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Abstract 
 Vector space models have received a significant 
attention in recent years. They have been applied in a wide 
spectrum of areas including information filtering, 
information retrieval, document indexing and relevancy 
ranking.  Random indexing is one of the methods employing 
distributional statistics of term co-occurrences to generate 
vector space models from a set of documents. If the size of 
the document collection is large, a significant computational 
power is required to compute the results. 
 This paper presents an efficient implementation of the 
random indexing method on GPU which allows efficient 
training on large datasets. It is only limited by the amount of 
memory available on the GPU. Various ways to overcome 
the dependence on the GPU memory are discussed. 
Speedups in magnitude of tens are achieved for training 
from random seed vectors, and even much higher figures for 
retraining. The implementation scales well with both the 
term vector dimension and the seed length. 

1. INTRODUCTION 
 Vector space models [1] (a.k.a. word space models or 
term vector models) represent text documents as vectors of 
terms. A collection of documents can be represented by a 
document-term matrix. Each entry of the matrix then 
indicates the presence of a term in a document, the count of 
its occurrences or a weight characterizing the importance of 
a given term for a particular document within the collection. 
 Generalizing the idea, terms themselves can be 
represented by high-dimensional context vectors. Contexts 
are given by the co-occurring terms. The rows of the co-
occurrence matrix represent unique terms and the columns 
their context, which can either be documents or other terms, 
yielding terms-by-documents and terms-by-terms matrices, 
respectively. 
 The co-occurrence matrices are usually very sparse. 
According to the Zipf’s law [2], the use of most words in 
any natural language is limited to a small set of contexts and 
only a small set of words can be used universally in any 
context. On the other hand, when increasing the number of 
documents, the number of terms does not stop growing at 
some point nor does it approach an asymptote – it grows 
steadily instead [2]. The direct construction of the co-

occurrence matrix is therefore inefficient or even infeasible 
as the number of documents and terms increases. 
 Various techniques have been developed to reduce the 
number of dimensions in co-occurrence matrices and thus to 
speed up any subsequent computation based on them. For 
example, one can employ common dimension reduction 
techniques such as SVD (singular value decomposition) [3]. 
However, this can be computationally prohibitive for large 
dimensions and it has other disadvantages as well. First, the 
direct dimension reduction techniques do not avoid the 
computation of large term co-occurrence matrices. It then 
results in high memory demands. Second, once new data is 
available, it is necessary to update the term co-occurrence 
matrix (or even to calculate it from scratch if it is not viable 
to keep it in memory) and to calculate the SVD all over 
(although it is possible to project new data to a reduced 
space, it can only introduce a limited amount of new 
information, or possibly no diverse information at all) [4]. 
 Random indexing [5] is a novel method for calculating 
context vectors already in a reduced space, therefore 
effectively avoiding a large co-occurrence matrix and 
enabling incremental improvements to an existing model 
once new data is available. The core idea is very simple – 
each term is assigned a sparse seed vector, containing just 
±1’s and then the documents are scanned through with a 
fixed-size window and contexts of unique terms are 
accumulated based on their occurrences under the window. 
This was further improved in [6] by taking the relative 
position of terms into account by involving a permutation of 
seed vectors, based on their corresponding term positions. 
 The use of random seed vectors, containing just ±1’s is 
not coincidental as it can be shown that the context vectors 
representing different contexts are going to be nearly 
orthogonal. Also, it can be shown that for a D-dimensional 
vector, there can be just D orthogonal vectors, but many 
more nearly orthogonal vectors [7]. Therefore, the 
dimensionality of context vectors produced by random 
indexing is naturally reduced.  
 Once the context vectors are evaluated, it may be 
beneficial to repeat the algorithm once more using just the 
generated context vectors as the seed vectors. (This is 
referred to as „retraining“ in the following text.) The reason 
for this is that if some terms have similar semantic meaning, 
then contexts generated by those terms should also be 
similar – a property which is not guaranteed when using the 
random seed vectors. Near-orthogonality of the resulting 



context vectors is transitional in this case (use of near-
orthogonal seed vectors results again in near-orthogonal 
context vectors). 
 This paper deals with an efficient implementation of the 
random indexing algorithm on GPU. It can be divided into 
several key stages: pre-processing documents into a form 
viable for the GPU calculation, optimizing scheduling of 
computations in order to maintain constantly high load on 
the GPU, optimizing the retraining stage’s speed and 
memory demands, and, finally, the term vector 
normalization and the summation into document vectors. 

