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ABSTRACT 
Mesh processing is a wide area which consists of several approaches, heavily specific for each task. We present 

a novel approach to mesh processing using the Local Projections method. The described method makes benefit 

of wide variety of image processing algorithms, very similar to 3D tasks, and implements a conversion 

mechanism to make possible use of these processes on  polygonal models.  We also designed, implemented and 

evaluated the curvature approximation algorithm to test and compare the proposed method usability on real and 

artificial data. Use of the proposed method brings significant benefits especially to noised mesh analysis. 
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1. INTRODUCTION 
Polygonal model processing techniques consist of a 

wide variety of approaches specific for each different 

task. Each of these methods is especially designed for 

its purpose, e.g. curvature approximation, mesh 

smoothing, simplification, matching or feature 

extraction. Such diversity leads to the separation of 

this field of study into several different domains.  

Even the problems stated above are handled 

separately, they need to overcome the same problems 

emerging from the polygonal mesh data structure 

itself. This includes irregularities of polygons, 

unconnected parts of the mesh or the polygonal 

surface approximation itself.  

In the computer graphics area, another widely used 

and well documented area exists with very similar 

operations. The image processing scope consists of 

well-known techniques for curvature approximation 

on raster images, smoothing kernels or feature 

extraction methods. The operations are very similar 

to these used in polygonal mesh processing. 

The main problem appears from different data 

structures. We present a consistent and robust way of 

polygonal model representation, where each vertex is 

described by its own tangent raster depicting its 

neighborhood. In this way, we can apply arbitrary 

raster operators right onto the mesh and extract the 

necessary information. We are able to approximate 

the curvature, extract specific features or apply other 

operators, such as smoothing, right on the tangent 

rasters resulting in smoothing for successive 

operations. All of these operations can be done only 

on tangent rasters without alternating the original 

mesh topology.  

As a usability demonstration, we have chosen 

implementation of curvature approximation, which 

can be easily evaluated by comparing not only with 

existing methods, but also with an analytical 

approach, which allows us to demonstrate the 

accuracy of our method. In the evaluation chapter, 

we demonstrate that this method brings significant 

advantages to the smoothing of largely noised 

meshes. 

 

In the first part of this paper, we describe deeply the 

Local Projections (LP hereafter) method to 

understand fully the proposed conversion. The 

second part is concerning with curvature 

approximation methods using the proposed LP 

method. In the concluding part, we present test 

results gathering the efficiency of LP and the 

accuracy of curvature approximation using this 

approach by comparison with today’s commonly 

used methods and analytically computed curvature. 

Comparison is done on both smoothed and noisy data 

sets. Last section is devoted to conclusions, future 

goals and possible improvements of LP. 
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2. RELATED WORK 
As we stated above, the mesh processing field 

of study is a wide area consisting of many different 

approaches. In this section, we describe today’s 

methods for curvature estimation on mesh structures 

in order to compare them with our LP curvature 

approximation. 

The most widely known algorithms for mesh 

curvature estimation are the discrete differential 

operators presented by Meyer et al. [Mey00a]. The 

authors describe operators for direct approximation 

of curvature from mesh structures considering angles 

of adjacent edges. The operators exist for both Gauss 

and mean curvature and it is possible to induce 

minimal and maximal curvature respectively. 

Although the computation is normalized by the 

Voronoi area of neighboring faces, the method fails 

when any triangle irregularities or unconnected faces 

occurs. On the other hand, the approximation is very 

straightforward which significantly influences the 

efficiency. A similar method of computing directly 

from mesh structure is described by Rusinkiewicz 

[Rus00a]. 

Another approach makes benefits from geometric 

fitting of spheres directly onto mesh structures. The 

algebraic point set surfaces method (APSS) was 

presented by Guennebaud and Gross [Gue00a] 

[Gue00b] as an algorithm for point cloud curvature 

estimation, but it was also adapted to point clouds 

with normals and polygon meshes. Due to the 

approximation of surface with spheres, triangular 

irregularity problem is overcome. The algorithm also 

partially solves the problem of unconnected polygons 

(we fit spheres with certain radii – the time 

complexity increases) and the mesh holds its 

curvature features even on noisy data. 

