
Implementing Random Indexing on GPU

Lukas Polok and Pavel Smrz, {ipolok,smrz}@fit.vutbr.cz, Brno University of Technology,

Faculty of Information Technology, Bozetechova 2, 61266 Brno, Czech Republic

Keywords: GPGPU, term co-occurrence, word space
models

Abstract
 Vector space models have received a significant
attention in recent years. They have been applied in a wide
spectrum of areas including information filtering,
information retrieval, document indexing and relevancy
ranking. Random indexing is one of the methods employing
distributional statistics of term co-occurrences to generate
vector space models from a set of documents. If the size of
the document collection is large, a significant computational
power is required to compute the results.
 This paper presents an efficient implementation of the
random indexing method on GPU which allows efficient
training on large datasets. It is only limited by the amount of
memory available on the GPU. Various ways to overcome
the dependence on the GPU memory are discussed.
Speedups in magnitude of tens are achieved for training
from random seed vectors, and even much higher figures for
retraining. The implementation scales well with both the
term vector dimension and the seed length.

1. INTRODUCTION
 Vector space models [1] (a.k.a. word space models or
term vector models) represent text documents as vectors of
terms. A collection of documents can be represented by a
document-term matrix. Each entry of the matrix then
indicates the presence of a term in a document, the count of
its occurrences or a weight characterizing the importance of
a given term for a particular document within the collection.
 Generalizing the idea, terms themselves can be
represented by high-dimensional context vectors. Contexts
are given by the co-occurring terms. The rows of the co-
occurrence matrix represent unique terms and the columns
their context, which can either be documents or other terms,
yielding terms-by-documents and terms-by-terms matrices,
respectively.
 The co-occurrence matrices are usually very sparse.
According to the Zipf’s law [2], the use of most words in
any natural language is limited to a small set of contexts and
only a small set of words can be used universally in any
context. On the other hand, when increasing the number of
documents, the number of terms does not stop growing at
some point nor does it approach an asymptote – it grows
steadily instead [2]. The direct construction of the co-

occurrence matrix is therefore inefficient or even infeasible
as the number of documents and terms increases.
 Various techniques have been developed to reduce the
number of dimensions in co-occurrence matrices and thus to
speed up any subsequent computation based on them. For
example, one can employ common dimension reduction
techniques such as SVD (singular value decomposition) [3].
However, this can be computationally prohibitive for large
dimensions and it has other disadvantages as well. First, the
direct dimension reduction techniques do not avoid the
computation of large term co-occurrence matrices. It then
results in high memory demands. Second, once new data is
available, it is necessary to update the term co-occurrence
matrix (or even to calculate it from scratch if it is not viable
to keep it in memory) and to calculate the SVD all over
(although it is possible to project new data to a reduced
space, it can only introduce a limited amount of new
information, or possibly no diverse information at all) [4].
 Random indexing [5] is a novel method for calculating
context vectors already in a reduced space, therefore
effectively avoiding a large co-occurrence matrix and
enabling incremental improvements to an existing model
once new data is available. The core idea is very simple –
each term is assigned a sparse seed vector, containing just
±1’s and then the documents are scanned through with a
fixed-size window and contexts of unique terms are
accumulated based on their occurrences under the window.
This was further improved in [6] by taking the relative
position of terms into account by involving a permutation of
seed vectors, based on their corresponding term positions.
 The use of random seed vectors, containing just ±1’s is
not coincidental as it can be shown that the context vectors
representing different contexts are going to be nearly
orthogonal. Also, it can be shown that for a D-dimensional
vector, there can be just D orthogonal vectors, but many
more nearly orthogonal vectors [7]. Therefore, the
dimensionality of context vectors produced by random
indexing is naturally reduced.
 Once the context vectors are evaluated, it may be
beneficial to repeat the algorithm once more using just the
generated context vectors as the seed vectors. (This is
referred to as „retraining“ in the following text.) The reason
for this is that if some terms have similar semantic meaning,
then contexts generated by those terms should also be
similar – a property which is not guaranteed when using the
random seed vectors. Near-orthogonality of the resulting

context vectors is transitional in this case (use of near-
orthogonal seed vectors results again in near-orthogonal
context vectors).
 This paper deals with an efficient implementation of the
random indexing algorithm on GPU. It can be divided into
several key stages: pre-processing documents into a form
viable for the GPU calculation, optimizing scheduling of
computations in order to maintain constantly high load on
the GPU, optimizing the retraining stage’s speed and
memory demands, and, finally, the term vector
normalization and the summation into document vectors.

