| mplementing Random I ndexing on GPU

L ukas Polok and Pavel Smrz, {ipolok,smrz}@fit.vutbr.cz, Brno University of Technology,
Faculty of Information Technology, Bozetechova 2, 61266 Brno, Czech Republic

Keywords. GPGPU, term co-occurrence, word spaceoccurrence matrix is therefore inefficient or evefeasible

models

Abstract

as the number of documents and terms increases.
Various techniques have been developed to rechee t
number of dimensions in co-occurrence matricesthnsl to

Vector space models have received a significanspeed up any subsequent computation based on fam.

attention in recent years. They have been appfiea wide
spectrum of areas including information filtering,
information retrieval, document indexing and relesa
ranking. Random indexing is one of the methodsleyipg
distributional statistics of term co-occurrencesgenerate
vector space models from a set of documents. I5ibe of
the document collection is large, a significant pomational
power is required to compute the results.

This paper presents an efficient implementatiorthef
random indexing method on GPU which allows effitien
training on large datasets. It is only limited bg amount of
memory available on the GPU. Various ways to oveo

example, one can employ common dimension reduction
techniques such as SVD (singular value decompa3ifg].
However, this can be computationally prohibitive farge
dimensions and it has other disadvantages as kigdt, the
direct dimension reduction techniques do not avibid
computation of large term co-occurrence matriceshén
results in high memory demands. Second, once néavisla
available, it is necessary to update the term @oHoence
matrix (or even to calculate it from scratch ifstnot viable
to keep it in memory) and to calculate the SVD alkr
(although it is possible to project new data toeduced
space, it can only introduce a limited amount ofvne

the dependence on the GPU memory are discusseiaformation, or possibly no diverse informationadl) [4].

Speedups in magnitude of tens are achieved fonirigi
from random seed vectors, and even much higherefigior
retraining. The implementation scales well with Hhahe
term vector dimension and the seed length.

1. INTRODUCTION

Vector space models [1] (a.k.a. word space models
term vector models) represent text documents am®ngeof
terms. A collection of documents can be represebted
document-term matrix. Each entry of the matrix the
indicates the presence of a term in a document;dhat of
its occurrences or a weight characterizing the mgmee of
a given term for a particular document within tiodlextion.

Generalizing the idea, terms themselves can
represented by high-dimensional context vectorsit&ds
are given by the co-occurring terms. The rows & to-
occurrence matrix represent unique terms and theams
their context, which can either be documents oeiotarms,
yielding terms-by-documents and terms-by-terms icesgy
respectively.

The co-occurrence matrices are usually very spars
According to the Zipf's law [2], the use of most e in
any natural language is limited to a small setarftexts and
only a small set of words can be used universalany
context. On the other hand, when increasing thebmurof
documents, the number of terms does not stop ggwatn
some point nor does it approach an asymptote foiwg
steadily instead [2]. The direct construction ok tko-

b

Random indexing [5] is a novel method for calduigt
context vectors already in a reduced space, therefo
effectively avoiding a large co-occurrence matrirda
enabling incremental improvements to an existingdeho
once new data is available. The core idea is vienple —
each term is assigned a sparse seed vector, dogtgirst
+1’'s and then the documents are scanned throudh avit
fixed-size window and contexts of unique terms are
accumulated based on their occurrences under theowi.

Mhis was further improved in [6] by taking the tela

position of terms into account by involving a petation of
seed vectors, based on their corresponding teritiqpos

The use of random seed vectors, containing just il
Fot coincidental as it can be shown that the cantegtors
representing different contexts are going to berlypea
orthogonal. Also, it can be shown that for a D-dusienal
vector, there can be just D orthogonal vectors, rhany
more nearly orthogonal vectors [7]. Therefore, the
dimensionality of context vectors produced by rando
iendexing is naturally reduced.

Once the context vectors are evaluated, it may be
beneficial to repeat the algorithm once more ugirsg the
generated context vectors as the seed vectorss (iBhi
referred to as ,retraining” in the following texiThe reason
for this is that if some terms have similar sen@anteaning,
then contexts generated by those terms should ladso
similar — a property which is not guaranteed whsingithe
random seed vectors. Near-orthogonality of the ltiegu

context vectors is transitional in this case (u$enear- results masked out. It is therefore beneficial i@
orthogonal seed vectors results again in near-goth@l branching, or, at least, to make sure that allttiheads in a
context vectors). single warp take the same branch.