Simari et al. [Sim00a] presented a method for robust 

curvature estimation, which is based on regularly 

resampled polylines with intersections in current 

vertices and specified angular steps. From these 

resampled polylines (forming spider shape around 

current vertex), authors simply compute curvatures in 

specified directions given by each branch and imply 

principal curvature values and directions. It is clear 

that the authors also try to overcome problems of 

polygon mesh irregularities using resampling 

procedures. Unconnected polygons are not dealt with 

in the work presented. 

Page et al. [Pag00a] proposed another method aimed 

especially at noisy datasets. Their approach tries to 

find a geodesic neighborhood of a vertex with 

specified distance, which gives us the possibility of 

smoothing high frequency noise. It is necessary to 

underline the fact that the authors do not use an 

Euclidean distance to estimate geodesic 

neighborhoods, but the shortest geodesic path. 

Selected vertices then vote to Taubin’s curvature 

tensor [Tau00a] from which curvature is estimated. 

This method has proven to be very robust against the 

noise of meshes and due to possible resampling of 

vertices on geodesic neighborhood, robust against 

irregular triangulation. 

There exist several other approaches to curvature 

estimation, described e.g. in [Ozt00a][Mok00a]. The 

main traits of novel methods are always the same – to 

overcome mesh tessellation irregularities, 

unconnected elements, noise and polygonal 

approximation. It is also clear from these examples of 

curvature processing that each method is developed 

especially for its purpose, as stated in the 

introduction. We tried to approach this problem from 

the other, well documented field – image processing. 

3. LOCAL PROJECTIONS METHOD 
In this section, a method for the 3D – 2D problem 

conversion is presented. The main purpose is 

to create a novel approach to mesh processing by 

turning the problem of polygonal mesh analysis to an 

raster image problem. 

For vertex neighborhood representation in 2D image 

rasters, we have chosen to project distances from the 

tangent plane at a given vertex position. This 

operation results in a rasterized matrix of z-distances 

(depth image) attached to each vertex. However, it is 

possible to project arbitrary vertex information, e.g. 

color, curvature or other vertex specific values 

present in the mesh structure. In the following lines, 

we consider always depth image representation. 

Rasterization must overcome all of the problems 

stated above, such as unconnected polygons, holes in 

meshes etc. All of this must be done while 

conserving minimal time complexity to maintain 

usability of the whole procedure.  

 

 

Figure 1. Tangent raster with projected z-distance 

 

In Figure 1, an example of such a projection is 

presented. Tangent rasters are defined for each 

vertex and describe the vertex neighborhood. 



Regarding this fact, size of matrices must be chosen 

appropriately to the specific task. For example when 

using LP method for curvature approximation, we 

choose smaller matrix size due to the definition of 

curvature – we expect the analysis of small 

neighborhood around pixel. On the other hand, when 

using the LP method for i.e. feature extraction on 

mesh structures points of interest, we can describe 

vertices with matrices of larger size and resolution.  

Tangent plane direction itself is computed for each 

vertex using its normal vector defined as:  

    ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗  
∑     ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  
      

|    |
   (1) 

where   is current vertex and      is a set of 

neighboring faces.      consists of not essentially 

adjacent faces to the current vertex – if larger 

smoothing is required, F can contain larger 

neighborhood. 

In the following sections, we mention two parameters 

of matrices. The resolution stands for matrix size in 

pixels (matrix is square) and size is the relative size 

of the tangent plane to the median of model edge 

lengths. E.g., if the median of edge lengths is equal to 

x in model coordinates and the matrix size is set to s, 

the real edge size of the matrix will be equal to xs.  