2. RELATED WORK AND BASIC NOTIONS 
 To the best of our knowledge, there are no GPU 
implementations of random indexing to date. There are, 
however, GPU implementations of SVD [8, 9, 10] (among 
others), which could be used to reduce the dimensionality of 
the plain term co-occurrence matrix, as described above. 
The implementation of the random indexing method which 
inspired our GPU implementation is called Semantic 
Vectors [11]. 
 The code to be run on the modern GPUs can be written 
in high-level programming languages. This simplifies the 
development of the GPU-enhanced algorithms. 
Nevertheless, one still needs to understand the general 
characteristics of the GPU computing model to produce a 
code that can be executed efficiently. 
 Today’s GPUs are based on the SIMT architecture 
(single instruction multiple threads), natively supporting 
massive multithreading. There are typically several 
multiprocessors, each capable of executing several threads 
in parallel. A group of threads running on a single 
multiprocessor is called a warp. The number of threads in a 
warp is referred to as the SIMT width. Threads are 
scheduled in a hierarchy of local and global blocks. The 
memory access and the thread divergence present the main 
bottlenecks in the GPU-based computation. 
 Memory accesses are most efficient when coalesced: 
each thread reads one address from a contiguous block 
aligned on an integer multiple of the local block size. The 
global memory is not cached on most of the GPUs. If one is 
unable to make memory accesses coalesced, it might be 
more efficient to use the texture memory, which is cached 
under the condition that the reads are spatially local. The 
new GPUs (NVIDIA Fermi) have a global memory cache 
which can be more efficient than the texture cache for some 
tasks. However, the global memory cache behavior is not 
well documented, so that it might be still more convenient 
to use the texture memory in specific situations. If neither is 
possible, one has to make sure that enough threads are 
scheduled to hide the memory access latency. 
 Threads are said to be divergent when executing 
different instructions. It is most commonly caused by 
branching. If the threads in a single warp are divergent, the 
execution paths needs to be calculated in sequence and the 

results masked out. It is therefore beneficial to avoid 
branching, or, at least, to make sure that all the threads in a 
single warp take the same branch. 

 To define the random indexing algorithm, let us begin 
with a formal definition of inputs and outputs. The set of 
unique terms (the vocabulary) will be denoted: 

{ }MtttT ,,, 21 L=  (2.1) 
The input then consists of document vectors containing the 
terms: 
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where N is the document vector dimensionality, and it 
equals the document length, in terms (words). Finally, the 
matrix of context vectors is given as:  

[ ]TMcccT L21=  (2.3) 

where rows c1 through cM are the context vectors for terms 
t1 through tM. The dimensionality of the context vectors 
(usually in the order of hundreds or thousands [12, 13, 1]) 
forms also an input to the algorithm. 
 To proceed with random indexing, the matrix of seed 
vectors needs to be defined. It has the same size as the 
context vector matrix: 

[ ]TMsssS L21=  (2.4) 

 The seed vectors, as mentioned above, are sparse 
vectors, containing just a few ±1’s. They are initialized 
randomly (thus the name random indexing). The number of 
the nonzero elements (usually around ten [12]) forms, again, 
an algorithm input. The task is now to traverse the document 
vector and to update the context vectors. To do that, a 
window function, which selects parts of the document, 
needs to be defined: 
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where n is the window center (the position of the term in 
focus in the document), and s is a half window size. Note 
that w is a 2s+1 dimensional vector. Also note that s is a 
global parameter of the algorithm, not a parameter of the 
window function. For the sake of simplicity, handling 
boundary conditions is omitted here (assume s < n ≤ N – s 
always holds). A permutation function, which, given a 
permutation number and a term index, returns a permutated 
context vector for that particular term, is further needed [6]: 

( )








>>>>
=
<−<<<

=
0

0

0

,

pp

p

pp

rp

r

r

r

s

c

s

ϕ  (2.6) 

where operators <<< and >>> denote left and right rotation, 
respectively.  
 It is now possible to update the context vector of a 
term: 
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The first part of the sum corresponds to the left half of the 
window and the second part of the sum corresponds to the 
right one. Note that the term in focus in the center of the 
window comes through the permutation function 
unchanged. The algorithm for calculating the term vectors 
then takes the following form: 

1. Initialize T to zeros 
2. Initialize rows of S to random sparse vectors 
3. For every possible window position in the document 

4. Apply Equation 2.7 
5. Normalize context vectors 

Algorithm 2.1: Building term vectors 

Extending the algorithm to handle multiple documents is 
trivial, it just involves repetition of step 3 for each 
document, as well as minor modifications to the window 
function (Equation 2.5) so it selects terms from the right 
document. 