2. RELATED WORK AND BASIC NOTIONS
 To the best of our knowledge, there are no GPU
implementations of random indexing to date. There are,
however, GPU implementations of SVD [8, 9, 10] (among
others), which could be used to reduce the dimensionality of
the plain term co-occurrence matrix, as described above.
The implementation of the random indexing method which
inspired our GPU implementation is called Semantic
Vectors [11].
 The code to be run on the modern GPUs can be written
in high-level programming languages. This simplifies the
development of the GPU-enhanced algorithms.
Nevertheless, one still needs to understand the general
characteristics of the GPU computing model to produce a
code that can be executed efficiently.
 Today’s GPUs are based on the SIMT architecture
(single instruction multiple threads), natively supporting
massive multithreading. There are typically several
multiprocessors, each capable of executing several threads
in parallel. A group of threads running on a single
multiprocessor is called a warp. The number of threads in a
warp is referred to as the SIMT width. Threads are
scheduled in a hierarchy of local and global blocks. The
memory access and the thread divergence present the main
bottlenecks in the GPU-based computation.
 Memory accesses are most efficient when coalesced:
each thread reads one address from a contiguous block
aligned on an integer multiple of the local block size. The
global memory is not cached on most of the GPUs. If one is
unable to make memory accesses coalesced, it might be
more efficient to use the texture memory, which is cached
under the condition that the reads are spatially local. The
new GPUs (NVIDIA Fermi) have a global memory cache
which can be more efficient than the texture cache for some
tasks. However, the global memory cache behavior is not
well documented, so that it might be still more convenient
to use the texture memory in specific situations. If neither is
possible, one has to make sure that enough threads are
scheduled to hide the memory access latency.
 Threads are said to be divergent when executing
different instructions. It is most commonly caused by
branching. If the threads in a single warp are divergent, the
execution paths needs to be calculated in sequence and the

results masked out. It is therefore beneficial to avoid
branching, or, at least, to make sure that all the threads in a
single warp take the same branch.

 To define the random indexing algorithm, let us begin
with a formal definition of inputs and outputs. The set of
unique terms (the vocabulary) will be denoted:

{ }MtttT ,,, 21 L= (2.1)
The input then consists of document vectors containing the
terms:

() Tiiii x
T

N ∈= L21d (2.2)

where N is the document vector dimensionality, and it
equals the document length, in terms (words). Finally, the
matrix of context vectors is given as:

[]TMcccT L21= (2.3)

where rows c1 through cM are the context vectors for terms
t1 through tM. The dimensionality of the context vectors
(usually in the order of hundreds or thousands [12, 13, 1])
forms also an input to the algorithm.
 To proceed with random indexing, the matrix of seed
vectors needs to be defined. It has the same size as the
context vector matrix:

[]TMsssS L21= (2.4)

 The seed vectors, as mentioned above, are sparse
vectors, containing just a few ±1’s. They are initialized
randomly (thus the name random indexing). The number of
the nonzero elements (usually around ten [12]) forms, again,
an algorithm input. The task is now to traverse the document
vector and to update the context vectors. To do that, a
window function, which selects parts of the document,
needs to be defined:

() ()
()T

snsnnsnsn

T
snnn

iiiii

wwwn

+−++−−

+

=

=

11

12,2,1,

LL

Lw
 (2.5)

where n is the window center (the position of the term in
focus in the document), and s is a half window size. Note
that w is a 2s+1 dimensional vector. Also note that s is a
global parameter of the algorithm, not a parameter of the
window function. For the sake of simplicity, handling
boundary conditions is omitted here (assume s < n ≤ N – s
always holds). A permutation function, which, given a
permutation number and a term index, returns a permutated
context vector for that particular term, is further needed [6]:

()








>>>>
=
<−<<<

=
0

0

0

,

pp

p

pp

rp

r

r

r

s

c

s

ϕ (2.6)

where operators <<< and >>> denote left and right rotation,
respectively.
 It is now possible to update the context vector of a
term:

()

() ()∑

∑

=
+++−

+

=

+−+=

−−=′

+

+

s

j
jsnjsnw

s

j
jnw

wjwj

wsj

sn

sn

1
1,1,

12

1
,

,,

,1

1,

1,

ϕϕ

ϕ

c

c

 (2.7)

The first part of the sum corresponds to the left half of the
window and the second part of the sum corresponds to the
right one. Note that the term in focus in the center of the
window comes through the permutation function
unchanged. The algorithm for calculating the term vectors
then takes the following form:

1. Initialize T to zeros
2. Initialize rows of S to random sparse vectors
3. For every possible window position in the document

4. Apply Equation 2.7
5. Normalize context vectors

Algorithm 2.1: Building term vectors

Extending the algorithm to handle multiple documents is
trivial, it just involves repetition of step 3 for each
document, as well as minor modifications to the window
function (Equation 2.5) so it selects terms from the right
document.