Matrix resolution and size is highly specific to the 

task we request from LP method. If LP is used for 

e.g. edge detection or curvature approximation, it is 

necessary to apply relatively small resolution (Sobel 

operators in image processing hardly exceed 9x9 

resolution) and small size of matrix (the larger matrix 

is, the larger smoothing occurs). On the other hand, 

SIFT descriptors need large pixel neighborhood to 

compare, so size and resolution can be much higher. 

In subsequent computations, each vertex matrix is 

treated individually – we can apply an arbitrary 

image processing operator to every vertex such as 

curvature computation, edge/blob detector, feature 

extractor etc. The value of raster’s center pixel is the 

value of the used operator for corresponding vertex. 

Rasterization algorithm analysis 
To achieve the exact projection on tangent plane 

multiple algorithms can be used. We consider three 

possibilities: 

1. Blind rasterization of the whole mesh on each 

raster 

This method rasterizes precisely even meshes 

with unconnected polygons and holes. It has, 

however, a high time consumption. On the other 

side, it is well parallelizable and we can imagine 

this solution in possible future hardware 

implementation. 

 

 

2. Rasterization of vertex neighborhood 

By rasterizing only a vertex neighborhood, we 

can achieve a very fast projection procedure. This 

approach works only for well-connected meshes 

and can pose problems when the holes occur in 

the proximity of the current vertex. 

3. Ray-casting rasterization 

Ray-casting of each matrix cell also accomplishes 

a total projection without problems. It has, 

however, the same problems as possibility 1 – an 

extreme time complexity. 

In order to fulfill all quality requirements of 

projection while maintaining time complexity as low 

as possible, a hybrid algorithm is proposed 

combining all three steps described above.  

In Figure 2, the final proposed algorithm overview is 

presented.  

 

 

Figure 2. Rasterization algorithm 

 

In step I, all neighboring vertices are found, which 

will be projected onto tangent raster. The maximum 

distance must be specified to prevent passing the 

whole mesh in the case when faces are perpendicular 

to the projection plane (see Figure 3). This step is 

followed by step II which is very fast and poses 

minimal computing and efficiency problems. 

Step III blindly rasterizes the borders of already 

found segments. This apparently useless step has the 

purpose of finding triangles which have all vertices 

outside projection plane (Figure 3 – yellow 

segments). Steps I-III can clearly be replaced by 

traversing triangles instead of vertices but this 

approach will increase extensively the time 

complexity – each triangle needs to be tested for 

possibility to project it onto the tangent plane - in our 

approach, we test only point projection.  

The blind border rasterization cannot, however, find 

all possible interfering polygons (e.g. border search 

rasterizes only one-neighborhood). In step IV, we 

ray-cast the rest of provisionally non- rasterized pixel 

to assure the certainty of all pixels rasterization. The 

ray-casting can be further accelerated by using some 

high-level search structure such as 3D R-Tree 

[Gut00a] etc. 

 

For each vertex: 

I. Get all neighboring vertices 

II. Rasterize triangles connected 

to them 

III. Rasterize borders 

IV. Ray-cast untouched pixels 



 

Figure 3. Problems in rasterization, infinity 

projection  (left) and triangles having all vertices 

outside projection matrix (right) 

 

All of the four rasterization steps were chosen for 

maximum speed-up of the whole procedure. In the 

evaluation section, each of the steps is evaluated and 

diagnosed to provide the reason for necessity of each 

step. 

4. CURVATURE APPROXIMATION 
The rasters computed by our algorithm can be used 

for arbitrary feature extraction of the polygon mesh. 

We have chosen curvature extraction for the reason 

that it can be easily compared with the analytical 

approach, i.e. we can prove the feature conservation 

by conversion from a polygonal mesh to an image 

problem. 

The main goal of curvature extraction is to 

approximate the curvature behavior of an original 

model. It is necessary to accentuate that the real 

curvature on the polygon mesh cannot be taken into 

account because of null curvature on mesh faces and 

infinite curvature on edges. 

