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Abstract. Secrecy amplification protocols are mechanisms that can sig-
nificantly improve security of partially compromised wireless sensor net-
works (e.g., turning a half-compromised network into the 95% secure
one). The main disadvantage of existing protocols is a high communica-
tion overhead increasing exponentially with network density. We devise
a novel family of these protocols exhibiting only a linear increase of the
communication overhead. The protocols are automatically generated by
linear genetic programming (LGP) connected to a network simulator.
After a deep analysis of various characteristics of this new family of pro-
tocols, with a special focus on the tuning of LGP parameters, new and
better group-oriented protocols are discovered by LGP. A multi-criteria
optimization is then utilized to further reduce the communication over-
head down to 1/2 of the original amount while maintaining the original
fraction of secure links.

1 Introduction

Wireless sensor networks (WSNs) are networks of resource-constrained battery-
powered nodes that can communicate over short distances via wireless radio. The
applications of such networks vary from environment monitoring to battlefield
management and often require resistance against unauthorized reading, modifi-
cation or generation of monitored information. To achieve this goal, encryption
and message authentication techniques with shared symmetric keys between the
communicating parties can be used. This is, however, a challenging task, since
the nodes are usually distributed in an untrusted environment. An attacker can
extract all keys from a physically captured node and easily intercept large frac-
tion of communication in the network.

Secrecy amplification (SA) is a post-deployment technique for improving the
security of communication in partially compromised networks. It can be em-
ployed in situations, where there are keys established between the nodes in the
network, but some of them may be compromised. SA exploits the fact that
a group of neighbouring nodes can cooperate and establish a new key derived
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from multiple old keys. The new key will be secure in case when at least one of
the old ones was not compromised. The concept was initially introduced in [2]
and further improved in [6, §].

In this work, we present newly discovered group-oriented secrecy amplifica-
tion protocols with better performance than previously published node-oriented
protocols. The protocols are automatically generated by linear genetic program-
ming (LGP) [4] connected to a network simulator. We chose LGP because it is
suitable for evolution of short domain-specific programs as shown by e.g. [3]. The
discovery was made possible by deeply analysing and tweaking the evolutionary
search and also by introducing another criterion for protocol optimization — a
total number of exchanged messages. The goal of this paper is to analyze the
impact of LGP parameters on the quality of evolved protocols and find better
ones.

The paper is organized as follows: The next section provides a short introduc-
tion to secrecy amplification in WSNs and reviews previous work on automatic
design of these protocols with Evolutionary Algorithms. Section 3 analyses the
impact of different parameters such as population size, mutation and crossover
rate, length of chromosome or number of generations on the performance of
LGP. Section 4 describes new protocols found in long-running experiments with
tuned LGP and analyses their performance and robustness. Section 5 intro-
duces a multi-criteria optimization and shows that further reduction of totally
exchanged messages in the protocols is possible. Conclusions are given in Sec-
tion 6.

2 Previous work

Secrecy amplification (SA) was initially introduced in [2] for the Key Infection
(KI) key establishment, in which the keys are exchanged between the neighbours
in plaintext. In case an attacker places an eavesdropping node close to a legit-
imate one, it is able to intercept all the keys exchanged with that node. The
concept of SA can also be used when the compromised links are distributed ran-
domly. Such a compromise pattern may result from the probabilistic distribution
scheme of Eschenauer and Gligor (EG) [7].

The protocols presented in [2] and [6] use an “absolute” identification of the
nodes (e.g., node number 1, 2, 3.) If there are k parties (nodes) in the protocol
and n neighbours of node on average then one run of the protocol must be
executed for all k-tuples of neighbours leading to (:) executions per single node
— a huge communication overhead. The number of totally exchanged messages
increases exponentially with the number of neighbours and is significant for
WSNs where 6-15 neighbours are usually assumed. We will denote such protocols
as node-oriented (NO).

