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Abstract— The traffic density map (TDM) represents the
density of road network traffic as the number of vehicles per
a specific time interval. TDMs are used by traffic experts
as a base documentation for planning a new infrastructure
(long-term) or by drivers for showing a current traffic status
(short-term). We propose two methods for estimation of missing
density values in TDMs. In the first method, the problem is for-
mulated relatively strictly in terms of quadratic programming
(QP) and a QP solver is utilized to find a solution. The second,
more general method is based on a multiobjective genetic
algorithm which allows us to find a reasonable compromise
among several objectives that a traffic expert may formulate.
These two methods can work automatically or they can be used
by a traffic expert for an iterative density estimation. Results of
experimental evaluation based on real and randomly generated
data are presented.

I. INTRODUCTION

The traffic density map (TDM) represents the density of
road network traffic as the number of vehicles per a specific
time interval. This interval can be given in minutes or
hours. Usually, TDMs are used by traffic experts as a base
documentation for planning a new infrastructure (long-term)
or by drivers for showing a current traffic status (short-
term). Such TDMs can be composed automatically – with
the aid from standard surveillance technologies (e.g. various
data sensors such as loop detectors or traffic cameras).
Another approach, which can be used for TDM calcultion,
is the manual counting on selected road segments. However,
counting where people are involved in the process is usually
quite inaccurate and also inefficient [14].

There is also a big effort to estimate the future traffic
density. For example, paper [7] reports some techniques of
density prediction for the congestion analysis under hetero-
geneous traffic conditions. The goal is to determine their
feasibility under the Indian traffic scenario. Recently, a sta-
tistical approach to predict the density on any edge of such
a network at some time in the future was also presented [8].
The method is based on short-time observations of the traffic
history. In the two previous examples, however, complete
data sets for the whole traffic network were required. The
approaches require either a lot of traffic sensors or in the
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worst case, many people involved in the manual counting.
In the situation where it is not possible to cover the whole
traffic network with the field data, missing areas must be
completely excluded from the traffic density estimation.

In this paper, we deal with a more realistic scenario in
which TDM is not complete. We propose two methods for
estimation of missing density values. In the first method,
the problem is formulated relatively strictly in terms of
quadratic programming (QP) and a QP solver is utilized to
find a solution. The second, more general method is based
on a multiobjective genetic algorithm which allows us to
find a reasonable compromise among several objectives that
a traffic expert may formulate. These two methods can work
automatically or they can be used by a traffic expert [15]
for an iterative density estimation as described later in this
work. In present, estimation of missing values in TDMs is
done by a traffic expert who is supposed to have a very
good knowledge about traffic network in the observed area.
We will show that our methods can significantly improve and
accelerate this process.

The rest of the paper is organized as follows. The problem
of missing values estimation in TDM is briefly introduced in
Section II. Then, in Section III, the quadratic programming is
explained followed by Section IV, where multiobjective evo-
lutionary algorithms are described. In Section V the proposed
multiobjective evolutionary approach is described. Results
of experimental evaluation based on real and randomly
generated data are summarized in Section VI. Discussion of
results is provided by Section VII. Finally, conclusions and
suggestions for the future work are given in Section VIII.

II. TDM REPRESENTATION AND DESCRIPTION

TDM can be viewed as a directed graph, where each
node n represents a crossroad and each edge represents
a particular road segment. The density on the edge, de,
represents the number of incoming our outgoing vehicles
per time interval on a given edge e. The historic value of
density he (e.g. measured a year ago) can also be available
for some edges. Nodes in TDMs are divided into two sets.
In the first set, there are border nodes and we denote this
set as Nb. All incomming and outgoing vehicles from the
investigated traffic density map must go through these nodes.
The second set contains the inner nodes. We denote this set
Ni. For the inner nodes it also applies that the sum of the
input vehicles minus the sum of the output vehicles should
be near, or even better, equal to zero. Both sets are strictly
disjunct (Ni ∩Nb = ∅). Every node n has a set of incoming
edges In and a set of outgoing edges On, respectivelly. Fig. 1
shows a TDM consisting of 6 nodes and 12 edges, where

2012 15th International IEEE Conference on Intelligent Transportation Systems
Anchorage, Alaska, USA, September 16-19, 2012

978-1-4673-3063-3/12/$31.00 ©2012 IEEE 632



Fig. 1. Syntetic example of measured data for TDM in two years. Missing
values are marked by question mark. Values on these edges should be
estimated.