To approximate the curvature and its directions from 

depth map (i.e. our tangent rasters), we can apply the 

Hessian matrix analysis to approximate the curvature 

behavior. For continuous functions, the Hessian H is 

the Jacobian matrix of derivatives 
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The Hessian H is a simple matrix of partial second 

order derivatives of a continuous function. In our 

case of a discrete raster, we must define a second 

derivative operator to approximate the derivative 

behavior on raster image. For this purpose, we have 

chosen second order Sobel operators to compute a 

derivative estimation     by convolution with the 

input raster (equation 3). It is clear that the 

convolution is not necessary to be executed for all 

raster pixels, but only for the center, i.e. for the 

current vertex. 
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Taking computed partial derivatives, we can easily 

construct a discrete equivalent of Hessian (equation 

4). 

       [
                 

                
]        (4) 

 

where   is the derivation neighborhood (i.e. matrix 

size) and   represents a specific point in the image 

[Mik00a]. Corresponding curvatures and directions 

can be subsequently computed by eigen analysis of 

the computed Hessian (equation 5): 

 

                (5) 

 

Where λ is an eigenvalue and X the corresponding 

eigenvector. For a 2x2 Hessian matrix, we obtain 

precisely two eigenvalues and two eigenvectors 

corresponding to approximated curvatures on the 

tangent plane. The necessity of backward 

transformation to 3D coordinates is evident. 

By this technique, we can obtain a robust curvature 

estimation technique even on noisy meshes due to the 

possibility of off-line smoothing right on the tangent 

rasters. Off-line smoothing in this case means the 

smoothing only on raster representation, without any 

mesh topology change. Such smoothing can be 

achieved by application of one of the image 

smoothing kernels, such as median, Gaussian or 

mean. Smoothing can be also achieved by application 

of some polynomial interpolation which can easily 

break hard mesh edges and approximate the real 

object surface.  

Another noise cancelling feature of the LP method is 

the possibility of larger vertex neighborhood 

projection. Even this fact is against the formal 

curvature definition, it can be used on very noisy 

models when a larger neighborhood is necessary for 

real object feature extraction. The idea of a larger 

vertex neighborhood was also presented in [Gue00a] 

[Gue00b] [Sim00a] [Pag00a] as a means for noise 

cancelling. For LP, this feature produces another 

significant advantage – the polygon structure 

cancellation. By the rasterization of larger 

neighborhoods the image is normalized – each vertex 

is represented by a map of the same size. 



 

Figure 4. Maximum curvature computed from 

7x7 size matrices of the size equal to the mean size 

of vertex one-neighborhood. 

The LP curvature approximation method can also 

yield several drawbacks emerging from the 

rasterization and 3D-2D conversion. 

The first produces problems when small tangent 

resolution is applied which can severely influence the 

output due to exceedingly coarse representation of 

vertex neighborhoods. In this case, we can observe 

e.g. significant deflection of curvature directions 

from analytically computed curvature. In the  

curvature computation case, it is recommended to use 

at least a 7x7 raster (This value was chosen 

experimentally as a compromise to the speed of 

rasterization process and accuracy of approximation). 

For other applications, such as SIFT or SURF 

descriptors, much greater resolution can be required. 

Another problem can result from highly curved 

meshes. The projection of these meshes can result in 

cropping of the real surface in projection into 2D 

(real surface can lie “behind” already rasterized 

pixels – see Figure 5, yellow section). Although this 

fact can lead to very imprecise representation of the 

original mesh shape, the tests on real datasets show 

that this phenomenon is extremely rare due to the 

size of matrices (which rarely exceed one- or two-

neighborhood). For curvature computation, we semi-

occasionally use matrices of such large 

neighborhoods – in our computations, we rarely 

exceed one-neighborhood of corresponding vertex. 

On the other hand, this effect can be applied for noise 

canceling and detail smoothing for coarse feature 

extraction. 

