DETERMINISTIC #-REWRITING SYSTEMS

Zbynék Kfivka
Doctoral Degree Programme (3), FIT BUT
E-mail: krivka@fit.vutbr.cz

Supervised by: Alexander Meduna
E-mail: meduna@fit.vutbr.cz

ABSTRACT

This paper discusses a deterministic version of #-rewriting systems with context-free rules. It
demonstrates that classical form of determinism does not affect the generative power of #-
rewriting systems. The result concerning deterministic #-rewriting systems of index k is given
too. The conclusion discusses even the stronger type of determinism.

1 INTRODUCTION

In the formal language theory, there exist language-defining devices having features of both
grammars and automata (see [1], [3], and [6]). Recently, this theory has introduced another
device of this kind—#rewriting systemsgsee [4]). Indeed, on the one hand, like grammars, they
are generative devices. On the other hand, like automata, they use finitely many states. Recall
that these systems of finite index characterize the well-known infinite hierarchy of language
families resulting from programmed grammars of finite index (see Theorems 3.1.2iand 3.1.7 in
[2]).

The original version of #-rewriting systems is based upon rules of the fg#n- qy, where

p, g are stateq, is a positive integer, anglis a non-empty string. By using this rule, the system
rewritesith # with y and, simultaneously, changes the current gpeteq. In the present paper,

we discuss a deterministic version of #-rewriting systems that satisfy that system is deterministic
if and only if there is no more than one rule in the set of rules with the same left-hand side (see
Conclusion of [4]).

As its main result, this paper demonstrates that the determinism under discussion does not affect
the generative power of #-rewriting systems. In terms of finite index, we are able to simulate
a non-deterministic #-rewriting systems of indexy a deterministic #-rewriting systems of
indexk+ 1. Therefore, one additional bounder is needed in case of limited finite index.

This result is of some interest when compared, for instance, to a classical context-free models
are much stronger than deterministic context-free grammars.

2 PRELIMINARIES

This paper assumes that the reader is familiar with the formal language theory (see [5], [7]). For
an alphabeV, V* represents the free monoid generate/hynder the operation of concatena-

tion. The identity ofV* is denoted by. SetV* =V* — {¢}; algebraicallyV " is thus the free
semigroup generated By under the operation of concatenation. Moe V*, |w| denotes the
length ofw, and forw C V, occuriw,W) denotes the number of occurrences of symbols from
W in w. For everyi > 0, suffix(w,i) is w's suffix of lengthi if |w| > i, andsuffix(w,i) = w if

i > |w|+ 1. suffixegw) = {suffix(w, j) | 0< j < |w|}. For everyi > 0, prefix(w, i) isw's prefix of
lengthi if |w| > i, andprefix(w,i) = wif i > |w| + 1. prefixegw) = {prefix(w, j) |0 < j < |w|}.

Let W denote the set of all non-negative integers andnlet¥. Setl =¥ — {0}. LetK C W be

a finite set. For a seQ), card(Q) denotes theardinality of Q. Define maxK) as the smallest
integerk such that for alh € K, k > h. Define mir{K) as the greatest integkisuch that for all
heK,k<h.

A context-free grammais a quadrupleG = (V,T,P,S), whereV is a total alphabet]T CV

is an alphabet of terminal§ € (V —T) is the start symbol, an is a finite set ofrules of
the formq:A — v, whereAe (V —T), ve V* andq is a label of this rule. Ifg:A—ve P,
X,y € V*, G makes a derivation step frorf\yto xvyaccording taj: A — v, symbolically written
asxAy=- xvy[q] or, simply,xAy=- xvy. In the standard manner, we defire", wherem > 0,
=7, and=*. To express thaB makesx =My, wherex,y € V*, by using a sequence of rules
d1,02, - - -, Om, We symbolically writex ="y [0102. . . qm|. Thelanguage of GL(G), is defined
asL(G) ={we T* | S="*w}. A languagel., is context-freaf and only if L = L(G), whereG

Is a context-free grammar.

For p € P, rhs(p) andlhs(p) denotes the right-hand side and the left-hand side of pule
respectivelylab(p) denotes the label of rulp, and forP C P, lab(P) denotes the set of all
labels of rules fronP. Instead of a rule, we frequently simply write its label in what follows for
brevity.