Nb = {A,F} and Ni = {B,C,D,E}. In TDM which we
consider in this work, one has to deal with hundreds of nodes
and hundreds of edges. Typically 40 % of values are missing
and have to be estimated.

III. QUADRATIC PROGRAMMING APPROACH

Quadratic programming is a method for solving optimiza-
tion problems that can be formulated as follows:

Minimize q(x) = 1
2x

TGx+ xT d
subject to aTi x = bi i ∈ ξ

aTi x ≥ bi i ∈ I

where x and d are vectors with n components and G is
a positive semidefinite matrix. Expressions aTi x ≥ bi and
aTi x = bi represent some constraints [6].

In order to solve a particular TDM problem, the quadratic
programming is used to minimize an absolute value of the
difference betweeen the number of incoming and the number
of outgoing vehicles for all nodes of TDM. Let En denote
the error of an inner node, i. e.

F1 = En = |
∑
e∈In

de −
∑
e∈On

de| (1)

The squared sum of these errors for all those nodes is then
our objective function:

E =
∑
n∈Ni

E2
n (2)

In this approach, we can define a set of constraints for
edges e which we don’t know the density value de for. As we
may know historic values from the previous measurement he,
it is possible to constraint the expected value to be in some

range (e.g. de ∈ [0.7he, 1.3he]). The exact ranges must be
specified by a traffic expert.

The main advantage of this approach is in its speed. It’s
guaranted that the QP method will always find a solution.
Typical problem instances are solved in a few seconds. On
the other hand, a quite strict problem formulation does not
allow us to simply incorporate more domain knowledge into
the quadratic programming method, for example, to define
more objective functions for the optimization.

IV. MULTIOBJECTIVE OPTIMIZATION

A. Genetic algorithm

A genetic algorithm (GA) is a popular optimization al-
gorithm based on principles of Darwinian evolution which
has been applied to solve many hard optimization problems
[12]. Each candidate solution is represented by an array of
parameters. In the terminology of genetic algorithms these
arrays are called chromosomes. A set of chromosomes forms
a population.

The quality of each candidate solution is evaluated, by
means of the objective (fitness) function. The selection of
parents for the new population is based on individuals fitness
values. Higher-scored individuals have a higher probabil-
ity of selection. New population is then generated using
crossover and mutation over the parent individuals. The
GA is terminated when a suitable solution is discovered
or predefined number of generations is exhausted. Elitism
means that a given number of the highest-scored individuals
is carried into the next population directly, without any
modification.

B. Multi-objective optimization

In the single-objective optimization there is only one
goal, i.e. finding one solution with the best fitness value.
However, if there is more than one objective, a multiobjective
optimization algorithm has to be applied. The main problem
in this type of optimization is on how to compare the quality
of two solutions. For example, solution a can be better then
solution b according to one objective but worse according to
another objective function and vice versa. To deal with this
issue, the Pareto dominance relation is often utilized.

We can describe the multiobjective optimization more
formally according to [2] as follows: The goal is to minimize
(or maximize) M objective functions:

fm(x), m = 1, 2, ...,M
subject to gj(x) ≥ 0 j = 1, 2, ..., J

hk(x) = 0 k = 1, 2, ...,K

where x is a vector of parameters x = (x1, x2, ..., xn),
M is the number of objectives. Functions gj define inequity
constraints and functions hk define equity constraints. The
feasible solution is one which fullfills all given constraints.

For two feasible solutions a and b we can say that solution
a dominates a solution b if and only if two conditions are
fullfilled:
• Solution a is at least of the same quality as solution b

for all objectives.
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• Solution a is better than b in at least one objective.
We call solution a Pareto-optimal if and only if there

is no solution b, which dominates a. In a multiobjective
optimization problem with conflicting objectives, the goal
is to find many or even all Pareto-optimal tradeoffs.