 
3. DATA STRUCTURES 
 As mentioned above, documents are represented by 
vectors of terms (2.2). In the context of parallel processing, 
it is not reasonable to work directly with the documents as 
they vary in length. It is beneficial to define a new data 
structure – a chunk. A chunk is a vector of terms, not unlike 
the document, but it has a constant length, chosen 
appropriately for an efficient processing. Chunking refers to 
the process of splitting documents into chunks. The chunk is 
a vector of term id’s, lchunk long: 

( )
chunklccc L21=C  (3.1) 

 When dividing one document into multiple chunks, one 
has to make sure that each chunk is self-contained. Since the 
data are scanned by the sliding window (2.5), it is necessary 
to repeat s terms from the end of each chunk at the 
beginning of the next one. 
 When joining more documents in a single chunk, it is 
necessary to separate documents in such a way that the last 
term in a document doesn’t affect the context of the first 
term in the following one. For this reason, a dummy term is 
introduced. It is a new virtual term with id M+1 (2.1) which 
carries null contextual information (its seed vector sM+1 is a 
null vector). Documents are simply padded by s occurrences 
of the dummy term. The need to check the boundary 
conditions established for the window function (2.5) can 
also be avoided by padding the beginning of the first 
document and the end of the last document with 
s occurrences of the dummy term. Under these 

circumstances the following relationships can be 
established: 
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where D is the number of documents, Nd is the length of 
document d and NC is the number of the chunks. It can be 
seen that for lchunk >> s, NC becomes just the ratio of the 
sum of document lengths to the chunk size (the ideal 
efficiency). Also note that lchunk needs to be chosen so that it 
is greater than 2s. Chunking is a very simple operation with 
complexity linear to the total length of all the documents. 
 For efficient processing on a GPU, it is useful to have a 
list of occurrences of all the terms in a chunk. Such a list 
contains a set of positions of occurrences for each particular 
term: 
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It can be expected that some of O’s elements are going to be 
empty sets, because either there are more terms in total than 
lchunk or the terms are distributed unevenly across the 
documents. In practice, there is a small group of terms much 
higher frequent than the rest of the terms [4] so O is sparse. 
 Constructing the occurrence list is simple as well, it is 
possible to use a hash table to map term id’s to the 
occurrence list and a simple vector of vectors to store the 
occurrence positions. 
 
4. SPARSE VECTOR IMPLEMENTATION ON GPU 
 The naive algorithm (algorithm 2.1) is not a good 
candidate for parallelization as it results in memory access 
conflicts once multiple threads process the same term. To 
avoid the conflicts, a special attention needs to be paid to 
the order in which the window positions are inspected. The 
algorithm can simply employ the term occurrence list and 
process each term separately: 

1. Initialize T to zeros 
2. Initialize rows of S to random sparse vectors 
3. For each chunk C 

4. Calculate term occurrence list O 
5. For each term ti 

6. For every position in oi 
7. Apply equation 2.7 

8. Normalize context vectors 

Algorithm 4.1: Building term vectors 

The algorithm contains several nested loops. It also involves 
the calculation of O. When implemented sequentially on a 
CPU, it is slightly slower than algorithm 2.1. However, it is 
possible to schedule multiple threads, each to process a part 