This paper deals with an efficient implementatidnhe
random indexing algorithm on GPU. It can be dividetb
several key stages: pre-processing documents irftorna - . ;
viable for the GPU calculation, optimizing schedgliof unique terms (the vocabulary) will be denoted:
computations in order to maintain constantly higad on T :{tl’IZ""'tM} (2.1)
the GPU, 0pt|m|z|ng the retraining stage’s Speedj anThe input then consists of document vectors Comtgithe
memory demands, and, finally, the term vectorterms:
normalization and the summation into document vscto d=(, i, - iy) | i OT (2.2)

2. RELATED WORK AND BASIC NOTIONS where N is the document vector dimensionality, and
To the best of our knowledge, there are no GPlequals the document length, in terms (words). Ringhe

implementations of random indexing to date. There, a matrix of context vectors is given as:

however, GPU implementations of SVD [8, 9, 10] (ao T :[Cl C, - Cy]T (2.3)

others), which could be used to reduce the dimeasily of \\ere rows cthrough g are the context vectors for terms

the plain term co-occurrence matrix, as describeove. ¢ ,6ugh . The dimensionality of the context vectors

The implementation of the random indexing methodctvh (usually in the order of hundreds or thousands 12, 1])
inspired our GPU implementation is called SemantiGyms also an input to the algorithm.

Vectors [11].

To define the random indexing algorithm, let ugibe
with a formal definition of inputs and outputs. Thet of

) To proceed with random indexing, the matrix ofdsee
The code to be run on the modern GPUs can beewritt | o tors needs to be defined. It has the same sizéhea

in high-level programming languages. This simpéifitie ., iext vector matrix:
development of the GPU-enhanced algorithms.

— T
Nevertheless, one still needs to understand theergken s=[s, s, = 5] ' (24)
characteristics of the GPU computing model to poeda The seed vectors, as mentioned above, are sparse
code that can be executed efficiently. vectors, containing just a few z1's. They are alified

Today's GPUs are based on the SIMT architecturéandomly (thus the name random indexing). The nurobe
(single instruction multiple threads), natively popting the nonzero elements (usually around ten [12]) foragain,
massive multithreading. There are typically severapn algorithm input. The task is now to traversedbeument
multiprocessors, each capable of executing settenedhds vector and to update the context vectors. To da, tha
in parallel. A group of threads running on a singlewindow function, which selects parts of the docutmen
multiprocessor is called a warp. The number ofatissin a nheeds to be defined:

warp is referred to as the SIMT width. Threads are W(n): (Wn;L Woo o W, 25+1)T

scheduled in a hierarchy of local and global blockse] o a ' NN)
memory access and the thread divergence presemdime = ('n—s Th-st1 = In 0 Thesa |n+s)

bottlenecks in the GPU-based computation. wheren is the window center (the position of the term in

Memory accesses are most efficient when coalescefbcus in the document), arglis a half window size. Note
each thread reads one address from a contiguowk blothat w is a2s+1 dimensional vector. Also note thatis a
aligned on an integer multiple of the local bloéikes The global parameter of the algorithm, not a paramefethe
global memory is not cached on most of the GPUsn&is window function. For the sake of simplicity, hamdji
unable to make memory accesses coalesced, it rbight boundary conditions is omitted here (assuiswen <N —s
more efficient to use the texture memory, whicttashed always holds). A permutation function, which, given
under the condition that the reads are spatialtglloThe permutation number and a term index, returns a pited
new GPUs (NVIDIA Fermi) have a global memory cachecontext vector for that particular term, is furtimereded [6]:

which can be more efficient than the texture cdohesome s, <<<-p p<0

tasks. However, the global memory cache behaviorois ()_ -0

well documented, so that it might be still more wemient #lp.r)= Cr P= (2.6)
to use the texture memory in specific situatiohaeither is s, >>>p p>0

possible, one has to make sure that enough thraegls where operators <<< and >>> denote left and rigtsdtion,
scheduled to hide the memory access latency. respectively.