In the past, many methods for multiobjective optimization
have been developed. For example, weighted sum method
[16], ε-constrained method [17], weighted metric method,
Benson’s method [18], etc. However, the main disadvantage
of these methods is that they provide only one solution. It’s
necessary to change parameters of the methods to obtain
other solutions [2], [3].

One of the main advantages of truly multiobjective genetic
algorithms is their ability to provide a set of different solu-
tions in a single run. It’s mainly because these GAs internaly
create Pareto fronts (i.e. sort candidate solutions according
to the dominance relation) in every single generation. In the
past, there were proposed various kinds of multiobjective
genetic algorithms, e.g. Vector Evaluated Genetic Algo-
rithm (VEGA) [4], Strength Pareto Evolutionary Algorithm
(SPEA) [5], NSGA, NSGAII [1] and many others [2].

NSGAII is a multiobjective genetic algorithm which was
proposed by K. Deb in [1]. It uses a non-dominated sorting
algorithm with an optimal complexity O(MN2), where M
is the number of objective functions and N is the number
of sorted solutions. It uses the elitism and provides diversity
preservation mechanisms to find various different tradeoff
solutions. One of the biggest advantages of this algorithm is
that it’s not neccessary to set numerous parameters such as
the weights of objective functions and sharing parameter. NS-
GAII and non-dominated sorting mechanisms are described
in greater detail in [1].

V. THE PROPOSED MULTI-OBJECTIVE APPROACH

A. Encoding of paremeters

In the proposed approach which is based on NSGAII, each
candidate solution is defined by a vector of real numbers.
Every component of the vector represents a traffic density on
one road segment, for which the density is not avalaible. The
parameter value should be rounded to have the integer value.
In the first generation of GA, components of vectors are
initialized to positive randomly generated values [0, 100000].

B. Objective functions

In the quadratic programming approach, it was possible to
use only one objective function (see Eq. 2). NSGAII allows
us to utilize more fitness functions directly. In our case there
will be two objective functions. The first is the sum of errors
on nodes (see Eq. 2) and the second is the sum of differences
to historic values (see Eq. 2).

Let Eh be a set of edges which have not the density values
available, but we know the historic values of density for
them. The second objective function F2 is then defined as

F2 =
∑
e∈Eh

|de − he| (3).

Similarly to the quadratic programming, it is possible
in NSGAII to constraint the expected density to interval
[0.7he, 1.3he].

C. Genetic operators

A single point crossover and a normally distributed mu-
tation are utilized. The single-point crossover swaps some
parameters between two candidate chromosomes. Normally
distributed mutations work as follows. For each gene gi of
chromosome a random number ri ∈ [0, 1] with the uniform
distribution is generated. If this number is less than the
mutation probability Pt, then a new randomly generated
number (with the normal distribution N(0, ε)) is added to
gene gi.

D. Self adaptation

In order to maximize performance of the genetic algorithm
it is necessary to correctly set various control parameters
such as the population size, the probability of crossoever,
the probability of mutation etc. This can be considered as
an optimization problem itself.

These control parameters can be determined by expert,
or discovered by another genetic algorithm (this approach
is called metaevolution). In our evolutionary approach we
use a self-adaptive method, which enables to encode some
control parameters of genetic algorithm in to the chromo-
some [9], [10] and [11]. We added a special gene gσ to
represent the deviation of mutations, gene gc to represent
the probability of crossover and gene gm to represent the
probability of mutation into the chromosome. Tab. I. shows
permited values and deviations for mutation of these genes.

TABLE I
PERMITTED VALUES AND DEVIATIONS OF CONTROL GENES

Gene Permitted values Deviation
gσ [0.00002, 0.2] 0.013
gc [0, 1] 0.1
gm [0.01, 1] 0.1

As in [9] the mutation has two phases. In the first phase,
the mutation of the control genes is performed. Then other
genes are mutated according to the new values of the
control parameters. The crossover probability control works
as follows. Firstly two candidate solutions are selected by
a tournament selection. Then the mean of their gc genes is
taken as the probability of crossover for these two solutions,
i.e.