3. DATA STRUCTURES
 As mentioned above, documents are represented by
vectors of terms (2.2). In the context of parallel processing,
it is not reasonable to work directly with the documents as
they vary in length. It is beneficial to define a new data
structure – a chunk. A chunk is a vector of terms, not unlike
the document, but it has a constant length, chosen
appropriately for an efficient processing. Chunking refers to
the process of splitting documents into chunks. The chunk is
a vector of term id’s, lchunk long:

()
chunklccc L21=C (3.1)

 When dividing one document into multiple chunks, one
has to make sure that each chunk is self-contained. Since the
data are scanned by the sliding window (2.5), it is necessary
to repeat s terms from the end of each chunk at the
beginning of the next one.
 When joining more documents in a single chunk, it is
necessary to separate documents in such a way that the last
term in a document doesn’t affect the context of the first
term in the following one. For this reason, a dummy term is
introduced. It is a new virtual term with id M+1 (2.1) which
carries null contextual information (its seed vector sM+1 is a
null vector). Documents are simply padded by s occurrences
of the dummy term. The need to check the boundary
conditions established for the window function (2.5) can
also be avoided by padding the beginning of the first
document and the end of the last document with
s occurrences of the dummy term. Under these

circumstances the following relationships can be
established:

(3.2)

(3.3) ()










−
−

=

++=

= ∑

sl

sl
N

Dsll

Nl

chunk

docspadded
C

docsdocspadded

D
ddocs

2

2

1

(3.4)

where D is the number of documents, Nd is the length of
document d and NC is the number of the chunks. It can be
seen that for lchunk >> s, NC becomes just the ratio of the
sum of document lengths to the chunk size (the ideal
efficiency). Also note that lchunk needs to be chosen so that it
is greater than 2s. Chunking is a very simple operation with
complexity linear to the total length of all the documents.
 For efficient processing on a GPU, it is useful to have a
list of occurrences of all the terms in a chunk. Such a list
contains a set of positions of occurrences for each particular
term:

(3.5) { }
()M

ixi

ooo

tcxo

L21=

==

O

(3.6)
It can be expected that some of O’s elements are going to be
empty sets, because either there are more terms in total than
lchunk or the terms are distributed unevenly across the
documents. In practice, there is a small group of terms much
higher frequent than the rest of the terms [4] so O is sparse.
 Constructing the occurrence list is simple as well, it is
possible to use a hash table to map term id’s to the
occurrence list and a simple vector of vectors to store the
occurrence positions.

4. SPARSE VECTOR IMPLEMENTATION ON GPU
 The naive algorithm (algorithm 2.1) is not a good
candidate for parallelization as it results in memory access
conflicts once multiple threads process the same term. To
avoid the conflicts, a special attention needs to be paid to
the order in which the window positions are inspected. The
algorithm can simply employ the term occurrence list and
process each term separately:

1. Initialize T to zeros
2. Initialize rows of S to random sparse vectors
3. For each chunk C

4. Calculate term occurrence list O
5. For each term ti

6. For every position in oi
7. Apply equation 2.7

8. Normalize context vectors

Algorithm 4.1: Building term vectors

The algorithm contains several nested loops. It also involves
the calculation of O. When implemented sequentially on a
CPU, it is slightly slower than algorithm 2.1. However, it is
possible to schedule multiple threads, each to process a part

of loop 5. The memory access conflicts are avoided as every
thread deals with its own term vector only.
 When implementing on a GPU, it is beneficial if the
threads running in a single warp have the same execution
path. This is rather simple to achieve for the loop evaluating
equation 2.7 (step 7 in algorithm 4.1) since the window size
is constant. On the other hand, the outer loop (step 6 in
algorithm 4.1) will have a different number of passes in
each thread as it can be expected that each term will have a
different number of occurrences in the chunk. This
inevitably leads to the thread divergence.
 A potential remedy lies in sorting O by the number of
occurrences (the size of oi) so that the most frequent terms
are processed by the first group of threads and the least
frequent terms by the last group of threads. This order is
better than its reverse because it can be expected that the
number of terms is not going to be an integer multiple of the
SIMT width, and it is better to have idle threads when
processing terms with a small number of occurrences rather
than the opposite. Even if the individual terms have
different frequencies, the frequencies are now similar
among the threads in each multiprocessor and the
computational efficiency is much higher.
 In experiments with real data, however, it turned out
that the most frequent terms are much more frequent than
the average terms. It resulted in a high slack and the need to
subdivide the work to fine-grained work-items. The new
schema for the division of occurrence sets oi to passes,
slices and work-items is demonstrated in Figure 4.1.