A different approach to the design of amplification protocols was presented
in [8]. Identification of the parties in protocol is given by the relative distance
from two distinct nodes. It is assumed that each node knows the distance to its
direct neighbours. This distance can be approximated from the minimal trans-



mission power needed to communicate with a given neighbour. If the protocol
has to express the fact that two nodes N; and N; are exchanging a message over
the intermediate node N}, only relative distances of such node Ni from N; and
Nj are indicated in the protocol (e.g., N(o.3_0.7) is a node positioned 0.3 of the
maximum transmission range from N; and 0.7 from N;). Based on the actual
distribution of the neighbours, the node closest to the indicated distance(s) is
chosen as the node Ny, for particular protocol run. There is no need to re-execute
the protocol for all k-tuples (as for NO protocols) as all neighbours can be in-
volved in a single execution, reducing communication overhead significantly. See
[8] for a detailed description of evaluation process for group-oriented protocols.

2.1 Evolution of amplification protocols

In order to improve the fraction of secure links and to decrease the necessary
communication overhead (the number of messages), a new method for automatic
generation of protocols was introduced in [8]. The method utilized linear genetic
programming and a network simulator for evaluation of candidate amplification
protocols with resulting fraction of secure links taken as fitness value. The use of
LGP is especially important in case of group-oriented protocols, since the design
of such a protocol is not a trivial task and to the best of our knowledge, no
human-designed group-oriented protocol was published yet.

Instruction set: Each party (a real node in network) in the protocol is mod-
elled as a computing unit with a limited number of memory slots. Each memory
slot can contain either a random value, encryption key or message. Each candi-
date protocol is modelled as a program composed of instructions from a specific
instruction set given in Table 1. This instruction set was chosen because it en-
ables to express all previously known amplification protocols and to utilize only
operations available on real sensor nodes such as TelosB [5].

Table 1: Instruction set for amplification protocols.
NOP No operation is performed.
RNG N, R; Generate a random value on node N, into slot R;.
SND N, Ny R; R; |Send a value from R; on node N, to slot R; on Np.
CMB N, R; R; Ry|Combine values from slots R; and R; on node IV, and store the
result to Ry (e.g., cryptographic hash function like SHA-3).
ENC N, R; R; Ry |Encrypt a value from R; on node N, using the key from R; and
store the result to Ry.
DEC N, R; R; Ry |Decrypt a value from R; on node N, using the key from R; and
store the result to Ry.

Using this set of primitive instructions, a simple plaintext exchange of new
key can be written as {RNG Ny R;; SND Ny No Ry Ry;}, a PUSH protocol [2] as



{RNG N; Ry; SND Ny N3 Ry Ry; SND N3 Ny Ry Ry;}, a PULL protocol [6] as
{RNG N3 Ry; SND N3 Ny Ry Ry; SND N3 Ny Ry Ry;} and a multi-hop version
of PULL [6} as {RNG N3 Rl; SND N3 N1 R1 Rl; SND N3 N4 R1 Rl; SND N4
Ny Ry Ry;}. All these protocols are node-oriented. Group-oriented protocols are
longer and more complicated, see [8].

Previous LGP results: LGP rediscovered previously published protocols and
also new and better performing protocols were found. The best performing node-
oriented 4-party secrecy amplification protocol found [8] consists of 10 effective
instructions with performance shown in Figure 3. Note that the LGP objective
was to optimize the number of secure links only, not the number of messages.
Additionally, only limited computing resources were available to obtain these
results. We will show in next sections that better protocols (in terms of the
number of secure links and messages needed) can be obtained with improved
LGP settings and more computational resources.

3 LGP tuning and exploring the design space

This section describes the initial version of LGP and network simulator, together
with heavily resource-consuming experiments conducted to determine the most
suitable parameters of LGP that are necessary for finding new group-oriented
protocols in Section 4. Distributed computation via BOINC (Berkeley Open
Infrastructure for Network Computing) [1] with around 250 CPU cores was used
to provide the performance necessary for all experiments?.

3.1 Experimental setup

Basic LGP setup: LGP operates with the instruction set given in Table 1. The
size of chromosome is 100 instructions. Every node contains 12 memory slots.
The initial population is generated randomly. The mutation operator randomly
picks an integer and generates a new value at its position. The crossover oper-
ator is applied at the level of instructions. A new population is formed using a
tournament selection. The fitness function is defined as a fraction of secure com-
munication links. The impact of various parameters of LGP on the performance
is investigated in Section 3.2.