Threads are said to be divergent when executing |t is now possible to update the context vectoraof
different instructions. It is most commonly causbg term:
branching. If the threads in a single warp are @jest, the
execution paths needs to be calculated in sequamtehe

»oo2sH circumstances the following relationships can be
Copen = Z¢(J‘S‘1Wn,j) established:
n,s+l
=

(27) ldocs = Z Nd (32)
s .) D
= Cwms,,1 + Z;-¢(_ J’Wn,s—j+1)+ ¢(J an,s+j+1) | |dOCS + S(D +l) (3_3)
J:

The first part of the sum corresponds to the leff bf the N. = | paddedioss = 2S
window and the second part of the sum correspondbe ¢ | ok — 25
right one. Note that the term in focus in the cemtethe
window comes through the permutation function
unchanged. The algorithm for calculating the temsators
then takes the following form:

paddeddocs =

(3.4)

whereD is the number of documentdl; is the length of
documentd and N¢ is the number of the chunks. It can be
seen that fotc,,n >> s, Nc becomes just the ratio of the
sum of document lengths to the chunk size (thelidea

1. Initialize T to zeros efficiency). Also note that,.,needs to be chosen so that it
2. Initialize rows of S to random sparse vectors is greater tha2s Chunking is a very simple operation with
3. For every possible window position in the docatne complexity linear to the total length of all thecdonents.

4. Apply Equation 2.7 For efficient processing on a GPU, it is usefuh&ve a
5. Normalize context vectors list of occurrences of all the terms in a chunkctsa list
Algorithm 2.1: Building term vectors ;:eorrsrt]z.;\ins a set of positions of occurrences for gehicular
Extending the algorithm to handle multiple docurseist 0 :{X|Cx :ti} (3.5)
trivial, it just involves repetition of step 3 foeach
document, as well as minor modifications to the dein o=(0 o, - o) (3.6)
function (Equation 2.5) so it selects terms frore fight It can be expected that some@t elements are going to be
document. empty sets, because either there are more tertosainthan

lenunk OF the terms are distributed unevenly across the
documents. In practice, there is a small grougrhs much

3. DATA STRUCTURES higher frequent than the rest of the terms [4Psig sparse.
As mentioned above, documents are represented Dy” constructing the occurrence list is simple as iells

vectors of terms (2.2). In the context of pargliescessing, possible to use a hash table to map term id's ® th

it is not reasonable to work directly with the domnts as occyrrence list and a simple vector of vectorsteesthe
they vary in length. It is beneficial to define awndata y.cyurrence positions.

structure — a chunk. A chunk is a vector of termu,unlike
the document, but it has a constant |ength, Chosejﬂ' SPARSE VECTOR IMPLEMENTATION ON GPU

appropriately for a}n.efficient processing. Chunkieters 'Fo The naive algorithm (algorithm 2.1) is not a good

the process of splitting documents into chunks. diek is candidate for parallelization as it results in meynaccess

a vector of term id'Slenunclong: conflicts once multiple threads process the samm.t@o
C={c ¢, - ka) (3.1) avoid the conflicts, a special attention needs dophid to

the order in which the window positions are inspdcfThe
algorithm can simply employ the term occurrence disd
process each term separately:

When dividing one document into multiple chunkseo
has to make sure that each chunk is self-contaiiede the
data are scanned by the sliding window (2.5), itdsessary
to repeats terms from the end of each chunk at the 1. |nitialize T to zeros

beginning of the next one. 2. Initialize rows of S to random sparse vectors
When joining more documents in a single chunks it 3. For each chunic

necessary to separate documents in such a waghthst 4. Calculate term occurrence ligt

term in a document doesn'’t affect the context @& finst 5. For each term

term in the following one. For this reason, a duntemyn is 6. For every position im;

introduced. It is a new virtual term with M+1 (2.1) which 7. Apply equation 2.7

carries null contextual information (its seed vedg.; is a 8. Normalize context vectors

null vector). Documents are simply paddedstoccurrences) .
of the dummy term. The need to check the boundarftl@orithm 4.1: Building term vectors

conditions established for the window function §2Gan The algorithm contains several nested loops. t @golves
also be avoided by padding the beginning of thstfir the calculation of0. When implemented sequentially on a
document and the end of the last document withcpy, it is slightly slower than algorithm 2.1. Howee, it is
soccurrences of the dummy term. Under thesgossible to schedule multiple threads, each togz®a part

of loop 5. The memory access conflicts are avomtedvery
thread deals with its own term vector only.

When implementing on a GPU, it is beneficial iEth

threads running in a single warp have the sameutirec
path. This is rather simple to achieve for the legpluating
equation 2.7 (step 7 in algorithm 4.1) since thedeiv size
is constant. On the other hand, the outer loopp($tén
algorithm 4.1) will have a different number of pessin
each thread as it can be expected that each tdtrhave a
different number of occurrences
inevitably leads to the thread divergence.

