Technology

Božetěchova 2, Brno, Czech Republic
{itobola, ikosar, ikastil,
korenek}@fit.vutbr.cz

ABSTRACT

Many algorithms and hardware architectures are proposed
to increase processing speed of time-critical operations in the
field of longest prefix matching, packet classification and reg-
ular expression matching. Despite this fact, there is still no
free and easily extensible platform for evaluation, compari-
son and experiments with existing approaches. We propose
the Netbench Framework which aims to serve as an inde-
pendent platform for researchers seeking the easiest way to
implement their algorithms, as well as the comparison of
their algorithms with reference implementations of other ap-
proaches. The framework is provided as an open source and
can be easily extended to support new algorithms or new
comparison methodology. Netbench is publicly available at
http://www.fit.vutbr.cz/netbench.

Categories and Subject Descriptors

D.2.6 [Software Engineering]: Programming Environments—
Programmer workbench

General Terms

Design, Performance, Complexity

Keywords

IP Lookup, Longest Prefix Match, Packet Classification,
Regular Expression Matching, Library, Python

1. INTRODUCTION
As the speed of network lines increases, there is a need for

new algorithms and architectures for acceleration of time-
critical operations used in network devices. In current net-
works, the IP lookup, packet classification and regular ex-
pression matching are highly important and ubiquitous op-
erations. All three listed operations are often required to
work at wire-speed and therefore may become a bottleneck,
or may incur high costs of high-performance devices. While
technologies are rapidly innovated, algorithms may often
only benefit from technology improvements and remain the
same. We argue that research of algorithms is highly needed
to keep pace with the industry requirements.

New algorithms from the discussed fields are often pub-
lished in renowned proceedings and journals. In this sit-
uation, it may be surprising that there exists no common

platform for researchers to evaluate and compare their algo-
rithms. Moreover, access to real data sets is often limited
due to security and confidentiality issues. The lack of stan-
dard data sets renders it hard to compare the properties of
algorithms, especially their memory requirements. Imple-
mentations of published algorithms are often not available,
so running own tests includes also reimplementation of pre-
vious approaches presented by other authors. Such reim-
plementation may be imperfect and differ from the original
implementation, so it can not be fully trusted.

These facts contribute to lower quality of published re-
search results. The Netbench Framework aims to address
the stated issues by providing common platform for imple-
mentation and evaluation of packet processing algorithms,
specifically IP lookup, packet classification and regular ex-
pression (RE) matching algorithms.

At the time of writing, there is no platform for early exper-
iments with packet processing algorithms. The most related
work to Netbench is the Click modular router [4]. It is a
software implementation of a router with modular and con-
figurable architecture. The Click router consists of a number
of elements connected in a packet processing pipeline. Each
element is a C++ class and implements single router func-
tion such as packet classification, queuing, and others.

In the viewpoint of previous works, Netbench aims at ex-
perimenting with inner function of these elements – leaving
aside issues related to performance and complexity of the
whole pipeline. This renders it very simple to prototype
and investigate new packet processing algorithms.

2. NETBENCH FRAMEWORK
We present goals of the framework, together with expla-

nation of how these goals are fulfilled. The Netbench Frame-
work is designed with several objectives in mind:

• To serve as a uniform independent platform for re-
searchers, without being tightly associated to one re-
search group or algorithm.

• To enable rapid prototyping of algorithms and their
software models.

• To simplify tasks such as parsing data sets and rule
sets from files.

• To provide comprehensive data sets for IP lookup, packet
classification and RE matching.



Figure 1: The Netbench Framework structure.

• To serve for education purposes.

We make the framework independent by making it pub-
licly available under open-source license and by inviting re-
searchers to submit their contributions.

We choose the Python 2.6 programming language to im-
plement the algorithms, because of its popularity, sharp
learning curve, and its feasibility for rapid prototyping of
complex systems. Python is also considered to be the lan-
guage with clear and easily readable syntax. If the perfor-
mance of the Python interpreter is too slow for some par-
ticular computation, it is still possible to implement time-
critical part of the algorithm in the C language. However,
Netbench is intended to be used for rapid prototyping and
experimental work, not for real deployment in the network.

To simplify common tasks such as loading data sets from
files, Netbench provides set of classes in the form of library
together with the documentation generated by the Sphinx
[2] tool. There are also classes representing basic data struc-
tures, such as prefix, classification rule, regular expression,
automaton, packet header etc. Overall structure of the Net-
bench Framework is in Figure 1. Comprehensive selection
of algorithms for IP lookup, packet classification and RE
matching is already available in the Netbench Framework.

2.1 Data sets and algorithms
We add several data sets to Netbench. For IP lookup, we

focus on routing and firewall tables (both IPv4 and IPv6).
For packet classification, rule sets generated by ClassBench
[6] with different settings are used. Data sets for the pattern
matching include several sets of rules originating from Snort
[5], Bro [3] and other.

Netbench currently implements 10 longest prefix match
algorithms, 4 packet classification methods and 7 regular
expression matching algorithms.

3. USE CASES
Netbench is an excellent tool for comparing various as-

pects of algorithms. It helps researchers to easily evaluate
memory requirements, input data set dependencies, suitable
parameters settings, advanced rule sets properties, resource
utilization for HDL design generators and more. For exam-
ple, if researchers design new LPM algorithm they can easily
compare memory usage of all current methods on the same
data sets. Figure 2 gives such a comparison of recent LPM
algorithms for current IPv6 routing table [1].

Figure 2: Comparison of memory usage for IPv6
routing table (bytes)

4. CONCLUSION
We present new framework for evaluation and rapid pro-

totyping of packet processing algorithms. While previous
works in this field focused more on the feasibility for de-
ployment, Netbench targets the early stages of algorithm
development when the ease of use and rapid prototyping
are highly appreciated. Extensive set of algorithms was im-
plemented into the framework in order to provide reference
implementations and allow comparison of new approaches
to existing algorithms. Moreover, the framework is designed
to easily combine features from different algorithms.

Netbench also aims to define a baseline standard in data
sets for evaluating new and existing algorithms, but does
not restrict usage of other data sets. This should contribute
to better quality of the published results in the field. We en-
vision that every newly published algorithm for IP lookup,
packet classification, and regular expression matching is in-
cluded to Netbench. Therefore all researchers are invited
to submit new algorithms, patches, data sets or suggestions
to email address netbench@fit.vutbr.cz. After a review,
these patches will be added to the framework.

Acknowledgment

This research has been partially supported by the Research
Plan No. MSM, 0021630528 – Security-Oriented Research
in Information Technology, the grant BUT FIT-S-11-1 and
the CESNET Large Infrastructure project funded by the Mi-
nistry of Education, Youth, and Sports of the Czech Repub-
lic.

5. REFERENCES
[1] Bgp table data.

http://bgp.potaroo.net/, 2011.

[2] Sphinx: Python Documentation Generator.
http://sphinx.pocoo.org/, 2011.

[3] Bro IDS. Project WWW Page.
http://http://www.bro-ids.org/, 2011.

[4] R. Morris, E. Kohler, J. Jannotti, and M. F. Kaashoek.
The click modular router. In Proceedings of the
seventeenth ACM symposium on Operating systems
principles, SOSP ’99, pages 217–231, New York, NY,
USA, 1999. ACM.

[5] Snort. Project WWW Pages.
http://www.snort.org/, 2011.

[6] D. E. Taylor and J. S. Turner. Classbench: a packet
classification benchmark. IEEE/ACM Trans. Netw.,
15(3):499–511, 2007.