Network simulation: Candidate protocols are simulated in a network of 100
legitimate nodes. During the evaluation, each amplification protocol was inde-
pendently executed on 5 deployments, each of which with different placement of
the nodes. This way the candidate protocol was prevented from optimizing on
one particular network deployment and provided results usable also in networks

3 Raw data in searchable format from all experiments are available at web page
http://www.fi.muni.cz/~xsvenda/papers/EuroGP2012/ and additional experiments
with examples of protocols found will be available in parallel technical report.



with a higher number of nodes (we kept the number of nodes intentionally low
so network simulation is executed fast enough). The nodes were always placed
uniformly over a square area and each node had approx. 10 legitimate neighbours
on average (over all deployments).

The fraction of initially secured links was intentionally set to 30%, so it is
reasonably difficult to increase the fraction of secure links. In the EG compromise
pattern, this number was used directly when deciding whether the link was
initially compromised or not. In the KI pattern [2], the portion of compromised
links was affected by the number of attacker’s nodes in the network. This number
was determined experimentally (30 attacker nodes), so the resulting fraction of
compromised links was close to the desired level.

3.2 LGP performance

Population size and mutation rate: First, the most suitable values of the
population size and probability of mutation were sought. We tested 10 differ-
ent combinations of the number of generations (numge,) and population size
(popsize) for 20 different mutation probabilities. The values of numge, and
POPsize Were chosen so that value numge, * pops;ize and consequently also the
number of fitness evaluations remains constant (numgen * POPsize = 40 000).
Each combination of parameters (pmue, NUMgen, POPsize) Was instantiated in
20 independent runs and the averages of the best fitness values are shown in
Figure 1la and Figure 1b. Clearly, LGP performs better for small probability of
mutation (between 0.005 and 0.05) and smaller population sizes (between 10 and
20). Values py,ut = 0.02 and pops;. = 15 were used in next experiments based
on these results.
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Fig.1: Average of the best fitness values calculated from 20 independent runs
using different mutation probabilities and population sizes: (a) all experiments,
(b) zoomed.

Similarly, the effect of crossover (peross) was investigated using 20 indepen-
dent runs where p.,.ss was between 0 and 1. This experiment showed that the



crossover has no significant impact on performance and thus crossover has not
been used in other experiments.

Chromosome length: Long chromosomes imply large search spaces that are
usually difficult to search. They also lead to long programs that can take a con-
siderable time to be executed. Previous work utilized 200 instructions; however
only around 10 instructions were effectively used in evolved protocols [8]. In order
to find a reasonable value for the maximum length of chromosome (ins;qz ), we
fixed all the parameters except ins;qs and numgen. The values for ins,,q., and
NUMgen Were chosen such that the value insy,qz * NuMgen, remains constant and
equals to 1 200 000 (and therefore, the overall computational time is constant
for different runs).

The average fitness value computed using the best fitness values obtained
from 20 independent runs is depicted in Figure 2a. The experiment shows a
sharp drop in the achievable fitness when less than 30 instructions ins,,., are
available. The performance is increasing for values of in.s,,4, between 40 and 100
and slowly decreasing with bigger in$,,,, afterwards. This result is correlated
with observed average number of effective instructions (i.e., the instructions
that actually contribute to the fitness value, usually around 30, in our case
32 instructions at maximum) in best protocols such as FGpes: evolved with
MSmaez = 100 or more. Note that doubling the number of available instructions
MNSmae Will roughly double the time necessary to simulate a single protocol, but
it will not impact the resulting protocol as usually only around 30 instructions
are effective and we can automatically identify them. On the basis of these
results, the following experiments were initialized to allow 50 (100 in some cases)
instructions at maximum. The evaluation time has been significantly reduced
without affecting the quality of evolved protocols.

Memory slots: In the next experiment we analyzed the impact of limiting
the number of memory slots (slotq,) which the evolved protocols can use.
LGP parameters remain identical to the previous experiment (ins;q.; = 100).
The average fitness values are depicted in Figure 2b for slot,,., = 1...30.
The experiment revealed that the protocols require at least 10 memory slots
to achieve a reasonable performance.

Number of generations: The fitness increases with additional generations,
but only to some extend. In order to determine the number of generations needed
for reaching a reasonably performing protocol, 20 runs were executed for 53 340
generations (insmar = 100, slotSma, = 12). In this experiment, all runs reached
60% secure links after 1 067 generations, 656% after 8 529 generations and 66%
after 15 991 generations. These 20 runs reached 67.72% on average, the worse
one stagnated at 66.8%. In comparison, 60% secure links is the level which no
random search was able to reach even after 14 000 generations (assuming the
same population size).
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Fig.2: Best fitness obtained from 20 independent runs for various limits in the
number of instructions (a) and memory slots (b).