A potential remedy lies in sortin@ by the number of

occurrences (the size of) so that the most frequent terms

are processed by the first group of threads andidhst
frequent terms by the last group of threads. Thdeois
better than its reverse because it can be expelttcdthe
number of terms is not going to be an integer mldtof the
SIMT width, and it is better to have idle threadben
processing terms with a small number of occurrenatrger

than the opposite. Even if the individual terms éav
different frequencies, the frequencies are now lami
among the threads in each multiprocessor and tht

computational efficiency is much higher.

In experiments with real data, however, it turred
that the most frequent terms are much more freqthemt
the average terms. It resulted in a high slackthadcheed to
subdivide the work to fine-grained work-items. Thew
schema for the division of occurrence sefsto passes,
slices and work-items is demonstrated in Figure 4.1

} slice

>]

in the chunk. This

item; the slice length is the maximal length of therk-
items in the slice).

The time to process a single work-item is propori
to the product of the work-item length and the veiwdsize.

As GPU threads have a limited amount of time tg the
slice length has to be set carefully so that theyndt
timeout.

When assigning the work-items to the passes, the
maximum number of work-items is limited by the nmraxim
thread block size. The maximum pass size dependbeon
memory and the register usage per thread. Somes stay
exceed the maximum pass size. They will need tuibeer
subdivided.

It also needs to be decided how the remainder work
items will be processed. Processing them in eads pa
they occur in consecutive slices is not optimalsraller
standard deviation of the work-item length (andstha
higher efficiency) can be achieved when all the aeaer
work-items are processed in the first passes. Thasses
are referred to as unaligned, while the rest ofpthsses as
ligned. For large chunks, it is also possible toimize the
read divergence by splitting the first passes sdveral
smaller passes containing work-items of equal lengEor
example, over 12,000 terms with remainder slicesewe
observed when working with the King James’ Bibld][1
dataset (see Section 7). There were 4,000 termsrroug
just once, 1,700 terms occurring twice and und®&0Q,
terms occurring three times.

As mentioned above, there are always a few words
much more frequent than the rest of the words irataral
language text (this is illustrated by the first ta@umns in
figure 4.1). An additional optimization step is tefre
necessary to avoid many short passes that wouttittea
low GPU load. Once the pass size drops below shbid,
the passes are re-arranged. A new dummy term id is
assigned to work-items (different from the dummymnte
used for the chunk padding and the document sépayat
The work-items are processed in parallel. Resuéisstored
in a separate dummy vector bank. After finishing th
computation, the results are added to the origteain
vectors. Each thread performs an addition of alsitgrm
vector element. These passes are called seconttey,

Figure 4.1: The division of term occurrence sets into slicespreceding ones primary. Vector addition is refeteds the

and work-items

Each column contains a term occurrenceagethe arrow
denotes the direction in which grows. Each term
occurrence set is subdivided into constant-lengtirkw
items, represented by the light gray blocks, andaiaing

work-items, the dark gray blocks. The rows defife t

slices. The horizontal scale is referred to asdiee size
(the number of the terms processed in the particliee).
The vertical scale is referred to as the length (tlork-item
length is the number of the term occurrences inwbek-

summation step in the following text.

Sometimes there are enough terms with just a esingl
work-item left. To avoid the summation step overhetis
then more efficient to process them as one lastgwy pass.
The whole scheduling strategy is depicted on figuge The
solid vertical line corresponds to the maximal psige limit
— all the slices crossing this line need to be broknto
multiple passes. Two short lines at the bottom destrate
the division. The dashed vertical line shows theimal
primary pass size limit. Once the slice size dioglew this
limit, the rest of the work-items are processed an

secondary pass. The dark grey square corresportide tast
work-item. It will be processed in the last aligngdmary
pass. Note that this is only for the sake of thecdption
brevity — processing a single work-item in a saf@ipass
would be inefficient.

minimal primary pass size limit
maximal pass size limit
\

last aligned
primary pass

aligned
secondary
passes 1, 2

—~—

aligned primary
| passes 1to 5

— ||||-

Figure 4.2: Division of work-items into passes

unaligned primary
passes 1 and 2

To process the task on a GPU, the work-items meed

be passed to the threads. The required data aredsio
three buffers:
documents, the occurrence buffer contains all nmoptg

elements ofO in a single contiguous array, and the work-

item buffer contains a single work-item for eachetid to
work on. One work-item consists of a term id whjints
to the term vector buffer, a number of term ocawes (the
work-item length) and an offset to the occurrencéfds.

The arrangement is shown in figure 4.3.