of loop 5. The memory access conflicts are avoided as every 
thread deals with its own term vector only. 
 When implementing on a GPU, it is beneficial if the 
threads running in a single warp have the same execution 
path. This is rather simple to achieve for the loop evaluating 
equation 2.7 (step 7 in algorithm 4.1) since the window size 
is constant. On the other hand, the outer loop (step 6 in 
algorithm 4.1) will have a different number of passes in 
each thread as it can be expected that each term will have a 
different number of occurrences in the chunk. This 
inevitably leads to the thread divergence. 
 A potential remedy lies in sorting O by the number of 
occurrences (the size of oi) so that the most frequent terms 
are processed by the first group of threads and the least 
frequent terms by the last group of threads. This order is 
better than its reverse because it can be expected that the 
number of terms is not going to be an integer multiple of the 
SIMT width, and it is better to have idle threads when 
processing terms with a small number of occurrences rather 
than the opposite. Even if the individual terms have 
different frequencies, the frequencies are now similar 
among the threads in each multiprocessor and the 
computational efficiency is much higher. 
 In experiments with real data, however, it turned out 
that the most frequent terms are much more frequent than 
the average terms. It resulted in a high slack and the need to 
subdivide the work to fine-grained work-items. The new 
schema for the division of occurrence sets oi to passes, 
slices and work-items is demonstrated in Figure 4.1. 

 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4.1: The division of term occurrence sets into slices 
and work-items 

Each column contains a term occurrence set oi, the arrow 
denotes the direction in which i grows. Each term 
occurrence set is subdivided into constant-length work-
items, represented by the light gray blocks, and remaining 
work-items, the dark gray blocks. The rows define the 
slices. The horizontal scale is referred to as the slice size 
(the number of the terms processed in the particular slice). 
The vertical scale is referred to as the length (the work-item 
length is the number of the term occurrences in the work-

item; the slice length is the maximal length of the work-
items in the slice). 

 The time to process a single work-item is proportional 
to the product of the work-item length and the window size. 
As GPU threads have a limited amount of time to run, the 
slice length has to be set carefully so that they do not 
timeout. 
 When assigning the work-items to the passes, the 
maximum number of work-items is limited by the maximum 
thread block size. The maximum pass size depends on the 
memory and the register usage per thread. Some slices may 
exceed the maximum pass size. They will need to be further 
subdivided. 
 It also needs to be decided how the remainder work-
items will be processed. Processing them in each pass as 
they occur in consecutive slices is not optimal. A smaller 
standard deviation of the work-item length (and thus a 
higher efficiency) can be achieved when all the remainder 
work-items are processed in the first passes. These passes 
are referred to as unaligned, while the rest of the passes as 
aligned. For large chunks, it is also possible to minimize the 
thread divergence by splitting the first passes into several 
smaller passes containing work-items of equal lengths. For 
example, over 12,000 terms with remainder slices were 
observed when working with the King James’ Bible [14] 
dataset (see Section 7). There were 4,000 terms occurring 
just once, 1,700 terms occurring twice and under 1,000 
terms occurring three times. 
 As mentioned above, there are always a few words 
much more frequent than the rest of the words in a natural 
language text (this is illustrated by the first two columns in 
figure 4.1). An additional optimization step is therefore 
necessary to avoid many short passes that would lead to a 
low GPU load. Once the pass size drops below a threshold, 
the passes are re-arranged. A new dummy term id is 
assigned to work-items (different from the dummy term 
used for the chunk padding and the document separation). 
The work-items are processed in parallel. Results are stored 
in a separate dummy vector bank. After finishing the 
computation, the results are added to the original term 
vectors. Each thread performs an addition of a single term 
vector element. These passes are called secondary, the 
preceding ones primary. Vector addition is referred to as the 
summation step in the following text.  
 Sometimes there are enough terms with just a single 
work-item left. To avoid the summation step overhead, it is 
then more efficient to process them as one last primary pass. 
The whole scheduling strategy is depicted on figure 4.2. The 
solid vertical line corresponds to the maximal pass size limit 
– all the slices crossing this line need to be broken into 
multiple passes. Two short lines at the bottom demonstrate 
the division. The dashed vertical line shows the minimal 
primary pass size limit. Once the slice size drops below this 
limit, the rest of the work-items are processed in a 

slice 
i 



secondary pass. The dark grey square corresponds to the last 
work-item. It will be processed in the last aligned primary 
pass. Note that this is only for the sake of the description 
brevity –  processing a single work-item in a separate pass 
would be inefficient.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4.2: Division of work-items into passes 

 To process the task on a GPU, the work-items need to 
be passed to the threads. The required data are stored in 
three buffers: the chunk buffer contains concatenated 
documents, the occurrence buffer contains all non-empty  
elements of O in a single contiguous array, and the work-
item buffer contains a single work-item for each thread to 
work on. One work-item consists of a term id which points 
to the term vector buffer, a number of term occurrences (the 
work-item length) and an offset to the occurrence buffer. 
The arrangement is shown in figure 4.3. 
 