4 Discovering new group-oriented protocols

The search for new protocols utilized the best-performing parameters found in
previous experiments. Complete setting is given in Table 2. For each of the
compromise scenarios (KI, EG), we performed 20 independent runs and allowed
a sufficient number of generations. The best performing protocol for each scenario
was then taken and further analysed.

4.1 Long-running experiments

The best protocols are denoted as K Ipes; and EGpest. Protocol Kpes: was dis-
covered after 125 hours of computation in 330 641 generations (note that one
generation required 1.4 seconds on a single 3000+ MHz core). EGpes; was found
after 87 hours in 165 365 generations (1.9 sec/generation on a single 3000+ MHz
core). The protocols exhibit 69.12% (K Ipest) and 60.07% (EGpest) secured links
on average across 5 deployments they were trained for.

4.2 Performance of evolved secrecy amplification protocols

The protocols K Ipes; and EGpes: performed very well in the deployment(s) they
were trained for. However, in order to get more accurate estimate of protocols’
performance, one needs to test them on different deployments. We did so by
evaluating each of the protocols in 100 random networks for each of 9 levels of
compromise (10% ...90% stepped by 10%), two compromise patterns (KI, EG)
and three different average numbers of legitimate neighbours (5, 10, 15). One
additional repetition of amplification was also tested. In total, we evaluated each
of the protocols in 10 800 independent scenarios.

The comparison of average reached fraction of secured links after secrecy
amplification in networks with 10 neighbours are shown in Figure 3. Two ampli-
fication repeats of discovered protocols have almost identical performance to our



KI EG

~|Number of deployments 5 5

%Number of legitimate nodes 100 100

Z|Number of malicious nodes 30 -

-U% Average number of legitimate neighbours| 9.88 10.28
Average number of initially secured links| 32.5% | 30.7%
Probability of mutation 0.02 0.02
Probability of crossover 0.00 0.00

% Size of population 15 15

—|Maximum number of instructions 50 100
Number of memory slots 12 12
Number of generations 1 216 000{200 000
Average time of single run on 1 CPU 467h 106h

Table 2: Parameters of LGP and network simulator used in long running exper-

iments.
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previously published node-oriented protocol [8]. Similar results were obtained
also for 5 and 15 neighbours — with higher number of neighbours the differences
between protocols’ average performance are becoming larger.

The protocol evolved for KI and then used in EG performs significantly
worse than the protocol evolved directly for EG scenario (and vice versa). This
implies that the structure of the problem solved for KI and EG is different and a
separate protocol should be evolved for different initial key distribution method.
Note that such a result is not problematic for the network owner as used scenario
(KI, EG or other) is known to him/her in advance and the owner can therefore
select /evolve a corresponding protocol.

Note that the best performing group-oriented protocols are able to increase
the fraction of secure links from 30% to almost 70% in KI or 80% in EG. In
real deployment, one would usually like to achieve 85% or more secure links
to provide a strong majority of secure links. Majority voting will then almost
always outcompete a potential attacker. Such a percentage can be achieved when
initial fraction of secure links is 40-50% in KI and 30-40% in EG scenario.

Figure 3c shows the total number of required messages for mentioned pro-
tocols. Note that the total number of messages in the group oriented protocols
is independent of compromise scenario (the number of transmitted messages is
always the same).

4.3 Robustness of discovered protocols

Protocol robustness against the change in underlying parameters w.r.t. parame-
ters used during evolution is examined in this section. We focused on robustness
against the change in key distribution method (K Ijest used in EG scenario), the
change in initial fraction of secure links and the change in layout of nodes in a
particular deployment.

The average performance of the protocols was already shown in Figure 3.
However, from the averages one can not conclude directly whether the discovered
protocols are robust against changes in deployment. The EG scenario was chosen
for the analysis because it allows to precisely set the fraction of initially secured
links?.

The results of the analysis are depicted in Figure 4. There are 6 histograms
for each of the protocols and the average number of neighbours. Each histogram
shows the distribution of resulting fraction of secure links for a given fraction of
initially secured links (from left to right 10%...60%).