Y

term vector
table

mid id. work-item

4 7. buffer

and is significantly more efficient than the sortexturrence
list approach mentioned above. Nevertheless, tlestill

the memory bandwidth bottleneck. GPUs perform \ifell
the memory accesses are coalesced. In the describ

approach, there is no way to coalesce most of thesases
as each thread works with a completely differentdt is
possible to coalesce accesses to the occurrentatig has
a minimal impact in terms of the processing timetlas
occurrence list is accessed in the outer loop @mig it

the chunk buffer contains concasmhat

needs to be interleaved with the CPU processingedis It
is also possible to employ the GPU constant merfarthe
work-item buffer if it is small enough. However,dbes not
make a big difference too — the work-item buffeaétsessed
once by each thread only. Thus, the only viabléoops to
schedule a sufficient number of threads so thaGR& has
enough work to cope with the memory access latency.
Further optimization steps have been followed.
Specialized kernels for the term vectors of powferam
dimensions enabled using the bitwise AND operatbenv
calculating the seed vector permutation (2.6). The
computation takes 1 clock cycle instead of appratety 2
cycles for the modulo operator on the GPU [15]. réhare
also two versions of each kernel, for the aligned a
unaligned passes. The former enables loop ungoHimd
other compile-time optimizations. When the unrglis not
possible, loops are optimized by using the Duffeavide
[16]. It results in an almost 4 % speedup.

5. DENSE VECTOR IMPLEMENTATION ON GPU
The previous section described the computaticterof
vectors from random seed vectors. The seed veei@s
sparse and typically rather short. When retraintagn
vectors from results of the previous pass, howetlee,
sparse seed vectors are replaced by the high-diomeths
term vectors. It is therefore possible to schedulsingle
thread per term vector element to perform the cdatjmn
in parallel. The complex task division to primarnda
secondary passes or work-items is no longer neeélgd.
illustrated in figure 5.1, just the occurrence isssufficient.

term
vector
table

Figure5.1: Data buffers for retraining kernels

The kernel function gets only the offset of the
occurrence buffer and the number of occurrencebeo
processed. It is still necessary to break long ruris
maller ones to avoid the kernel timeout but isugficient

size not exceeding a given threshold. The memocgsses
are coalesced if the dimensionality of the termtemecis an
inéeger multiple of the SIMT width. To achieve thest

S rformance, it is therefore advisable to choose it
accordingly.

The only downside of the retraining is the nedgdsi
have all the term vectors in the GPU memory. Theme
millions of terms in large datasets so that thenteector
buffers will easily exceed the GPU memory capaciltye

algorithm is, however, only working with the chunks vector scales from the global memory. The vectatesccan
containing just a limited number of terms. Varimshing be also stored in the constant memory. It slightiproves
schemata, such as the least recently used algofitiincan the performance but it is still well under the GBapacity.
be applied to dynamically upload and download #ent The best implemented kernel pre-fetches the sctaldébe
vectors so that only an immediately required suliset local memory, yielding the bandwidth of 70 GB/s.€Th

present in the GPU memory. performance of the CUBLAS functiazubl asSscal () is
suboptimal again. The graph in figure 6.2 summarite
6. TERM VECTOR NORMALIZATION ON GPU results. Note that “the spikes” in the graph anesea by the

Vector normalization is a simple task. It consist$wo element misalignment occurring when the size of the
steps — calculating the length of the vector andtiptying vectors does not correspond to the power of two.
the vector by its reciprocal length. Both the steps be
realized as reduction operations implemented bggssing
a single vector at a time. Even though it is the wector
normalization is implemented in popular librariagcls as
CUBLAS [18], it is inefficient due to idle thread$.may be
faster to calculate the length of each vector isirgle
thread. If there are enough vectors to keep the BGRYY,
the operation is efficient. The downside is tha themory
accesses are not coalesced. A better strategydaldalate
the length of each vector in a thread block, utifizthe
shared memory and the read coalescing. The resiuttee 100 1000 10_000 . 1000001000000
three approaches described above and for CUBLAS vector dimensions
function cubl asSnrn2 are compared in figure 6.1 ‘—Q—CPU —8— global —A— const local —¥— Sscal
(denoted VAT (vector at a time), VPT (vector peretid),
VTB (vector per thread block), and Snrm2 (CUBLAS Figure6.2: GPU vector scaling bandwidth
cubl asSnr nR).