 
 
 
 
 
 
 
 
 
Figure 4.3: Data buffers for GPU kernels 

 The developed strategy keeps the GPU workload high 
and is significantly more efficient than the sorted occurrence 
list approach mentioned above. Nevertheless, there is still 
the memory bandwidth bottleneck. GPUs perform well if 
the memory accesses are coalesced. In the described 
approach, there is no way to coalesce most of the accesses 
as each thread works with a completely different data. It is 
possible to coalesce accesses to the occurrence list but it has 
a minimal impact in terms of the processing time as the 
occurrence list is accessed in the outer loop only and it 

needs to be interleaved with the CPU processing as well. It 
is also possible to employ the GPU constant memory for the 
work-item buffer if it is small enough. However, it does not 
make a big difference too – the work-item buffer is accessed 
once by each thread only. Thus, the only viable option is to 
schedule a sufficient number of threads so that the GPU has 
enough work to cope with the memory access latency. 
 Further optimization steps have been followed. 
Specialized kernels for the term vectors of power-of-two 
dimensions enabled using the bitwise AND operator when 
calculating the seed vector permutation (2.6). The 
computation takes 1 clock cycle instead of approximately 2 
cycles for the modulo operator on the GPU [15]. There are 
also two versions of each kernel, for the aligned and 
unaligned passes.  The former enables loop unrolling and 
other compile-time optimizations. When the unrolling is not 
possible, loops are optimized by using the Duff’s device 
[16]. It results in an almost 4 % speedup. 
 
5. DENSE VECTOR IMPLEMENTATION ON GPU 
 The previous section described the computation of term 
vectors from random seed vectors. The seed vectors are 
sparse and typically rather short. When retraining term 
vectors from results of the previous pass, however, the 
sparse seed vectors are replaced by the high-dimensional 
term vectors. It is therefore possible to schedule a single 
thread per term vector element to perform the computation 
in parallel. The complex task division to primary and 
secondary passes or work-items is no longer needed. As 
illustrated in figure 5.1, just the occurrence list is sufficient.  
 
 
 
 
 
 
 
 
 
Figure 5.1: Data buffers for retraining kernels 

 The kernel function gets only the offset of the 
occurrence buffer and the number of occurrences to be 
processed. It is still necessary to break long runs into 
smaller ones to avoid the kernel timeout but it is sufficient 
to apply a simple approach of the division to pieces with the 
size not exceeding a given threshold. The memory accesses 
are coalesced if the dimensionality of the term vectors is an 
integer multiple of the SIMT width. To achieve the best 
performance, it is therefore advisable to choose it 
accordingly.  
 The only downside of the retraining is the necessity to 
have all the term vectors in the GPU memory. There are 
millions of terms in large datasets so that the term vector 
buffers will easily exceed the GPU memory capacity. The 
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algorithm is, however, only working with the chunks 
containing just a limited number of terms. Various caching 
schemata, such as the least recently used algorithm [17], can 
be applied to dynamically upload and download the term 
vectors so that only an immediately required subset is 
present in the GPU memory. 
  
6. TERM VECTOR NORMALIZATION ON GPU 
 Vector normalization is a simple task. It consists of two 
steps – calculating the length of the vector and multiplying 
the vector by its reciprocal length. Both the steps can be 
realized as reduction operations implemented by processing 
a single vector at a time. Even though it is the way vector 
normalization is implemented in popular libraries such as 
CUBLAS [18], it is inefficient due to idle threads. It may be 
faster to calculate the length of each vector in a single 
thread. If there are enough vectors to keep the GPU busy, 
the operation is efficient. The downside is that the memory 
accesses are not coalesced. A better strategy is to calculate 
the length of each vector in a thread block, utilizing the 
shared memory and the read coalescing. The results of the 
three approaches described above and for CUBLAS 
function cublasSnrm2 are compared in figure 6.1 
(denoted VAT (vector at a time), VPT (vector per thread), 
VTB (vector per thread block), and Snrm2 (CUBLAS 
cublasSnrm2). 
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Figure 6.1: GPU vector reduction bandwidth 

