
DETERMINISTIC #-REWRITING SYSTEMS

Zbyněk Křivka
Doctoral Degree Programme (3), FIT BUT

E-mail: krivka@fit.vutbr.cz

Supervised by: Alexander Meduna
E-mail: meduna@fit.vutbr.cz

ABSTRACT

This paper discusses a deterministic version of #-rewriting systems with context-free rules. It
demonstrates that classical form of determinism does not affect the generative power of #-
rewriting systems. The result concerning deterministic #-rewriting systems of index k is given
too. The conclusion discusses even the stronger type of determinism.

1 INTRODUCTION

In the formal language theory, there exist language-defining devices having features of both
grammars and automata (see [1], [3], and [6]). Recently, this theory has introduced another
device of this kind—#-rewriting systems(see [4]). Indeed, on the one hand, like grammars, they
are generative devices. On the other hand, like automata, they use finitely many states. Recall
that these systems of finite index characterize the well-known infinite hierarchy of language
families resulting from programmed grammars of finite index (see Theorems 3.1.2i and 3.1.7 in
[2]).

The original version of #-rewriting systems is based upon rules of the formp i#→ q γ, where
p, q are states,i is a positive integer, andγ is a non-empty string. By using this rule, the system
rewritesith # with γ and, simultaneously, changes the current statep to q. In the present paper,
we discuss a deterministic version of #-rewriting systems that satisfy that system is deterministic
if and only if there is no more than one rule in the set of rules with the same left-hand side (see
Conclusion of [4]).

As its main result, this paper demonstrates that the determinism under discussion does not affect
the generative power of #-rewriting systems. In terms of finite index, we are able to simulate
a non-deterministic #-rewriting systems of indexk by a deterministic #-rewriting systems of
indexk+1. Therefore, one additional bounder is needed in case of limited finite index.

This result is of some interest when compared, for instance, to a classical context-free models
are much stronger than deterministic context-free grammars.

2 PRELIMINARIES

This paper assumes that the reader is familiar with the formal language theory (see [5], [7]). For
an alphabetV, V∗ represents the free monoid generated byV under the operation of concatena-

tion. The identity ofV∗ is denoted byε. SetV+ = V∗−{ε}; algebraically,V+ is thus the free
semigroup generated byV under the operation of concatenation. Forw∈ V∗, |w| denotes the
length ofw, and forW ⊆V, occur(w,W) denotes the number of occurrences of symbols from
W in w. For everyi ≥ 0, suffix(w, i) is w’s suffix of lengthi if |w| ≥ i, andsuffix(w, i) = w if
i ≥ |w|+1. suffixes(w) = {suffix(w, j) | 0≤ j ≤ |w|}. For everyi ≥ 0,prefix(w, i) is w’s prefix of
lengthi if |w| ≥ i, andprefix(w, i) = w if i ≥ |w|+1. prefixes(w) = {prefix(w, j) | 0≤ j ≤ |w|}.
Let Ψ denote the set of all non-negative integers and letm∈Ψ. SetI = Ψ−{0}. Let K ⊆Ψ be
a finite set. For a set,Q, card(Q) denotes thecardinality of Q. Define max(K) as the smallest
integerk such that for allh∈ K, k≥ h. Define min(K) as the greatest integerk such that for all
h∈ K, k≤ h.

A context-free grammaris a quadruple,G = (V,T,P,S), whereV is a total alphabet,T ⊆ V
is an alphabet of terminals,S∈ (V −T) is the start symbol, andP is a finite set ofrules of
the formq:A→ v, whereA ∈ (V −T), v ∈ V∗ andq is a label of this rule. Ifq:A→ v ∈ P,
x,y∈V∗, G makes a derivation step fromxAyto xvyaccording toq:A→ v, symbolically written
asxAy⇒ xvy [q] or, simply,xAy⇒ xvy. In the standard manner, we define⇒m, wherem≥ 0,
⇒+, and⇒∗. To express thatG makesx⇒m y, wherex,y∈V∗, by using a sequence of rules
q1,q2, . . . ,qm, we symbolically writex⇒m y [q1q2 . . .qm]. Thelanguage of G, L(G), is defined
asL(G) = {w∈ T∗ | S⇒∗ w}. A language,L, is context-freeif and only if L = L(G), whereG
is a context-free grammar.

For p ∈ P, rhs(p) and lhs(p) denotes the right-hand side and the left-hand side of rulep,
respectively,lab(p) denotes the label of rulep, and forP⊆ P, lab(P) denotes the set of all
labels of rules fromP. Instead of a rule, we frequently simply write its label in what follows for
brevity.