5. EVALUATION 
We designed multiple tests for the proposed methods 

evaluation. The evaluation section is separated into 

two major sections – evaluation of the rasterization 

algorithm and evaluation of curvature approximation.  

Local projections method 
On preceding lines, a robust projection method of 

the mesh onto tangent raster was presented. As a first 

evaluation method, we compare the number of 

projected pixels at each step of rasterization. 

 

  Average Median Std. dev. 

After step 2 91,59% 95,08% 10,36% 

After step 3 94,31% 98,25% 10,40% 

After step 4 95,20% 98,87% 10,19% 

Table 1. Pixels projected in each step 

 

In Table 1, the number of projected pixels at each 

step is presented. We tested our approach on various 

polygonal meshes. In the testing dataset, there are 

closed meshes, data with holes and non-connected 

vertices and other problematic cases described above.  

As tests have proven, a majority of pixels are filled in 

steps 1 and 2 (see the section Local Projection 

Method). These steps are the quickest part of the 

rasterization. Step 3 will rasterize up to 94,32% of 

pixels – it is clear that this modification plays an 

important role in efficiency improvement, because by 

simple blind rasterization we fill up a significant 

partition of unprocessed pixels. For ray-casting 

step 4, only 0,89% of pixels remain – this leads to 

minimal computing complexity – ray casting is used 

only if there is no possibility to find the polygon by 

neighbor search. The non 100% efficiency is due to 

the pixels which are projecting infinity – in the post-

processing step, these are filled by a chosen 

maximum value – we propose this value to be equal 

to the size of the tangent matrix (which is the same 

for all vertices). 

 

 

Figure 5. Problems on significantly curved mesh 

 



By this modification, we assign a specific, non-

infinite value, to each uninitialized pixel. The matrix 

is then able of being processed by any image 

processing algorithms without creating infinity 

artifacts. We have chosen a “cube” maximum 

restriction due to the expected behavior of 

subsequent methods – a large, possible infinite value 

would cause a large perturbation in succeeding 

operator. In this case, LPM will lose its smoothing 

capabilities. We need then some value which 

represents a maximum possible value (size of tangent 

matrix) but does not cause such problems. The 

maximum z value can be however set as a parameter 

of computation. The right choice will surely 

influence the robustness of this method with respect 

to the mesh imperfections. 

 

The second test is a speed comparison between our 

method and the well-known curvature computation 

method by curvature operators [Mey00a]. We have 

chosen this approach to compare with our method 

due to similar neighborhood search and feature 

extraction. This operation is comparable with 

rasterization of 3x3 matrices of size equal to 2, 

because it takes into account approximately the 

vertex neighborhood of the same size.  

In Table 2, the time test results are presented. The LP 

method is clearly more time expensive than simple 

neighborhood search, which was expected. 

The effectiveness is dependent not only on matrix 

resolution or size, but also on mesh structure – on the 

number of pixels searched by ray-casting (mesh 

complexity), number of holes and inconsistencies.  

Even the software implementation is significantly 

slower than simple neighborhood search, 

the efficiency is redeemed by the wide possibilities 

of this method. The method is largely parallelizable, 

so hardware implementation is expected to be 

prepared in the near future. 

Curvature approximation 
Curvature approximation is the second type of test 

provided in this paper. We prepared a testing dataset 

consisting of both real world objects (created by 3D 

scanning or conversion from volumetric datasets) and 

artificial data. Artificial data are primarily analytical 

shapes, where curvature it is possible to compute 

analytically. Both types of data were also used with 

added noise.  

We compared our LP method with two common 

curvature approximations – the differential geometry 

operators of Meyer et al. and APSS (see Related 

work). Additionally, on analytical models, the 

curvature was also compared with analytical 

computations (AC hereafter).  

In Figure 6, a comparison of the               

surface is presented. To the model, some 

unconnected vertices were artificially added to 

demonstrate the method’s behavior in such case. 