For 100 evaluations the distributions are similar to the normal one. It can be
also seen that K I has slightly worse performance than EGpes for all tested
configurations of neighbours (note that the experiment was performed for EG
scenario). With a higher number of neighbours, the differences between protocols
and also the performance of individual protocols are increasing.

4 The initial fraction of secured links in KI scenario depends on the number of at-
tacker’s nodes. Particular layout of nodes in deployment slightly varies between
different deployments.
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5 Multi-criteria optimization

Results presented in [8] and extended in Section 4.2 were obtained with the
fitness function reflecting only the fraction of secure links without taking into
account the number of exchanged messages. Although the overall number of ex-
changed messages is relatively small for group-oriented protocols, natural ques-
tion is if this number can further be decreased by additional optimization.

5.1 Weighted fitness

The communication overhead is measured as a counterpart to fraction of mes-
sages transmitted by the protocol (lower the better) during simulation to the
theoretical maximum of messages when every instruction in protocol would send
one message.

‘We propose to combine the fraction of secure links f; and fraction of messages
f2 using two weighting coefficients wy and wy (fitness = w1 f1 +wa f2). In order
to analyze the impact of different ratios of weights, 20 independent runs were
executed for multiple different weights (90 : 10 ...0 : 100), always spanning
2 000 generations. We also set the lower bound for fraction of secured links to
50% so the evolution was forced to search only for meaningful protocols (50%
can be easily achieved even by a random search).

The results of experiments are shown in Figure 5. From left to right, LGP was
forced to optimize the protocols more and more for the fraction of secured links.
It can be clearly seen that with any additional increase of the security in the



network, the total number of messages is also non-trivially increased. However,
this increase is non-linear when the weight assigned to fraction of secure links is
higher than 90. Based on this result, we decided to perform another long search
for a message-optimal group-oriented protocol and compare its performance with
previously found K lpes;.

Weight of messages
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Fig.5: Impact of criteria weights on fraction of secure links and the number of
messages.

5.2 Optimizing the number of messages

Previous experiments documented a high correlation between the number of
secured links and the number of messages used. Since we were interested in pro-
tocols with a reasonable security, we decided to use the weights 90 : 10 in favour
of secured links (according to Figure 5). In order to find a message-optimized
protocol, we executed 20 independent runs and took the best performing protocol
(denoted as K I,,sq). It was found after 90 hours in 234 000 generations.

We evaluated the performance of K1, against K I+ and previously pub-
lished node-oriented protocols in the setup that was described in Section 4.2.
Surprisingly, the evaluation over 100 different networks and different fractions of
initially compromised network showed that KI,,s, has comparable performance
in KI to previously found KI5 protocol. More importantly, with two ampli-
fication repeats instead of one it also exhibits almost identical performance to
previously published node-oriented protocols. However, since the protocol was
optimized not only for security but also for low total number of messages, K1, sq
uses only 50% of messages to achieve similar performance.

6 Conclusions

Secrecy amplification protocols turned to be one of the most promising ways
how a WSN with a significant number of compromised links can be turned into



secure one for the price of additional messages exchanged. Human-designed and
message intensive node-oriented version [2] of these protocols were extended by
group-oriented approach in [8].

In this paper, we performed a detailed analysis of LGP in the task of evolu-
tionary design of group-oriented protocols. By careful setting of LGP parameters,
suitable setting of network simulator parameters and utilization of distributed
computation, new protocols were discovered that outperform the previously pub-
lished ones. The analysis of robustness of discovered protocols in scenarios dif-
ferent from those available during evolution confirmed that group-oriented pro-
tocols are robust against the change in the initial fraction of secure links. We
have observed that these protocols are less robust against the change in selection
of initial key distribution method. However, this selection is under control of the
network owner who can, therefore, select/optimize the group-oriented protocol
for preferred key distribution.

Additionally, we focused on further reduction of the communication overhead.
A multi-criterial optimization was conducted where not only secure links but also
the number of messages was optimized. It was shown that newly found group-
oriented protocols outperform the node-oriented protocols while still requiring
an order of magnitude less messages, e.g., + 1/20 in common scenarios. Future
work will be devoted to applying truly multi-criteria optimization algorithms
such as NSGA-II and implementation of evolved protocols on real nodes.
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