3 DEFINITIONS

A #-rewriting system (abbr. CF#RS) is a quadrupleH = (Q,Σ,s,R), whereQ is a finite set
of states,Σ is an alphabet containing # called abounder, Q∩ Σ = /0, s∈ Q is a start state
and R⊆ Q× I ×{#}×Q× Σ∗ is a finite relation whose members are calledrules. A rule
(p,n,#,q,x) ∈ R, wheren∈ I , q, p∈ Q andx∈ Σ∗, is usually written asr: pn#→ q x hereafter,
wherer is its unique label.
A configurationof H is a pair fromQ×Σ∗. Let χ denote the set of all configurations ofH. Let
pu#v,quxv∈ χ be two configurations,p,q∈ Q, u,v∈ Σ∗, n∈ I andoccur(u,#) = n−1. Then,
H makes acomputational stepfrom pu#v to quxvby usingr: pn#→ q x, symbolically written
pu#v⇒ quxv[r] in M or simply pu#v⇒ quxv.
In the standard manner, we extend⇒ to⇒m, for m≥ 0; then, based on⇒m, we define⇒+ and
⇒∗ in the standard way. Thelanguage generatedby M, L(H), is defined as

L(H) = {w | s#⇒∗ qw, q∈Q,w∈ (Σ−{#})∗}.

Let k be a positive integer. A #-rewriting systemH is of index kif for every configurationx∈ χ,
s#⇒∗ qy= x impliesoccur(y,#)≤ k. Notice thatH of indexk cannot derive a string containing
more thank #s.
As special case of CF#RSH, if for every p∈Q and every positive integeri, pi# is the left-hand
side of no more than one rule inH, thenH is calleddeterministic #-rewriting system(abbr.
detCF#RS).

Let k be a positive integer.L(CF#RS), L(detCF#RS), Lk(CF#RS), andLk(detCF#RS) denote
the families of languages derived by #-rewriting systems, deterministic #-rewriting systems,
#-rewriting systems of indexk, and deterministic #-rewriting systems of indexk, respectively.

Example 1. H = ({s, p,q, f},{a,b,c,#},s,R), whereRcontains

1: s1#→ p ##

2: p1#→ q a#b

3: q2#→ p #c

4: p1#→ f ab

5: f 1#→ f c

Obviously,H is of index 2 and non-deterministic (see rules 2 and 4), andL(H)= {anbncn | n ≥ 1}.
For instance,H generatesaaabbbcccass#⇒ p## [1]⇒ qa#b# [2]⇒ pa#b#c [3]
⇒ qaa#bb#c [2]⇒ paa#bb#cc [3]⇒ f aaabbb#cc [4]⇒ f aaabbbccc[5].

4 RESULTS

Theorem 1. L(CF#RS) = L(detCF#RS).
Proof.
Since detCF#RS is a special case of CF#RS, we only need to prove thatL(CF#RS)⊆L(detCF#RS).
Construction.
Let H = (QH ,Σ,sH ,RH) be a CF#RS, whereΣ = T ∪{#}. We construct the detCF#RS,D =
(QD,Σ,sH ,RD), whereRD andQD are constructed by performing the following steps:

1. Let for everyp∈QH andi ∈ I , i
pRH = {r: p i#→ q x | r ∈ RH , q∈QH , x∈ Σ};

2. SetR′ =
S
{ i

pRH | card(i
pRH)≤ 2};

3. For every i
pRH with card(i

pRH)≥ 3 do:
o := p;
while (card(i

pRH)≥ 3) do:

• excluder from i
pRH

• add〈 i
pRH〉 into QD

• addo i#→ rhs(r) ando i#→ 〈 i
pRH〉 # intoR′;

• o := 〈 i
pRH〉;

4. SetRD =
S
{ i

pR′ | card(i
pR′) = 1}.

5. Lethbe a bijection fromlab(R′) to I . For every pair of rulesr i : p i#→ q1 x1 andr j : p i#→ q2 x2

from R′, such thath(i) < h(j), add intoRD the following rules:

• p i#→ 〈r i , r j〉 ##

• 〈r i , r j〉 i#→ 〈r i〉 #

• 〈r i , r j〉 i+1#→ 〈r j〉 #

• 〈r i〉 i#→ 〈r ′i〉 x1

• 〈r j〉 i#→ 〈r ′j〉 x2

• 〈r ′i〉 i+1#→ q1 ε
• 〈r ′j〉 i+1#→ q2 ε

and add new states〈r i , r j〉,〈r i〉,〈r i〉,〈r ′i〉,〈r ′j〉 into QD.

Basic Idea.