Such unconnected polygons/vertices are common 

problem on polygonal meshes created by e.g. point 

cloud reconstruction. From this figure it is clear, that 

both Meyer’s and the APSS methods are more 

precise in curvature approximation on well 

triangulated surface (visible peaks are well aligned 

with analytically computed curvature). The LP 

method holds the progression of AC. 

A different testing schema occurs when artificial 

noise is added to the mesh (see Figure 7). The noise 

was added by the arbitrary fractal displacement 

method. In this case, the main advantages of the LP 

method are visible. Even the APSS holds major 

extrema due to the variable fitting radii, perturbations 

are still present on low curvature regions. The LP 

method holds all major progressions of the analytical 

computation. This fact makes this method very 

suitable for noised and incomplete meshes, where the 

curvature can be approximated very robustly. 

6. CONCLUSION 
A novel approach for mesh analysis has been 

presented along with one validation algorithm – a 

curvature approximation. The main contribution of 

this method is that it brings possible conversion of 

3D polygonal mesh problem to the raster image 

processing issue. By this modification, we are able to 

apply multiple operators well known from image 

processing area right onto the mesh structure and 

treat it like simple raster image. 

  

  Matrix resolution 3x3, Size 2 Matrix resolution 9x9, Size 9 Curvature Meyer et al. [Mey00a] 

No of vertices Average (ms) Median(ms) Average(ms) Median(ms) Average(ms) Median(ms) 

~20000 1478,71 1358,41 16546,2 14821,2 238,9 237,62 

~30000 2088,82 1674,32 20328,55 14824,65 372,94 377,02 

~50000 4433,09 2782,42 36448,18 18381,6 619,71 620,15 

~200000 17714,03 12355,1 101518,96 93521,2 2538,65 2546,08 

Table 2. Speed efficiency of LP method compared with Meyer et al.   

 



As tests have shown, the LP method has a big 

disadvantage in efficiency because of multiple 

projections computed for each vertex of the mesh. 

These problems were partly solved by application of 

a robust rasterization algorithm which speeded up the 

projection process. Additionally, due to the proposed 

hybrid method, we are able to analyze an arbitrary 

mesh – even meshes with topological inconsistencies, 

holes, unconnected elements, noise etc. Due to the 

method’s simplicity, a hardware implementation is 

possible which is supposed to significantly speed up 

the computation of rasters. 

The main advantage of the LP method is that it 

allows us to apply an arbitrary image processing 

operator right on the 3D mesh structure, which is in 

our case represented as a set of vertex tangent rasters. 

It is then possible to apply e.g. curvature 

approximations or feature extractors from the well-

known image processing area. In preceding articles, 

multiple drawbacks associated with 3D to 2D 

projection were discussed. In tests on real and 

artificial data, these projection problems are 

irrelevant and they influence the subsequent 

computation minimally. 

We also presented a new curvature approximation 

method, which comes from the LP method and image 

processing. The curvature is computed using Hessian 

matrix analysis from arbitrary sized tangent matrices, 

which allows us (in combination with smoothing 

operators) to estimate curvatures on any mesh even 

with structural noise present. The smoothing and 

noise cancelling capabilities of method presented 

makes the LP method a perfect candidate in the field 

of feature extraction from damaged and noised 

meshes (Figure 8). 

 

Figure 6. Surface               – maximum curvature 

 

 

Figure 7. Surface               – maximum curvature, added random noise to triangulated model 
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Future work in this field of study can be aimed at 

already mentioned hardware implementation of the 

LP method, which can significantly increase the 

computation speed of all methods and make our 

method comparable in efficiency with other largely 

used vertex-neighbor searching algorithms. Another 

research tendency will aim at other image processing 

operators possibly usable with LP method, especially 

in the field of mesh matching and feature extraction. 
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Figure 8. Mean curvature comparison on smoothed mesh (left), mesh with added random noise (middle) 

and marching cubes created model (right) 