Pc =
g1c + g2c

2
(4).

VI. EXPERIMENTAL RESULTS

A. Datasets

In order to evaluate the proposed methods, two data
sources are utilized: (1) field data from annual manual
counting from the city of Prague (counting in year 2008
and 2009). The data cover the central part of the city which
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is modelled using 126 nodes (28 of them are border nodes)
and 277 edges (117 of them without the traffic intensity).
This data set was provided by TSK Prague [13].

(2) syntetic data where three random scenarios of incom-
plete TDMs were generated. These syntetic maps have 200,
500 and 1000 nodes.

B. Performance

For the real scenario from Prague, a solution produced
by the first method based on QP is: F1 = 5.286681E8 and
F2 = 152450. We used the Octave QP solver.

Three different variants of multiobjective GA were ana-
lyzed: (1) Genetic algorithm starts with a randomly generated
initial population without self-adaptation; (2) GA starts with
a randomly generated initial population, but self-adaptation
is enabled; (3) GA starts with the initial population generated
by quadratic programming and self-adaptation is enabled. All
three variants optimized two objective functions: (i) the error
on nodes as described in Eq. 2 and (ii) the sum of differences
on edges against last year counting (Eq. 3). The population
size was 50 for each run.

Tables II, III and IV give the mean of the best values of
objective functions after a specified number of generations
(1000, 2000, 5000, 10000, 25000 and 50000). Two situations
were analyzed. One without hard constraints given and one
with maximal difference of 30% against historic values
as a hard constraint. It can be observed that variant (1)
provides the worst results for both objective functions. The
variant (2) provides better results against the history, but
significantly worse results in node errors than the combined
variant (3) approach when 30% constraint is applied. When
method (3) doesn’t use this constraint, it provides better
results on nodes than the quadratic programming approach.
However, it provides worse difference results against the
historic values till 25000 generations, but better results after
25000 generations than the combined approach. Fig. 2 and 3
compare the speed of convergence for all three variants. One
thousand generations takes 5.5 seconds on the Intel Xeon
2.66 GHz processor. It can be seen that GA is slower than
QP. Traffic expert solves the same problem in a few days.

C. Pareto front

One goal of the multiobjective optimization is to have
solutions widely spread along the Pareto front at the end
of optimization. Table V shows the results obtained from
a single run of the genetic algorithm. Figure 4 shows
positions of individual solutions in the whole objective space.
On the horizontal axis there is an error on nodes and vertical
axis shows a difference against historic values. Every such
point represents one tradeoff solution and it can be seen that
solutions are quite well spread.

VII. DISCUSSION

A. QP vs. multiobjective GA

It was shown that two-objective optimization process gives
many tradeoff solutions situated on the Parreto front. This
is usefull for iterative estimation, because one can choose

Fig. 2. Convergence of F1 (error on nodes).

Fig. 3. Convergence of F2 (history difference).

Fig. 4. Spread of solutions along Pareto front after a single run with 50
solutions in population. Each point represents one solution.
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TABLE II
FITNESS VALUES FOR GENETIC ALGORITHM METHOD, VARIANT (1)

WHICH DOESN’T USE THE SELF ADAPTATION

Generations Error on nodes History difference
Random scenario with 200 nodes

2000 9.713179E9 26802.0
10000 9.680005E9 7771.2
25000 9.676344E9 5233.35

Random scenario with 500 nodes
2000 3.370222E10 273080.4

10000 3.339072E10 54241.6
25000 3.336195E10 33805.9

Random scenario with 1000 nodes
2000 9.354801E10 854547.4

10000 8.909628E10 244548.1
25000 8.884524E10 155489.4

Real data from Prague
1000 6.813175E9 165515.3
2000 6.0065031E9 107727.4
5000 1.669960E9 39446.8

10000 7.082570E8 27780.7
25000 6.081299E8 21955.65
40000 5.92208E8 19916.1
50000 5.885092E8 18223.7

TABLE III
FITNESS VALUES FOR GENETIC ALGORITHM METHOD, VARIANT (2)

