
Classifier creation framework for diverse classification tasks

Ivo Řezníček, David Bařina
Department of Computer Graphics and Multimedia

Faculty of Information Technology
Brno University of Technology

Brno, Božetěchova 2, Czech Republic, 612 66
[ireznice, ibarina]@fit.vutbr.cz

Abstract — This paper introduces a novel framework
for classifier design process. The well known proce-
dure of the creation is used. The operations of the pro-
cedure are represented using executable programs
that are capable of processing various types of input
data. These executable programs are invoked using
the framework in multiprocessor environment and as
the result they design the desired classifier using the
machine-learning process. The framework is now be-
ing tested for design of image recognition classifiers
and action recognition tasks.

1 INTRODUCTION

Today’s technology makes it possible to acquire huge
amount of the audio-visual data and also the needs for
analyzing such data. In these audiovisual data the
amount of critical situations can be viewed and detec-
tion or analysis of these situations may be wanted to ei-
ther prevent these situations or be able to deal with it
more effectively and save lives, resources etc. Such in-
teresting situation feasible for analysis/detection can be
for example:

• Detection of left baggage,
• weapon carrying,
• person’s unusual movement detection, for

example the moving the other direction
than expected,

• traffic violations, etc.
The basic procedure is the feature extraction from

the input video or image and the following classifica-
tion. The feature vectors are used to describe the
unique or interesting properties of the input object,
where is assumed, that for the alike input object the
feature vectors are similar and conversely. These fea-
ture vectors are passed to the machine learning tech-
nique and model is created. The accuracy of describes
procedure is mainly dependent on the feature vectors
ability to distinguish between the input classes and the
properties of the machine learning technique, such as
resistance to noise, etc., for the on-line system the
complexity and speed of the feature extraction is very
important

When the classifier (model) is computed, it is as-
sumed that classifier is able to recognize the unknown

input objects, when the same feature vectors are com-
puted from it.

This paper introduces a framework for classifier
creation, which consists of three principal parts:

• The input data processor
• The classifier creator/tester
• The Database

The input data processor handles the feature extrac-
tion part of processing and the database is used for
communication between all system’s parts.

The purpose of the presented framework is to create
the classifier which can be next used in the on-line im-
age or video processing system, the only requirements
for such systems is the realtime processing capabilities,
thus the feature extraction method and following clas-
sification technique have to be fast enough to suit this
requirement.

In the previous paragraphs, the images and video
sequences were used as the input objects, the frame-
work is designed to work with various types of input
object, only the procedure of classifiers creation is
changeless.

The paper is organized as follows: in the chapter 2
the framework is presented, in the chapter 3 the stan-
dard usage of the framework is discussed and in the
chapter 4 the experimental results are showed.

2 FRAMEWORK DESIGN

The system is based on a database containing
mainly the image and video datasets with annotations;
they are imported using especially formatted files and
sets of output files previously processed using the input
data processor and the classifiers’ responses to the cer-
tain datasets.

Annotation files fully specifies the dataset content,
the number of lines defines the number of objects in
the dataset, the first string value of the line specifies
the full path to the object (video, image, etc.) and the
rest values specify the annotation of the current object,
the number of classes is not restricted and the annota-
tions can fulfill the 3 predefined values: 0 - neutral an-
notation, 1 – positive annotation, -1 negative annota-
tion. The number of fields must be equal in all lines of
the dataset.

The feature vectors and classifiers responses are
stored in special binary data files, the manipulation
utilities for converting from/to other formats are avail-
able, for example libsvm [1] format is supported. The
format of the classifier model files is depended on the
classification algorithm, in most cases all of it are the
readable text files.

In the next sections the two basic framework parts
are described:

2.1 The input data processor

The purpose of the input data processor is to transform
input list of object into feature vectors. The input list
of objects is stored in the database as a dataset. The
procedure consists the following four parts:

• Local feature extraction

The feature extractor executable is applied to
the all objects in the input list and all of the
extracted local features are stored into files.

• Codebook generation

Random subset of local feature vectors is se-
lected for codebook creation, the codebook
generation process is executed, and the code-
book is saved into a file.

• Bag-of-words like feature vectors creation

The local features file for each of the input
objects and the codebook is used for transla-
tion into the output feature vector representa-
tion.

• Merging the output feature vector file

All of the translated feature vectors are
merged into a single descriptor file in prede-
fined order, this file location is stored into da-
tabase and at this point it is ready to be used
in the next processing.

The local feature extraction part is based on several
feature extractors. The higher number of feature ex-
tractors or the higher number of settings of one feature
extractors can be specified and the framework will
evaluate all of them.

Similar situation occurs in the codebook generation
where multiple settings may be specified and then for
each local feature vector definition the codebooks are
created, all possible combinations are performed, all
possible bag-of-words like feature vectors are trans-
lated.

The number of output feature vector files is equal to
Nf X Nc, where the Nf is the number of feature extrac-
tors applied to the input dataset, and Nc is the number
of generated codebooks.

All the computation in this subsystem can be com-
puted on local computer or can be submitted to the Sun
Grid engine [3] parallel jobs scheduling system and
can be computed on a cluster. The system runs all the
computation in stages, the stages are the same as in the
previous bullets list.

