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I. I NTRODUCTION

Because of high reactivity, availability and other factors,
occurrence of the events w.r.t. an embedded system is
usually signalized by interrupts. If the interrupts are not
processed properly the system may become overloaded due
to unpredictable streams of interrupts. As a consequence,
the system can fail to operate correctly or, it can collapse
suddenly as the rate of interrupts (fint) increases. To avoid
this, the system should be designed todegrade gracefully
rather than continue to execute part of its workload. In
safety&time-critical systems, the requirement is yet more
strict – the system may never give up (to recover) even if
the load hypothesis is violated by the reality [2].

II. RELATED WORKS

In the past, several works have dealt with the problem
of bounding minimum interarrival time between interrupts
to tarrival (or, maximum interrupt rate tofarrival). Rep-
resentatives of the approaches presented in the works are
mentioned below [3]. The first group of approaches is based
on the HW interrupt controller – typically called aHardware
Interrupt Limiter (HIL) – utilized to filter (decrease rate of)
interrupt requests incoming to an MCU. Interrupt requests
are processed by the HIL before they are directed to the
MCU an embedded SW runs on.

On top of few HIL approaches, many SW solutions
(called interrupt schedulers, IS) to the problem exist, e.g.:
a) polling IS is driven by a periodic timer that expires
each tarrival time units. After the expiration event flags
are read to react to, b)strict IS is based on the following
idea: interrupt prologue is modified to disable interrupts
and configure a one-shot timer to overflow aftertarrival is
over; after it overflows interrupts are re-enabled, c)bursty
IS is designed to reduce high overheads typical for strict
IS. Bursty IS is driven byburst size(N ) and burst arrival
rate (farrival) parameters:interrupts are disabled, interrupt
counter incremented and timer started to overflow intarrival

ticks after the burst ofN interrupt requests, rather than
after each interrupt request. Interrupts are re-enabled and
the counter is reset after the timer overflows.

Disadvantages of the existing solutions can be summa-
rized as follows: Polling IS is simple to implement, but
offers low reactivity (big interrupt response delay) at high
overhead. Strict&bursty ISes offer higher reactivity, but
still at overhead close to polling IS. Moreover, they are

questionable from the time-criticality point of view because
they are allowed to disable interrupts for the predefined time
– along with other interrupts, timer interrupts utilized to
increment the system time are disabled too. Disadvantage
of the HIL approach can be seen in the fact that an extra
HW is needed to process interrupts. However, HIL is able
both to enhance reactivity and to reduce overhead comparing
to IS approaches.

III. C ONCEPT OF THEPROPOSEDARCHITECTURE

From the adaptability point of view, existing approaches
can be seen as static because their interrupt arrival limitsare
fixed and independent on the actual MCU load – the limiters
have no information about the load, so they are not able to
adapt to the factor.
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Figure 1. Camea AX32 [1]

Proposal of our HW/SW architecture can be seen in Fig. 1
– it is composed of FPGA (Xilinx Spartan-6) and MCU
(ARM Cortex-A9) parts utilized to perform HW and SW
functionalities of the system. SW is supposed to be driven
by an embedded real-time (RT) operating system (RTOS)
able to guarantee timeliness of all reactions.

SW may not overload due to excessive rates of interrupt
stimuli, so the FPGA is to be designed to pre-process
all interrupts before they are directed to the MCU. To
each of communication interfaces (IFC_i) able to generate
an interrupt request a separateRT Bridge responsible for
processing stimuli related to the source is assigned. For this
purpose, we have combined theRT Bridge concept [4] with
HIL and MCU-load signaling techniques to guarantee that
during high-load of the MCU all interrupts are buffered by
the FPGA until the MCU is underloaded. Then, they are
directed to the MCU. From the design point of view, the
following key elements must be involved in the HW/SW
architecture:
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Figure 2. Total MCU load for various techniques and main-loop loads

• RT Bridge for eachIFC_i. Buffers inside the bridges
must be of ”sufficiently large” capacity to store all the
stalled communication,

• Mechanism utilized to signal MCU’s activity
(SIG_ACTIVITY) to the FPGA. The signalization
must be done at lower than interrupt priority level,

• Bridge Scheduler responsible for controlling RT
Bridges (i.e., buffering/redirecting stimuli) on basis of
the MCU load evaluated fromSIG_ACTIVITY.

IV. PRE-IMPLEMENTATION ANALYSIS

A model of the concept presented in the section III was
analyzed and compared to the approaches mentioned in the
section II. The results are summarized in Fig. 2 and Fig. 3.

The vertical axis of the figures represent interrupt over-
load prevention techniques and their particular variants
determined byfarrival and by burst sizevalues (where
applicable); for each of the techniques, data are plotted
for 3 variousfint values: 0.1kHz, 2.5kHz and 10kHz.
The last 3 columns on the right hand side belong to the
concept presented in the paper – labeled ”dynamic HIL”.
The horizontal axis of Fig. 2 (Fig. 3) represent the total
MCU load in % (# of max. interrupts serviced by the MCU
during MCU underload within0.1s window) – aggregated
values are plotted for 3 various MCU loads of the main loop:
10 %, 50 % and75 %.

In the figures, it can be seen that (especially for the highest
fint value) our approach is able to service significantly
higher number of interrupts during MCU underload than
other approaches at comparable values of the MCU load
– this is because our concept is able to utilize main-loop
idle intervals to service excessive interrupts.
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Figure 3. Max. # of interrupts serviced by the MCU during MCU
underload for various techniques and main-loop MCU loads

V. FUTURE PLANS

The results outlined in the section IV seem very promiss-
ing, so the next logical steps can be seen a) in the im-
plementation of the concept to the AX32 platform running
an embedded RTOS, b) in performing detail experiments
on AX32 with the goal to confirm or disprove the results
and c) to evaluate the solution in several embedded real-life
applications. On top of the mentioned, the impact of RT-
task schedulers such asDover or DASA implemented on the
MCU side to the overall robustness could be studied.
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