 All the tests were run with an equal amount of data, 
only the vector dimensions (and hence the number of 
vectors) changed.   CPU time is therefore almost constant. It 
can be seen that the vector per thread-block strategy is the 
most beneficial. It surpasses cublasSnrm2()from the 
standard CUBLAS library by more than 40 GB/sec. 
 Vector scaling is also a very simple operation. The 
implementation can be straightforward but various 
optimizations can be applied too. The simplest version 
calculates a single multiplication of an element by the 
appropriate vector scale per thread. The corresponding 
bandwidth is rather low (about 30 GB/sec). Profiling reveals 
a large number of uncoalesced reads caused by reading 

vector scales from the global memory. The vector scales can 
be also stored in the constant memory. It slightly improves 
the performance but it is still well under the GPU capacity. 
The best implemented kernel pre-fetches the scales to the 
local memory, yielding the bandwidth of 70 GB/s. The 
performance of the CUBLAS function cublasSscal()is 
suboptimal again. The graph in figure 6.2 summarizes the 
results. Note that “the spikes” in the graph are caused by the 
element misalignment occurring when the size of the 
vectors does not correspond to the power of two.  
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7. RANDOM INDEXING SPEEDUPS 
 Two datasets were used for the experiments described 
in this section – the King James’ Bible dataset [14] and a 
part of the English GigaWord [19], specifically the “Central 
News Agency of Taiwan” (CNA). The limited size of the 
former one (the King James’ Bible) makes it ideal for 
experimenting with different configurations of the 
algorithms. At the same time, the dataset  is large enough to 
fill a single 4MB chunk, so scaling to larger datasets can be 
expected to be approximately linear. The latter dataset is a 
collection of about 7 million newspaper articles, 
approximately 15 GB in size. The reason for using just a 
part of this dataset was to reduce the number of the terms so 
they would fit in the GPU memory. Additionaly, the dataset 
was lemmatized using an existing library (libturglem-0.2 
[20]), reducing the number of terms down to 97,335  (in the 
CNA part of the dataset alone). Both datasets were indexed 
using CLucene library [21] for easier processing. 
 A simple "C" implementation of the algorithm was 
originally developed to verify GPU results, but as it turned 
out it is considerably fast, it was included in the results. The 
experiments compared the runtimes of our “C” 
implementation, of the Semantic Vectors package (version 
1.3) [11], and of the GPU implementation. Times needed for 
loading data from disk or storing the results were left out. 
The GPU times include copying data to the GPU memory as 
well as copying the results back. To ensure all the GPU 



operations have finished, the clFinish()function was 
always called.  
 The recorded values include the times of term vector 
training and retraining on the real data, and of term vector 
normalization on synthetic data of varying dimensionality. 
Note that the term vector normalization time is marginal 
compared to the calculation of the term vectors. For the sake 
of brevity, the total times are not reported. 
 The implementations were built using the Microsoft 
Visual Studio 2008 compiler. The CPU time of all the 
algorithms was measured on a pair of unloaded AMD 
Opteron 2360 SE processors (8 cores running at 2.6 GHz in 
total) running Windows XP x64. The GPU time was 
measured on NVIDIA GeForce GTX 260, using the most 
recent drivers. An average time of four runs for each test is 
given. 
 The first series of tests regards calculating term vectors 
from sparse seeds on the King James’ Bible dataset. The 
seed length (the number of nonzero elements in the seed 
vector) was set to 10 and then to 100. The term vector 
dimensionality varied from 256 to 4,096. The chunk size 
was set to four megabytes for all the tests. The GPU 
implementation ran with the maximal slice length of 32 
occurrences, the maximal pass size 12,500 terms (given by 
the maximal number of scheduled threads), the minimal 
primary pass size 2,000 terms and the minimal last primary 
pass size 200 terms. The dummy vector banks were 
allocated to hold 10,000 vectors. The results are shown in 
figure 7.1. 
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Figure 7.1: Building term vectors from sparse seeds, seed 
lengths 10 and 100 (note “SV” denotes Semantic Vectors) 