DEFINITIONS

A #-rewriting system (abbr. CF#RS) is a quadrupkt = (Q,Z,s,R), whereQ is a finite set
of states,Z is an alphabet containing # calledbaunder QN =0, s€ Q is a start state
andRC Qx| x {#} x Q x Z* is a finite relation whose members are calletes A rule
(p,n,#,0,X) € R, wheren€ |, q,p € Qandx € Z*, is usually written as: p# — q X hereatfter,
wherer is its unique label.

A configurationof H is a pair fromQ x Z*. Letx denote the set of all configurationsldf Let
puv, quxve X be two configurationsp,q € Q, u,v € 2*, n € | andoccur(u,#) =n— 1. Then,
H makes acomputational stefrom pu#v to quxvby usingr: p# — q X, symbolically written
pu#v = quxv|r] in M or simply pu#v = quxv

In the standard manner, we exteadto =™, for m> 0; then, based oa>-™, we define=" and
=" in the standard way. ThHanguage generatebdy M, L(H), is defined as

L(H)={w|s#="qw qe Qwe (Z—{#})"}.

Letk be a positive integer. A #-rewriting systethis of index kif for every configuratiorx € ¥,
s# =" qy= ximpliesoccuny,#) < k. Notice thatH of indexk cannot derive a string containing
more thark #s.

As special case of CF#RS, if for every p € Q and every positive integer pi# is the left-hand
side of no more than one rule i, thenH is calleddeterministic #-rewriting systerabbr.
detCF#RS).

Letk be a positive integet (CF#RS, L(detCHRS, L(CF#RS, and Ly (detCF#RS denote
the families of languages derived by #-rewriting systems, deterministic #-rewriting systems,
#-rewriting systems of indel, and deterministic #-rewriting systems of indexespectively.

Example 1 H = ({s,p,q, f},{a,b,c,#},s,R), whereR contains
1 st — p#H#
2. p#—qatb
3. qQut — p#c
4: pi#t— fab
5 f#— fc

Obviously,H is of index 2 and non-deterministic (see rules 2 and 4) ldht = {a"b"c" | n > 1}.
For instancelH generatesaabbbccass# = p## [1] = qattb# [2] = patibtic [3]
= (aatbbtic [2] = paattbbtcc [3] = faaabblicc [4] = faaabbbccdb).

RESULTS

Theorem 1 L(CF#RS = L(detCH{RS.

Proof.

Since detCF#RS is a special case of CF#RS, we only need to provg @#RS C L(detCRRS.
Construction.

LetH = (Qn,Z,s4,Ry) be a CF#RS, where = T U {#}. We construct the detCF#RB,=
(Qp,Z,sH4,Rp), whereRp andQp are constructed by performing the following steps:

1. Let for everyp € Qq andi €1, Fi,RH ={r:p#—qx|reRy,qeQn,xe};

2. SetR = U{ R | card(jRu) < 2};
3.

For everysRy with card(R+) > 3 do:
0:=p; _
while (card(,R4) > 3) do:

o excluder from JRy
° add(F;RH) into Qp
e addo# — rhs(r) ando# — <F;RH>#intoF¥;
o 0:=(jRu);
4. SetRp = U{ R | card(}R) = 1}.

5. Lethbe a bijection fromlab(R') to|. For every pair of rules: pi# — o1 x1 andrj: p# — gz X2
from R, such thah(i) < h(j), add intoRp the following rules:

° pi#—><ri,rj>##
° (ri,rj>i#—><ri)#
° (ri,rj>i+1#—>(rj>#

o (r)#— (rf)xa
)i#— (1) X2
Vie — Q1 €
)

it — Q€

o (I;

(

(r;
o (r
° (rj

a

and add new states;,), (ri), (ri), (r{),(rj) into Qp.

Basic ldea.

Step 1. The subseif;R denote the sets of rules with the same left-hand side. Therefore, the
cardinality of such set is the number of rules with the same left-hand side (the degree of
non-determinism).