Figure 4.1: The division of term occurrence sets into slices
and work-items

Each column contains a term occurrence set oi, the arrow
denotes the direction in which i grows. Each term
occurrence set is subdivided into constant-length work-
items, represented by the light gray blocks, and remaining
work-items, the dark gray blocks. The rows define the
slices. The horizontal scale is referred to as the slice size
(the number of the terms processed in the particular slice).
The vertical scale is referred to as the length (the work-item
length is the number of the term occurrences in the work-

item; the slice length is the maximal length of the work-
items in the slice).

 The time to process a single work-item is proportional
to the product of the work-item length and the window size.
As GPU threads have a limited amount of time to run, the
slice length has to be set carefully so that they do not
timeout.
 When assigning the work-items to the passes, the
maximum number of work-items is limited by the maximum
thread block size. The maximum pass size depends on the
memory and the register usage per thread. Some slices may
exceed the maximum pass size. They will need to be further
subdivided.
 It also needs to be decided how the remainder work-
items will be processed. Processing them in each pass as
they occur in consecutive slices is not optimal. A smaller
standard deviation of the work-item length (and thus a
higher efficiency) can be achieved when all the remainder
work-items are processed in the first passes. These passes
are referred to as unaligned, while the rest of the passes as
aligned. For large chunks, it is also possible to minimize the
thread divergence by splitting the first passes into several
smaller passes containing work-items of equal lengths. For
example, over 12,000 terms with remainder slices were
observed when working with the King James’ Bible [14]
dataset (see Section 7). There were 4,000 terms occurring
just once, 1,700 terms occurring twice and under 1,000
terms occurring three times.
 As mentioned above, there are always a few words
much more frequent than the rest of the words in a natural
language text (this is illustrated by the first two columns in
figure 4.1). An additional optimization step is therefore
necessary to avoid many short passes that would lead to a
low GPU load. Once the pass size drops below a threshold,
the passes are re-arranged. A new dummy term id is
assigned to work-items (different from the dummy term
used for the chunk padding and the document separation).
The work-items are processed in parallel. Results are stored
in a separate dummy vector bank. After finishing the
computation, the results are added to the original term
vectors. Each thread performs an addition of a single term
vector element. These passes are called secondary, the
preceding ones primary. Vector addition is referred to as the
summation step in the following text.
 Sometimes there are enough terms with just a single
work-item left. To avoid the summation step overhead, it is
then more efficient to process them as one last primary pass.
The whole scheduling strategy is depicted on figure 4.2. The
solid vertical line corresponds to the maximal pass size limit
– all the slices crossing this line need to be broken into
multiple passes. Two short lines at the bottom demonstrate
the division. The dashed vertical line shows the minimal
primary pass size limit. Once the slice size drops below this
limit, the rest of the work-items are processed in a

slice
i

secondary pass. The dark grey square corresponds to the last
work-item. It will be processed in the last aligned primary
pass. Note that this is only for the sake of the description
brevity – processing a single work-item in a separate pass
would be inefficient.

Figure 4.2: Division of work-items into passes

 To process the task on a GPU, the work-items need to
be passed to the threads. The required data are stored in
three buffers: the chunk buffer contains concatenated
documents, the occurrence buffer contains all non-empty
elements of O in a single contiguous array, and the work-
item buffer contains a single work-item for each thread to
work on. One work-item consists of a term id which points
to the term vector buffer, a number of term occurrences (the
work-item length) and an offset to the occurrence buffer.
The arrangement is shown in figure 4.3.