80

bandwidth [GB/sec]

7. RANDOM INDEXING SPEEDUPS

Two datasets were used for the experiments destrib
70 ¢ in this section — the King James’ Bible datasef] [ddd a
60 rom part of the English GigaWord [19], specifically theentral
50 7 {hfiﬁ, News Agency of Taiwan” (CNA). The limited size dfet

former one (the King James’ Bible) makes it ideal f

30

20 f“} experimenting with different configurations of the

10 13 algorithms. At the same time, the dataset is |lamgsigh to
0 fill a single 4MB chunk, so scaling to larger d&tzscan be

bandwidth [GB/sec]
a
o

100 1000 10000 100000 1000000 expected to be approximately linear. The lattenskit is a
vector dimensions collection of about 7 million newspaper articles,

approximately 15 GB in size. The reason for usingt ja

‘—’—CPU —®—VPT —A—VAT viB +5nfm2‘ part of this dataset was to reduce the numberenfetms so

they would fit in the GPU memory. Additionaly, tdataset
was lemmatized using an existing library (libturgt®.2
All the tests were run with an equal amount ofagat [20]), reducing the number of terms down to 97,3@5 the
only the vector dimensions (and hence the number JENA part of the dataset alone). Both datasets \wetexed
vectors) changed. CPU time is therefore almosstmt. It ~ using CLucene library [21] for easier processing.

Figure 6.1: GPU vector reduction bandwidth

can be seen that the vector per thread-block gyasethe ~ A simple "C" implementation of the algorithm was
most beneficial. It surpassesubl asSnrn2()from the originally developed to verify GPU results, butiaturned
standard CUBLAS library by more than 40 GB/sec. out it is considerably fast, it was included in tesults. The

Vector scaling is also a very simple operatione Th experiments compared the runtimes of our *“C”
implementation can be straightforward but variousimplementation, of the Semantic Vectors packages{oe
optimizations can be applied too. The simplest ivers 1.3) [11], and of the GPU implementation. Timesdeskfor
calculates a single multiplication of an element tye loading data from disk or storing the results wiefe out.
appropriate vector scale per thread. The correspgnd The GPU times include copying data to the GPU mgraer
bandwidth is rather low (about 30 GB/sec). Profjlieveals Well as copying the results back. To ensure all @RU
a large number of uncoalesced reads caused byngeadi

operations have finished, tha Fi ni sh() function was implementation is noteworthy. It can be expectedkeep
always called. linear up to 16,384-dimensional vectors — the liroit
The recorded values include the times of termorect threads running at a time (512 threads per blocB2x
training and retraining on the real data, and ofiteector processors). Note also that the Semantic Vectarkaoe is
normalization on synthetic data of varying dimensiity. not much slower than the “C” implementation in a@ting,
Note that the term vector normalization time is giaal at least for short vectors. This is probably caubgdthe
compared to the calculation of the term vectors.tke sake similar order of processing used in both implemeoia.
of brevity, the total times are not reported.

The implementations were built using the Microsoft 300 o 50
Visual Studio 2008 compiler. The CPU time of aleth _ 350 / 4 1 40
algorithms was measured on a pair of unloaded AMD| § 5qq / e
Opteron 2360 SE processors (8 cores running aGRBin 2 150 i/ T %0 b
total) running Windows XP x64. The GPU time was uE"100 7z T 20 :-'.
measured on NVIDIA GeForce GTX 260, using the most| * 50 ?‘% 410
recent drivers. An average time of four runs farhetest is 0 i 0
given. 100 1000 10 000

The first series of tests regards calculating teectors vector dimensions
from sparse seeds on the King James’ Bible datddet. \—o—c — A4SV —m—GPU Speedup‘
seed length (the number of nonzero elements inséssl

vector) was set to 10 and then to 100. The terntovec
dimensionality varied from 256 to 4,096. The chusike
was set to four megabytes for all the tests. ThedGP
implementation ran with the maximal slice length 3# The third test deals with the term vector nornalon
occurrences, the maximal pass size 12,500 termer(ddy speedup of GPU, compared to CPU. Term vector
the maximal number of scheduled threads), the n@him dimensions vary from 128 to 1,048,576. The mostiefft
primary pass size 2,000 terms and the minimaldestary =~ method for both vector reduction and scaling wasgagb
pass size 200terms. The dummy vector banks werghosen. The results are shown in figure 7.3. Agaite the
allocated to hold 10,000 vectors. The results Amve in spikes are caused by the misalignment of the novepof-
figure 7.1. two dimensional vectors.