2.2 The classifier creator / tester

Input to this subsystem is the feature vector file, the
dataset identification, and the annotations. All this in-
formation is stored into the database; the purpose is to
create the classifier for all of the input annotated
classes. As a machine learning technique, the linear
and nonlinear Support vector machines (SVMs) are
now supported.

The running of the training and testing process is
controlled by two files; first defines the feature vectors
and dataset which can be used for classifier creation,
the second specifies the configuration of learning algo-
rithms. The learning can be executed on local com-
puter or can be submitted to the Sun Grid Engine [3]
scheduling system to run in parallel, in this case every
learning process is represented as one job and all of
then are run simultaneously.

The output of this subsystem is one classifier for
every combination of local features used and the code-
book definition from preceding paragraph and the
number of classes defined in the dataset. The average
precision is computed for every class in the dataset and
mean average precision is computed over all classes in
the dataset.

The subsystem can be changed and another classifi-
cation technique can be adapted to, for example, neural
nets, Adaboost, Gaussian mixture models, etc.

Each classifier and its results (responses) can be
stored back to the database for further processing, for
example classifiers fusion.

3 USAGE

The standard way of usage of the presented framework
is to create the classifier based on the training dataset
and testing the classifier on the testing dataset. The
typical procedure is as follows:

• Run the input data processor on the train-
ing part of dataset, retrieve the feature vec-
tors, and store them in the database.

• Use the resulting feature vectors and create
the classifiers according to the number of
annotated classes and store all the informa-
tion about the process into the database.

• Execute the same (as above) operation on
the testing dataset and evaluate the stored
classifiers on the testing dataset.

The processing of the testing dataset can be speeded

up, because of the codebook, which is used for the
translation from local features to global feature de-
scriptor have to be simply copied, the codebook has to
be the same in both cases for one type of local feature
descriptors. The processing of the testing dataset is
speeded up once more, the classifier is in that case only
tested with new global feature vectors, the only condi-
tion for that is, the information of the classifier must be
stored in the database before testing.

The main advantage of the whole framework is the
ability to perform the experimental development of all
components used in the framework:

• The local feature extractors,
• the codebook generation,
• the methods for translation local features to

gobal features,
• the classification algorithms.

The most interesting research can be done in the lo-

cal feature extractors and the translation of local fea-
tures into global features and the presented framework
is designed for rapid parallel testing of the developed
parts used in it.

4 RESULTS

This framework has been successfully used in
TRECVID 2010 evaluation [4], Video object chal-
lenge 2010[5] and will be used in the TA2 project for
creating the classifiers for on-line human behavior rec-
ognition.

The results in the TRECVID 2010 evaluation were
average, the 135 object classes were trained and the 30
selected classes were evaluated. For the local feature
extraction from images were the bigger amount of
methods used, the codebook were created using the k-
means algorithm with 4000 model vectors and the svm
classifier were created for all the local extractors. The
output from all svm classifiers were fused using the lo-
gistic regression.

The results in the VOC 2010 was very successful,
the evaluation consist of classifying the 20 classes. The
feature extraction performed from the training exam-
ples set were the grayscale SIFT [6] and the color
SIFT [6] descriptors, the codebook were constructed
using k-means clustering algorithm and the number of
output model vectors were 4000. For every type of lo-
cal feature extractor were trained 20 svm classifiers
(for each class) and the output classifiers of the same
class were fused using the logistic regression.

5 CONCLUSIONS

The framework has been created to operate on various
type of input objects, the computational stages are con-
structed universally, all of it are replaceable and thus,
the framework is suitable for creating comparison of
diverse techniques at every stage of the framework’s
pipeline.

The further usage of the framework will be the
preparation of classifiers for on-line video data proc-
essing, with usage of space-time low level feature ex-
tractors.

Acknowledgments

This work has been partially supported by the EU FP7
project TA2: Together Anywhere, Together Anytime
(grant no. 214793) and EU FP7-ARTEMIS SMECY:
Smart Multicore Embedded SYstems, (grant
no.100230).

References

[1] Chih-Chung Chang and Chih-Jen Lin, LIBSVM : a
library for support vector machines, 2001. Avail-
able at http://www.csie.ntu.edu.tw/~cjlin/libsvm

[2] R.-E. Fan, et al. LIBLINEAR: A Library for Large
Linear Classification, Journal of Machine Learning
Research 9(2008), 1871-1874. Software available
at http://www.csie.ntu.edu.tw/~cjlin/liblinear

[3] SUN MICROSYSTEMS, INC. 2010. N1 Grid En-
gine 6 User’s Guide, January 2010.

[4] SMEATON, A. F., OVER, P., AND KRAAIJ, W.
2009. High-Level Feature Detection from Video in
TRECVid: a 5-Year Retrospective of Achievements.
In Multimedia Content Analysis, Theory and Ap-
plications, A. Divakaran, Ed. Springer Verlag, Ber-
lin, 151–174.

[5] Everingham, M. et al. The PASCAL Visual Object
Classes Challenge 2010 Results electronic file
available at: http://www.pascal-network.org/
chalenges/VOC/voc2010/workshop/index.html,
2010.

[6] Koen E. A. van de Sande et al. Evaluating Color
Descriptors for Object and Scene Recognition,
IEEE Transactions on Pattern Analysis and Ma-
chine Intelligence, volume 32 (9), pages 1582-
1596, 2010.