Figure 4.3: Data buffers for GPU kernels

 The developed strategy keeps the GPU workload high
and is significantly more efficient than the sorted occurrence
list approach mentioned above. Nevertheless, there is still
the memory bandwidth bottleneck. GPUs perform well if
the memory accesses are coalesced. In the described
approach, there is no way to coalesce most of the accesses
as each thread works with a completely different data. It is
possible to coalesce accesses to the occurrence list but it has
a minimal impact in terms of the processing time as the
occurrence list is accessed in the outer loop only and it

needs to be interleaved with the CPU processing as well. It
is also possible to employ the GPU constant memory for the
work-item buffer if it is small enough. However, it does not
make a big difference too – the work-item buffer is accessed
once by each thread only. Thus, the only viable option is to
schedule a sufficient number of threads so that the GPU has
enough work to cope with the memory access latency.
 Further optimization steps have been followed.
Specialized kernels for the term vectors of power-of-two
dimensions enabled using the bitwise AND operator when
calculating the seed vector permutation (2.6). The
computation takes 1 clock cycle instead of approximately 2
cycles for the modulo operator on the GPU [15]. There are
also two versions of each kernel, for the aligned and
unaligned passes. The former enables loop unrolling and
other compile-time optimizations. When the unrolling is not
possible, loops are optimized by using the Duff’s device
[16]. It results in an almost 4 % speedup.

5. DENSE VECTOR IMPLEMENTATION ON GPU
 The previous section described the computation of term
vectors from random seed vectors. The seed vectors are
sparse and typically rather short. When retraining term
vectors from results of the previous pass, however, the
sparse seed vectors are replaced by the high-dimensional
term vectors. It is therefore possible to schedule a single
thread per term vector element to perform the computation
in parallel. The complex task division to primary and
secondary passes or work-items is no longer needed. As
illustrated in figure 5.1, just the occurrence list is sufficient.

Figure 5.1: Data buffers for retraining kernels

 The kernel function gets only the offset of the
occurrence buffer and the number of occurrences to be
processed. It is still necessary to break long runs into
smaller ones to avoid the kernel timeout but it is sufficient
to apply a simple approach of the division to pieces with the
size not exceeding a given threshold. The memory accesses
are coalesced if the dimensionality of the term vectors is an
integer multiple of the SIMT width. To achieve the best
performance, it is therefore advisable to choose it
accordingly.
 The only downside of the retraining is the necessity to
have all the term vectors in the GPU memory. There are
millions of terms in large datasets so that the term vector
buffers will easily exceed the GPU memory capacity. The

4

id
0 4

3 2
7

chunk

occurence buffer

term vector
table work-item

buffer 9
2

id id id

occurence buffer

id id

chunk

term
vector
table

id 3 2 4 id 2

unaligned primary
passes 1 and 2

aligned primary
passes 1 to 5

aligned
secondary
passes 1, 2

last aligned
primary pass

maximal pass size limit
minimal primary pass size limit

algorithm is, however, only working with the chunks
containing just a limited number of terms. Various caching
schemata, such as the least recently used algorithm [17], can
be applied to dynamically upload and download the term
vectors so that only an immediately required subset is
present in the GPU memory.

6. TERM VECTOR NORMALIZATION ON GPU
 Vector normalization is a simple task. It consists of two
steps – calculating the length of the vector and multiplying
the vector by its reciprocal length. Both the steps can be
realized as reduction operations implemented by processing
a single vector at a time. Even though it is the way vector
normalization is implemented in popular libraries such as
CUBLAS [18], it is inefficient due to idle threads. It may be
faster to calculate the length of each vector in a single
thread. If there are enough vectors to keep the GPU busy,
the operation is efficient. The downside is that the memory
accesses are not coalesced. A better strategy is to calculate
the length of each vector in a thread block, utilizing the
shared memory and the read coalescing. The results of the
three approaches described above and for CUBLAS
function cublasSnrm2 are compared in figure 6.1
(denoted VAT (vector at a time), VPT (vector per thread),
VTB (vector per thread block), and Snrm2 (CUBLAS
cublasSnrm2).

0
10
20
30
40
50
60
70
80

100 1 000 10 000 100 000 1 000 000

vector dimensions

b
a
n
d
w
id
th
 [
G
B
/
s
e
c
]