Figure 7.2: Retraining term vectors from results of the
previous pass

_ 60 /~: 10 60
3] e
50 ,?A/ | N |
k) 40 / e 8 a o %0
° 16 3 5 401
@ 307 o ? 30 Ad
@ 50 | T4 & 0 AA‘T A 2 Ak A Ak Ak Ad Md A
o @ > 20 X
£ 107 o |2 %
- 0 r"_r"_/.\——d‘\-—*“f’_‘v\‘ 0 10
100 1000 10 000 0 ‘ ‘ ‘
vector length 100 1000 10000 100000 1 000 000
—"C" 10 ¥—SV 10 B—GPU 10 vector dimensions
—A—"C" 100 —e—SV 100 GPU 100
—+— Speedup 10 —=— Speedup 100 Figure 7.3: Vector normalization speedup (GPU compared
to “C” implementation)

Figure 7.1: Building term vectors from sparse .seeds, seed The last series of tests were conducted on the
lengths 10 and 100 (note “SV" denotes Semantic &/ept GigaWord dataset. The values of the internal pararsdor
The second series of tests involved retrainingnter the algorithms were calculated using a simple datitee
vectors from the results of the first pass (usihg same Wwhich attempts to suggest optimal parameters. Enm t
dataset). The term vector dimensionality variednfi266 to vector dimensionality was set to 2,048, the windixe and
4,096 as in the first test. The chunk size wasteetMB the seed length both to 10. Table 7.1 summarizesasults.
again. The maximal slice length for the GPUThe lower speedup can be explained by the muchehigh
implementation was set to 1,024 occurrences. Thaltee number of terms (97,335 in English Gigaword, 17,000

can be seen in figure 7.2. The excellent scalinthefGPU King James’ Bible) and thus more irregular memargess
patterns. That could be remedied by introducingimal

term frequency limit to reduce the number of terhs.tests
were run using the SemanticVectors package aswveprto
be significantly slower than the “C” implementation

Table 7.1: Term vector calculation times and speedup

Calculating TV | Retraining TV
Time "C" 5434.128 s 27766.092 s
Time GPU 1725.120 s 4738.241 s
Speedup 3.15 x 5.86 x

8. CONCLUSIONSAND FUTURE DIRECTIONS

A practical tool for calculating term context vexd and
document context vectors from documents indexedhby
CLucene [21] library was implemented. It can beilgas
modified to use another library, as data structyrassed
between CLucene and the algorithms are rather sinjle
GPU implementation is significantly faster than tbdhe
Semantic Vectors package and the baseline
implementation. The speedup factor ranges from @ for
building term vectors from sparse seed vectors evhil
larger speedup occurs with shorter seed vectors. t&its
used a minimal seed vector length of 10, whichréctical
[12] for most applications; a 9-fold speedup caardifore be
seen as realistic. For retraining from the reswaltsthe
previous pass, speedups are typically much hidgbe#,096

dimensions, it exceeds 40-fold. Speedup of the llphra

vector normalization is up to 70-fold, but the tim@ent in
this stage of the algorithm is negligible.

The implementation is limited by the amount of

memory available on the GPU, as it requires stoathghe
term vectors and eventually also the seed vectorthe
GPU memory. Today's top GPUs are able to hold heatlr
of thousands to millions of term vectors, which wdobe
sufficient unless the processed dataset is extiemaeye.
Implementation of an algorithm for swapping unuseahn

vectors from GPU memory to host memory is suggeste

That would enable processing of virtually unlimiteaimber
of terms.

Another limitation is the maximal number of schiediu
threads and the thread timeout, which may vary frome
generation of GPUs to the next. it can be easilyesbby
adjusting algorithm parameters, such as pass sizdice
length, without any significant performance loss.

The main disadvantage of this implementation $s it

GPU memory limitation. The next work will be diredt
towards implementing the proposed scheme of terotove
caching, effectively removing this limitation.

One component of the algorithm — the random seed
vector generator — was left unoptimized,. Genegatin 9]
pseudo-random numbers on GPUs was described byaseve

authors [22, 23, 24]. It usually takes several Bdsoto
generate random seed vectors using standard “@iriés,
so it probably could be optimized. But, in the eids still

g

Another possible place for optimization could lme t
attempt to improve locality of the memory accessbgn
retraining the term vectors. The measure of siitylar
between the terms is already available, giving sdegree
of information about the term vectors, which aringdo be
referenced. It should therefore be possible togauire the
order in which the term vectors are processed based
clustering in high-dimensional context space toieah
better memory access locality.

ACKNOWLEDGEMENTS

The research leading to these results has received
funding from the European Community's 7th Framework
Programme FP7/2007-2013 under grant agreement
n.215453 — WeKnowlt and Artemis JU grant agreenment
100223 — eSonia.