Step 1. The subsetsipR denote the sets of rules with the same left-hand side. Therefore, the
cardinality of such set is the number of rules with the same left-hand side (the degree of
non-determinism).

Steps 2-3. The set of rules,RH , is transformed into the new set of rulesR′ that contains at most two
rules with the same left-hand side.

Step 4. The new set of rules,RD, is initialized by all already deterministic rules fromR′.

Step 5. Every pair of rules with the same left-hand side is simulated by the sequence of seven
new rules inRD: (1) generates the auxiliary(i +1)-th bounder, (2 and 3) do the selection
from one of these simulated rules, (4 and 5) rewrite theith bounder, (6 and 7) change the
state to the target state and erase the auxiliary bounder.

The rigorous version of the proof is left to the kind reader. ut

Example 2. Let us show the construction based on the proof of Theorem 1 by transforming
CF#RS from Example 1,H, into deterministic version of CF#RS,D. Because the degree of
determinism is less than three we can skip first three steps of the construction. Then, we copy all
deterministic rules intoRD by actions in step 4, soRD = {1:s1#→ p ##,3:q2#→ p #c,5: f 1#→
f c} andQD = {s, p,q, f}. Finally, by step 5, we generate the simulating sequence for the pair
of rules, 2:p1#→ q a#b and 4:p1#→ f ab.
Sincer i = 2, r j = 4, p = p, i = 1, q1 = q, q2 = f , x1 = a#b, x2 = ab, add the following rules
into RD:

p1#→ 〈2,4〉 ##
〈2,4〉1#→ 〈2〉 #
〈2,4〉2#→ 〈4〉 #
〈2〉1#→ 〈2′〉 a#b
〈4〉1#→ 〈4′〉 ab
〈2′〉2#→ q ε
〈4′〉2#→ f ε

At the end,QD = {s, p,q, f ,〈2,4〉,〈2〉,〈4〉,〈2′〉,〈4′〉}.
ut

Corollary 2 . For every k≥ 1, Lk(CF#RS)⊆ Lk+1(detCF#RS).
Proof. Since there is always only one more bounder added in the construction proof of Theorem
1, the corollary holds.

Theorem 3. Fork = 1, card(Lk(detCF#RS))≤ 1.
Proof. Let assumek = 1 andcard(Lk(detCF#RS)) > 1. The determinism implies that every
rule has unique left-hand side. Thus, the states and their programming do not allow a branching
or selection in the set of rules, thereby, in the computation. In detCF#RS, there is no way how
to generate two different configurations from the starting configuration,s#, by one or more
computational steps. So, the assumption thatcard(Lk(CF#RS)) > 1 for k = 1 is wrong.

5 CONCLUSION

In fact, the way how the determinism is achieved from non-deterministic CF#RS is the replace-
ment of one type of non-determinism by another. From this point of view, the conclusion of
this paper says that the determinism has to be defined in more practical way to be useful, for
example in syntax analysis.

Open Problems Area. We still do not know if there exists some construction algorithm that does
not increase the index of the detCF#RS during the construction from arbitrary CF#RS of index
k. In symbols, does for everyk≥ 2 holdLk(CF#RS) = Lk(detCF#RS)?
The other question is the definition of some strong determinism with practical usability.

ACKNOWLEDGEMENT

This work was supported by the MŠMT FRVŠ 673/G1/2007 grant.

REFERENCES

[1] H. Borodihn, H. Fernau: Accepting grammars and systems: an overview. In:Proc. of De-
velopment in Language Theory Conf., Magdeburg, 1995, pp. 199-208.

[2] J. Dassow, G. P̆aun:Regulated Rewriting in Formal Language Theory. Springer, New York,
1989, 308 p., ISBN 0-38751-414-7.

[3] T. Kasai: A Hierarchy Between Context-Free and Context-Sensitive Languages. In:Journal
of Computer and System Sciences4, 1970, pp. 492-508.

[4] Z. Křivka, A. Meduna, R. Schönecker: Generation of Languages by Rewriting Systems that
Resemble Automata. In:International Journal of Foundations of Computer ScienceVol.
17, No. 5, 2006, pp. 1223-1229.

[5] A. Meduna:Automata and Languages: Theory and Applications. Springer, London, 2000,
916 p., ISBN 1-85233-074-0.

[6] E. Moriya, D. Hofbauer, M. Huber, F. Otto: On state-alternating context-free grammars. In:
Theoretical Computer Science337, 2005, p. 183-216.

[7] G. Rozendberg, A. Salomaa (eds.):Handbook of Formal Languages: Word, Language,
Grammar, Volume 1. Springer, Berlin, 1997, 873 p., ISBN 3-540-60420-0.