CPU VPT VAT VTB Snrm2

Figure 6.1: GPU vector reduction bandwidth

 All the tests were run with an equal amount of data,
only the vector dimensions (and hence the number of
vectors) changed. CPU time is therefore almost constant. It
can be seen that the vector per thread-block strategy is the
most beneficial. It surpasses cublasSnrm2()from the
standard CUBLAS library by more than 40 GB/sec.
 Vector scaling is also a very simple operation. The
implementation can be straightforward but various
optimizations can be applied too. The simplest version
calculates a single multiplication of an element by the
appropriate vector scale per thread. The corresponding
bandwidth is rather low (about 30 GB/sec). Profiling reveals
a large number of uncoalesced reads caused by reading

vector scales from the global memory. The vector scales can
be also stored in the constant memory. It slightly improves
the performance but it is still well under the GPU capacity.
The best implemented kernel pre-fetches the scales to the
local memory, yielding the bandwidth of 70 GB/s. The
performance of the CUBLAS function cublasSscal()is
suboptimal again. The graph in figure 6.2 summarizes the
results. Note that “the spikes” in the graph are caused by the
element misalignment occurring when the size of the
vectors does not correspond to the power of two.

0
10
20
30
40
50
60
70
80

100 1 000 10 000 100 000 1 000 000

vector dimensions

b
a
n
d
w
id
th
 [
G
B
/
s
e
c
]

CPU global const local Sscal

Figure 6.2: GPU vector scaling bandwidth

7. RANDOM INDEXING SPEEDUPS
 Two datasets were used for the experiments described
in this section – the King James’ Bible dataset [14] and a
part of the English GigaWord [19], specifically the “Central
News Agency of Taiwan” (CNA). The limited size of the
former one (the King James’ Bible) makes it ideal for
experimenting with different configurations of the
algorithms. At the same time, the dataset is large enough to
fill a single 4MB chunk, so scaling to larger datasets can be
expected to be approximately linear. The latter dataset is a
collection of about 7 million newspaper articles,
approximately 15 GB in size. The reason for using just a
part of this dataset was to reduce the number of the terms so
they would fit in the GPU memory. Additionaly, the dataset
was lemmatized using an existing library (libturglem-0.2
[20]), reducing the number of terms down to 97,335 (in the
CNA part of the dataset alone). Both datasets were indexed
using CLucene library [21] for easier processing.
 A simple "C" implementation of the algorithm was
originally developed to verify GPU results, but as it turned
out it is considerably fast, it was included in the results. The
experiments compared the runtimes of our “C”
implementation, of the Semantic Vectors package (version
1.3) [11], and of the GPU implementation. Times needed for
loading data from disk or storing the results were left out.
The GPU times include copying data to the GPU memory as
well as copying the results back. To ensure all the GPU

operations have finished, the clFinish()function was
always called.
 The recorded values include the times of term vector
training and retraining on the real data, and of term vector
normalization on synthetic data of varying dimensionality.
Note that the term vector normalization time is marginal
compared to the calculation of the term vectors. For the sake
of brevity, the total times are not reported.
 The implementations were built using the Microsoft
Visual Studio 2008 compiler. The CPU time of all the
algorithms was measured on a pair of unloaded AMD
Opteron 2360 SE processors (8 cores running at 2.6 GHz in
total) running Windows XP x64. The GPU time was
measured on NVIDIA GeForce GTX 260, using the most
recent drivers. An average time of four runs for each test is
given.
 The first series of tests regards calculating term vectors
from sparse seeds on the King James’ Bible dataset. The
seed length (the number of nonzero elements in the seed
vector) was set to 10 and then to 100. The term vector
dimensionality varied from 256 to 4,096. The chunk size
was set to four megabytes for all the tests. The GPU
implementation ran with the maximal slice length of 32
occurrences, the maximal pass size 12,500 terms (given by
the maximal number of scheduled threads), the minimal
primary pass size 2,000 terms and the minimal last primary
pass size 200 terms. The dummy vector banks were
allocated to hold 10,000 vectors. The results are shown in
figure 7.1.

0
10
20
30
40
50
60

100 1 000 10 000
vector length

ti
m
e
 s
e
e
d
 [
s
e
c
]

0

2

4

6

8

10

s
p
e
e
d
u
p

''C'' 10 SV 10 GPU 10

''C'' 100 SV 100 GPU 100

Speedup 10 Speedup 100

Figure 7.1: Building term vectors from sparse seeds, seed
lengths 10 and 100 (note “SV” denotes Semantic Vectors)

 The second series of tests involved retraining term
vectors from the results of the first pass (using the same
dataset). The term vector dimensionality varied from 256 to
4,096 as in the first test. The chunk size was set to 4MB
again. The maximal slice length for the GPU
implementation was set to 1,024 occurrences. The results
can be seen in figure 7.2. The excellent scaling of the GPU

implementation is noteworthy. It can be expected to keep
linear up to 16,384-dimensional vectors – the limit of
threads running at a time (512 threads per block × 32
processors). Note also that the Semantic Vectors package is
not much slower than the “C” implementation in retraining,
at least for short vectors. This is probably caused by the
similar order of processing used in both implementations.