“CReferences

[1] G. Ssalton, A. Wong, C. S. Yang, “A Vector Spac
Model for Automatic Indexing”, Communications of
the ACM, vol. 18, nr. 11, pages 613-620, 1975

G. K. Zipf, "Human Behaviour and the Principbé
Least Effort", Addison-Wesley, 1949

G. H. Golub and C. Reinsch, “Singular value
decomposition and least squares solutions”,
Numerische Mathematik 14 (5): pp 403-420, 1970.
doi:10.1007/BF02163027

[4] Magnus Sahlgren, “An Introduction to Random
Indexing”, Methods and Applications of Semantic
Indexing Workshop at the 7th International
Conference on Terminology and Knowledge
Engineering, TKE 2005, 2005

P. Kanerva, “Sparse distributed memory”, TheTMI
Press, 1988

Sahlgren, M., Holst, A. & Kanerva, P., “Permtitas

as a Means to Encode Order in Word Space”,
Proceedings of the 30th Annual Meeting of the
Cognitive Science Society (CogSci'08), July 23-26,
Washington D.C., USA, 2008

Hecht-Nielsen, R.; “Context vectors; generatgnse
approximate meaning representations self-organized
from raw data”, in Zurada, J. M.; R. J. Marks II; I
Robinson, “Computational intelligence: imitating
life”. IEEE Press, 1994

[8] Sheetal Lahabar, P. J. Narayanan, “Singularu¥al
Decomposition on GPU using CUDA”, |EEE
International Parallel Distributed Processing
Symposium, 2009

J. Kruger, R. Westermann, “Linear algebra ofmsa
for GPU implementation of numerical algorithms”,
proceeding of SIGGRAPH '05 ACM SIGGRAPH
Courses, 2005

(2]
(3]

(5]

[7]

only a small amount of time, compared to the total

algorithm run time.

[10]

[11]

[12]

[13]

[16]

[17]

[18]

[19]
[20]

[21]

[24]

V. Volkov, J. Demmel, “LU, QR and Cholesky
Factorizations using Vector Capabilities of GPUs”,
2008

D. Widdows, K. Ferraro, “Semantic Vectors: A
Scalable Open Source Package and Online
Technology Management Application”, In
Proceedings of the sixth international conferenoe o
Language Resources and Evaluation, 2008

P. Kanerva, J. Kristofersson, and A. Holstafidom
indexing of text samples for latent semantic anslys

in Proceedings of the 22nd Annual Conference of the
Cognitive Science Society, page 1036. Erlbaum, 2000
K. Lund, C. Burgess, “Producing high-dimensibn
semantic spaces from lexical co-occurrence”,
Behavior Research Methods, Instruments, &
Computers, 28, pages 203-208, 1996

"The Bible, King James Version Complete Cortdé&n
available online at http://www.gutenberg.org/
ebooks/79992004

“NVIDIA OpenCL Programming Guide”, available
online at http://developer.download.nvidia.com/
compute/cuda/3 1/toolkit/docs/NVIDIA OpenCL_Pr
ogrammingGuide.pd2010

Stroustrup, Bjarne, “The C++ Programming
Language, Third Edition”, Addison-Wesley, ISBN 0-
201-88954-4, 1997

E. J. O'Neil, P. E. O'Neil, G. Weikum, “The LRK
page replacement algorithm for database disk
buffering”, In Proceedings of the 1993 ACM
SIGMOD international conference on Management of
data, pages 297-306, 1993

“NVIDIA CUBLAS User Guide”, available onlineta
http://developer.download.nvidia.com/compute/cuda/
3_2_prod/toolkit/docs/CUBLAS _Library.pd2010

D. Graff, C. Cieri, “English Gigaword”, Lingsiic
Data Consortium, Philadelphia, 2003

“European language lemmatizer”, availbale oaliat
http://lemmatizer.org2010

M. McCandless, E. Hatcher, O. Gospodnetic,ctue

in Action, Second Edition“, Manning Publications
Co., ISBN 1-933-98817-7, pages 328-332, 2010

W. B. Langdon, “PRNG Random Numbers on GPU”,
2007

Wai-Man Pang; Tien-Tsin Wong; Pheng-Ann
Heng, “Generating massive high-quality random
numbers using GPU“, Evolutionary Computation,
CEC 2008, 2008

A. Zafar, M. Olano, “Tiny encryption algorithrfor
parallel random numbers on the GPU”, Proceedings
of the 2009 symposium on Interactive 3D graphics
and games, 2009