 The second series of tests involved retraining term 
vectors from the results of the first pass (using the same 
dataset). The term vector dimensionality varied from 256 to 
4,096 as in the first test. The chunk size was set to 4MB 
again. The maximal slice length for the GPU 
implementation was set to 1,024 occurrences. The results 
can be seen in figure 7.2. The excellent scaling of the GPU 

implementation is noteworthy. It can be expected to keep 
linear up to 16,384-dimensional vectors – the limit of 
threads running at a time (512 threads per block × 32 
processors). Note also that the Semantic Vectors package is 
not much slower than the “C” implementation in retraining, 
at least for short vectors. This is probably caused by the 
similar order of processing used in both implementations. 
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Figure 7.2: Retraining term vectors from results of the 
previous pass 

 The third test deals with the term vector normalization 
speedup of GPU, compared to CPU. Term vector 
dimensions vary from 128 to 1,048,576. The most efficient 
method for both vector reduction and scaling was always 
chosen. The results are shown in figure 7.3. Again, note the 
spikes are caused by the misalignment of the non-power-of-
two dimensional vectors. 
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Figure 7.3: Vector normalization speedup (GPU compared 
to “C” implementation) 

 The last series of tests were conducted on the 
GigaWord dataset. The values of the internal parameters for 
the algorithms were calculated using a simple decision tree 
which attempts to suggest optimal parameters. The term 
vector dimensionality was set to 2,048, the window size and 
the seed length both to 10. Table 7.1 summarizes the results. 
The lower speedup can be explained by the much higher 
number of terms (97,335 in English GigaWord, 17,000 in 
King James’ Bible) and thus more irregular memory access 
patterns. That could be remedied by introducing a minimal 



term frequency limit to reduce the number of terms. No tests 
were run using the SemanticVectors package as it proved to 
be significantly slower than the “C” implementation. 

Table 7.1: Term vector calculation times and speedup 
 Calculating TV Retraining TV 
Time "C" 5434.128 s 27766.092 s 
Time GPU 1725.120 s 4738.241 s 
Speedup 3.15 × 5.86 × 

 
8. CONCLUSIONS AND FUTURE DIRECTIONS 
 A practical tool for calculating term context vectors and 
document context vectors from documents indexed by the 
CLucene [21] library was implemented. It can be easily 
modified to use another library, as data structures passed 
between CLucene and the algorithms are rather simple. The 
GPU implementation is significantly faster than both the 
Semantic Vectors package and the baseline “C” 
implementation. The speedup factor ranges from 4 to 9 for 
building term vectors from sparse seed vectors while a 
larger speedup occurs with shorter seed vectors. The tests 
used a minimal seed vector length of 10, which is practical 
[12] for most applications; a 9-fold speedup can therefore be 
seen as realistic. For retraining from the results of the 
previous pass, speedups are typically much higher, for 4,096 
dimensions, it exceeds 40-fold. Speedup of the parallel 
vector normalization is up to 70-fold, but the time spent in 
this stage of the algorithm is negligible. 
 The implementation is limited by the amount of 
memory available on the GPU, as it requires storing all the 
term vectors and eventually also the seed vectors in the 
GPU memory. Today’s top GPUs are able to hold hundreds 
of thousands to millions of term vectors, which should be 
sufficient unless the processed dataset is extremely large. 
Implementation of an algorithm for swapping unused term 
vectors from GPU memory to host memory is suggested.  
That would enable processing of virtually unlimited number 
of terms. 
 Another limitation is the maximal number of scheduled 
threads and the thread timeout, which may vary from one 
generation of GPUs to the next. it can be easily solved by 
adjusting algorithm parameters, such as pass size or slice 
length, without any significant performance loss. 
 The main disadvantage of this implementation is its 
GPU memory limitation. The next work will be directed 
towards implementing the proposed scheme of term vector 
caching, effectively removing this limitation. 
 One component of the algorithm – the random seed 
vector generator – was left unoptimized,. Generating 
pseudo-random numbers on GPUs was described by several 
authors [22, 23, 24]. It usually takes several seconds to 
generate random seed vectors using standard “C” libraries, 
so it probably could be optimized. But, in the end, it is still 
only a small amount of time, compared to the total 
algorithm run time. 

 Another possible place for optimization could be to 
attempt to improve locality of the memory accesses when 
retraining the term vectors. The measure of similarity 
between the terms is already available, giving some degree 
of information about the term vectors, which are going to be 
referenced. It should therefore be possible to reorganize the 
order in which the term vectors are processed based on 
clustering in high-dimensional context space to achieve 
better memory access locality. 
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