0

50

100

150

200

250

300

100 1 000 10 000

vector dimensions

ti
m
e
 [
s
e
c
]

0

10

20

30

40

50

s
p
e
e
d
u
p

''C'' SV GPU Speedup

Figure 7.2: Retraining term vectors from results of the
previous pass

 The third test deals with the term vector normalization
speedup of GPU, compared to CPU. Term vector
dimensions vary from 128 to 1,048,576. The most efficient
method for both vector reduction and scaling was always
chosen. The results are shown in figure 7.3. Again, note the
spikes are caused by the misalignment of the non-power-of-
two dimensional vectors.

0

10

20

30

40

50

60

100 1 000 10 000 100 000 1 000 000

vector dimensions

s
p
e
e
d
u
p

Figure 7.3: Vector normalization speedup (GPU compared
to “C” implementation)

 The last series of tests were conducted on the
GigaWord dataset. The values of the internal parameters for
the algorithms were calculated using a simple decision tree
which attempts to suggest optimal parameters. The term
vector dimensionality was set to 2,048, the window size and
the seed length both to 10. Table 7.1 summarizes the results.
The lower speedup can be explained by the much higher
number of terms (97,335 in English GigaWord, 17,000 in
King James’ Bible) and thus more irregular memory access
patterns. That could be remedied by introducing a minimal

term frequency limit to reduce the number of terms. No tests
were run using the SemanticVectors package as it proved to
be significantly slower than the “C” implementation.

Table 7.1: Term vector calculation times and speedup
 Calculating TV Retraining TV
Time "C" 5434.128 s 27766.092 s
Time GPU 1725.120 s 4738.241 s
Speedup 3.15 × 5.86 ×

8. CONCLUSIONS AND FUTURE DIRECTIONS
 A practical tool for calculating term context vectors and
document context vectors from documents indexed by the
CLucene [21] library was implemented. It can be easily
modified to use another library, as data structures passed
between CLucene and the algorithms are rather simple. The
GPU implementation is significantly faster than both the
Semantic Vectors package and the baseline “C”
implementation. The speedup factor ranges from 4 to 9 for
building term vectors from sparse seed vectors while a
larger speedup occurs with shorter seed vectors. The tests
used a minimal seed vector length of 10, which is practical
[12] for most applications; a 9-fold speedup can therefore be
seen as realistic. For retraining from the results of the
previous pass, speedups are typically much higher, for 4,096
dimensions, it exceeds 40-fold. Speedup of the parallel
vector normalization is up to 70-fold, but the time spent in
this stage of the algorithm is negligible.
 The implementation is limited by the amount of
memory available on the GPU, as it requires storing all the
term vectors and eventually also the seed vectors in the
GPU memory. Today’s top GPUs are able to hold hundreds
of thousands to millions of term vectors, which should be
sufficient unless the processed dataset is extremely large.
Implementation of an algorithm for swapping unused term
vectors from GPU memory to host memory is suggested.
That would enable processing of virtually unlimited number
of terms.
 Another limitation is the maximal number of scheduled
threads and the thread timeout, which may vary from one
generation of GPUs to the next. it can be easily solved by
adjusting algorithm parameters, such as pass size or slice
length, without any significant performance loss.
 The main disadvantage of this implementation is its
GPU memory limitation. The next work will be directed
towards implementing the proposed scheme of term vector
caching, effectively removing this limitation.
 One component of the algorithm – the random seed
vector generator – was left unoptimized,. Generating
pseudo-random numbers on GPUs was described by several
authors [22, 23, 24]. It usually takes several seconds to
generate random seed vectors using standard “C” libraries,
so it probably could be optimized. But, in the end, it is still
only a small amount of time, compared to the total
algorithm run time.

 Another possible place for optimization could be to
attempt to improve locality of the memory accesses when
retraining the term vectors. The measure of similarity
between the terms is already available, giving some degree
of information about the term vectors, which are going to be
referenced. It should therefore be possible to reorganize the
order in which the term vectors are processed based on
clustering in high-dimensional context space to achieve
better memory access locality.

ACKNOWLEDGEMENTS
 The research leading to these results has received
funding from the European Community's 7th Framework
Programme FP7/2007-2013 under grant agreement
n.215453 – WeKnowIt and Artemis JU grant agreement n.
100223 – eSonia.