WHICH USES THE SELF ADAPTATION

Generations Error on nodes History difference
Random scenario with 200 nodes

2000 9.705400E9 7928.95
10000 9.672611E9 42.55
25000 9.672601E9 1.35

Random scenario with 500 nodes
2000 3.353729E10 86722.9

10000 3.332559E10 2426.65
25000 3.332383E10 82.4

Random scenario with 1000 nodes
2000 9.103709E10 450026.75

10000 8.855298E10 64569.45
25000 8.853087E10 15173.65

Real data from Prague
1000 2.380441E9 28188.15
2000 9.907829E8 8765.05
5000 5.89444E8 817.5

10000 5.319566E8 57.4
25000 5.289430E8 9.45
40000 5.286752E8 0.1
50000 5.28668E8 0.2

the best tradeoff according to his/her knowledge. It’s not
necessary to define the objective functions in such a strict
way as in the quadratic programming and it is possible to
have more complicated objective functions (e.g. the objective
function with different importance of errors on nodes). Also,
it is possible to use the constraints in the same way discussed
in the QP approach.

B. Combination of previous approaches

The best results results were obtained by combining
both methods, when the initial solution is generated by the
quadratic programming and then further optimized by GA.

TABLE IV
FITNESS VALUES FOR VARIANT (3) WHICH COMBINES QUADRATIC

PROGRAMMING WITH GENETIC ALGORITHM

Generations Error on nodes History difference
Real data from Prague

1000 5.286681E8 54754.95
2000 5.286681E8 19044.8
5000 5.286681E8 5488.6

10000 5.286681E8 550.8
25000 5.286681E8 7.35
40000 5.286681E8 1.5
50000 5.286681E8 0.75

TABLE V
FITNESS VALUES AFTER A SINGLE RUN OF GENETIC ALGORITHM.

Number Error on nodes History difference
1 528679433 111147
5 537616079 101211

10 567838646 78839
15 607468038 60657
20 665618956 45534
25 728551453 33265
26 742025879 30861
30 793220329 23726
35 866315327 14037
40 939494317 7520
45 1045551681 2242
50 1131328632 17

C. Expert knowledge

Recently built parking lots, shopping centres, etc. can in-
troduce significant errors to TDMs with respect to historical
data. The errors on nodes corresponding to these new entities
are obviously much less significant than on other nodes.
Automatically generated estimation can’t deal with this fact.
The proposed approach is able to incorporate this kind of
domain knowledge into the solution. In one of supported
scenarios, traffic expert is allowed to choose from three
methods to define error on each single node n. These options
are described by Eq. 5, where k ∈ {1, 2, 3}.

En = |
∑
e∈In

de −
∑
e∈On

de|k (5)

It is evident that higher value of k implies higher impact of
error on current node to fitness F1. We propose this method
for incorporating of experts knowledge without any exper-
iments. We developed a computer program in Java, which
uses an incremental process of traffic density estimation. This
process is supposed to be driven by a user – traffic expert. At
the begining the user sets the values for measured edges and
runs the multiobjective genetic optimization process. There
are several optimized solutions at the end of this process. One
of them can be chosen and eventually edited. The user can
also change importance of the errors on nodes and constraints
as mentioned previously. After this editing, the optimization
process can be performed again and again. This iterative
process continues until a sufficient estimation is reached.
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Fig. 5. A screenshot of application for estimation of missing values in TDM.

VIII. CONCLUSION

In this paper, we have presented that it is possible to
effectively estimate TDM in situations where field data are
not available. We have compared two advanced techniques
QP and multiobjective genetic algorithm. We have proposed
a method combining both techniques, which has also been
implemented in the complete Java based software system.
This software system can be used by traffic experts when
the traffic density information is not available for a required
region. The proposed methods could be exploited by local
traffic authorities in decision making process (e.g. in situ-
ations when deciding where to install a new surveillance
system). Our system can help to determine which crossroads
are more or less important for the global network density
estimation (where to place new data sensors for traffic
monitoring).

In the future work, we are going to even more accelerate
our estimation process, which is very important in case when
smaller time interval than one year has to be used. Our aim
is to use this density estimation process as a part of ITS in
a real-time traffic congestion prediction.
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