Steps 2-3. The set of ruleRy, is transformed into the new set of rul@sthat contains at most two
rules with the same left-hand side.

Step 4. The new set of ruleRp, is initialized by all already deterministic rules frar

Step 5. Every pair of rules with the same left-hand side is simulated by the sequence of seven
new rules inRp: (1) generates the auxiliafy+ 1)-th bounder, (2 and 3) do the selection
from one of these simulated rules, (4 and 5) rewriteithdounder, (6 and 7) change the
state to the target state and erase the auxiliary bounder.

The rigorous version of the proof is left to the kind reader. O

Example 2 Let us show the construction based on the proof of Theorem 1 by transforming
CF#RS from Example 1H, into deterministic version of CF#R®),. Because the degree of
determinism is less than three we can skip first three steps of the construction. Then, we copy all
deterministic rules int&®p by actions in step 4, dep = {1:s1## — p## 3:q# — p#c,5: f #—
f c} andQp = {s,p,q, f}. Finally, by step 5, we generate the simulating sequence for the pair
of rules, 2p# — g atb and 4:p# — f ab.
Sinceri=2,rj=4,p=p,i=1,q1=0, 02 = f, Xy = a#b, X, = ab, add the following rules
into Rp:

p# — <2 4> it
(2,4)# — (2) #
(2,8) — (4) #
(2) # — (2) attb
(4) # — (4) ab
(2)#—qe
4y H#— fe

Atthe end Qo = {s,p,0, f,(2,4),(2),(4),(2), (4)}.

Corollary 2. For every k> 1, L4 (CF#RS C Ly, 1(detCHRS.
Proof. Since there is always only one more bounder added in the construction proof of Theorem
1, the corollary holds.

Theorem 3 Fork = 1, card(Lx(detCRRS) < 1.

Proof. Let assumé = 1 andcard(Ly(detCR#RS) > 1. The determinism implies that every

rule has unique left-hand side. Thus, the states and their programming do not allow a branching
or selection in the set of rules, thereby, in the computation. In detCF#RS, there is no way how
to generate two different configurations from the starting configurasénpy one or more
computational steps. So, the assumption taadl(£ (CF#RS) > 1 for k = 1 is wrong.

5 CONCLUSION

In fact, the way how the determinism is achieved from non-deterministic CF#RS is the replace-
ment of one type of non-determinism by another. From this point of view, the conclusion of
this paper says that the determinism has to be defined in more practical way to be useful, for
example in syntax analysis.

Open Problems ArealNe still do not know if there exists some construction algorithm that does
not increase the index of the detCF#RS during the construction from arbitrary CF#RS of index
k. In symbols, does for evety> 2 hold Ly (CF#RS = L (detCR#RS?

The other question is the definition of some strong determinism with practical usability.

ACKNOWLEDGEMENT
This work was supported by the MSMT FRVS 673/G1/2007 grant.

REFERENCES

[1] H.Borodihn, H. Fernau: Accepting grammars and systems: an overviewrtic. of De-
velopment in Language Theory Comflagdeburg, 1995, pp. 199-208.

[2] J.Dassow, G. &un:Regulated Rewriting in Formal Language Theddpringer, New York,
1989, 308 p., ISBN 0-38751-414-7.

[3] T.Kasai: A Hierarchy Between Context-Free and Context-Sensitive Languagésuhmal
of Computer and System Sciende$970, pp. 492-508.

[4] Z.KF¥ivka, A. Meduna, R. Schoénecker: Generation of Languages by Rewriting Systems that
Resemble Automata. Innternational Journal of Foundations of Computer ScieMoé
17, No. 5, 2006, pp. 1223-1229.

[5] A.Meduna: Automata and Languages: Theory and Applicatidhgringer, London, 2000,
916 p., ISBN 1-85233-074-0.

[6] E.Moriya, D. Hofbauer, M. Huber, F. Otto: On state-alternating context-free grammars. In:
Theoretical Computer Scien887, 2005, p. 183-216.

[7] G.Rozendberg, A. Salomaa (edshtandbook of Formal Languages: Word, Language,
Grammar Volume 1. Springer, Berlin, 1997, 873 p., ISBN 3-540-60420-0.