References
[1] G. Salton, A. Wong, C. S. Yang, “A Vector Space

Model for Automatic Indexing”, Communications of
the ACM, vol. 18, nr. 11, pages 613–620, 1975

[2] G. K. Zipf, "Human Behaviour and the Principle of
Least Effort", Addison-Wesley, 1949

[3] G. H. Golub and C. Reinsch, “Singular value
decomposition and least squares solutions”,
Numerische Mathematik 14 (5): pp 403–420, 1970.
doi:10.1007/BF02163027

[4] Magnus Sahlgren, “An Introduction to Random
Indexing”, Methods and Applications of Semantic
Indexing Workshop at the 7th International
Conference on Terminology and Knowledge
Engineering, TKE 2005, 2005

[5] P. Kanerva, “Sparse distributed memory”, The MIT
Press, 1988

[6] Sahlgren, M., Holst, A. & Kanerva, P., “Permutations
as a Means to Encode Order in Word Space”,
Proceedings of the 30th Annual Meeting of the
Cognitive Science Society (CogSci'08), July 23-26,
Washington D.C., USA, 2008

[7] Hecht-Nielsen, R.; “Context vectors; general purpose
approximate meaning representations self-organized
from raw data”, in Zurada, J. M.; R. J. Marks II; C. J.
Robinson, “Computational intelligence: imitating
life”. IEEE Press, 1994

[8] Sheetal Lahabar, P. J. Narayanan, “Singular Value
Decomposition on GPU using CUDA”, IEEE
International Parallel Distributed Processing
Symposium, 2009

[9] J. Krüger, R. Westermann, “Linear algebra operators
for GPU implementation of numerical algorithms”,
proceeding of SIGGRAPH '05 ACM SIGGRAPH
Courses, 2005

[10] V. Volkov, J. Demmel, “LU, QR and Cholesky
Factorizations using Vector Capabilities of GPUs”,
2008

[11] D. Widdows, K. Ferraro, “Semantic Vectors: A
Scalable Open Source Package and Online
Technology Management Application”, In
Proceedings of the sixth international conference on
Language Resources and Evaluation, 2008

[12] P. Kanerva, J. Kristofersson, and A. Holst, “Random
indexing of text samples for latent semantic analysis”,
in Proceedings of the 22nd Annual Conference of the
Cognitive Science Society, page 1036. Erlbaum, 2000

[13] K. Lund, C. Burgess, “Producing high-dimensional
semantic spaces from lexical co-occurrence”,
Behavior Research Methods, Instruments, &
Computers, 28, pages 203–208, 1996

[14] "The Bible, King James Version Complete Contents",
available online at http://www.gutenberg.org/
ebooks/7999, 2004

[15] “NVIDIA OpenCL Programming Guide”, available
online at http://developer.download.nvidia.com/
compute/cuda/3_1/toolkit/docs/NVIDIA_OpenCL_Pr
ogrammingGuide.pdf, 2010

[16] Stroustrup, Bjarne, “The C++ Programming
Language, Third Edition”, Addison-Wesley, ISBN 0-
201-88954-4, 1997

[17] E. J. O’Neil, P. E. O’Neil, G. Weikum, “The LRU-K
page replacement algorithm for database disk
buffering”, In Proceedings of the 1993 ACM
SIGMOD international conference on Management of
data, pages 297-306, 1993

[18] “NVIDIA CUBLAS User Guide”, available online at
http://developer.download.nvidia.com/compute/cuda/
3_2_prod/toolkit/docs/CUBLAS_Library.pdf, 2010

[19] D. Graff, C. Cieri, “English Gigaword”, Linguistic
Data Consortium, Philadelphia, 2003

[20] “European language lemmatizer“, availbale online at
http://lemmatizer.org, 2010

[21] M. McCandless, E. Hatcher, O. Gospodnetic, “Lucene
in Action, Second Edition“, Manning Publications
Co., ISBN 1-933-98817-7, pages 328-332, 2010

[22] W. B. Langdon, “PRNG Random Numbers on GPU”,
2007

[23] Wai-Man Pang; Tien-Tsin Wong; Pheng-Ann
Heng, “Generating massive high-quality random
numbers using GPU“, Evolutionary Computation,
CEC 2008, 2008

[24] A. Zafar, M. Olano, “Tiny encryption algorithm for
parallel random numbers on the GPU”, Proceedings
of the 2009 symposium on Interactive 3D graphics
and games, 2009

