

Abstract— A novel behavioral detection framework is proposed

to detect zero day buffer overflow vulnerabilities (based on network

behavioral signatures) using zero-day exploits, instead of the

signature-based or anomaly-based detection solutions currently

available for IDPS techniques. At first we present the detection

model that uses shadow honeypot. Our system is used for the online

processing of network attacks and generating a behavior detection

profile. The detection profile represents the dataset of 112 types of

metrics describing the exact behavior of malware in the network. In

this paper we present the examples of generating behavioral

signatures for two attacks – a buffer overflow exploit on FTP server

and well known Conficker worm. We demonstrated the visualization

of important aspects by showing the differences between valid

behavior and the attacks. Based on these metrics we can detect

attacks with a very high probability of success, the process of

detection is however, very expensive.

Keywords—behavioral signatures, metrics, network, security

design.

I. INTRODUCTION

ALWARE detection based on behavioral analysis is a

method that can be used to effectively defend systems

against growing trend of highly sophisticated and specialized

malware against which standard NIDS and ADS techniques

are little or completely ineffective [1]. Behavioral analysis is

already used for malware detection on the operating system

level for different platforms. Behavioral analysis of network

flow is more demanding on computing resources as well as

false-positive elimination. Our approach focuses on the

possibility of using behavioral signatures based on detection

metrics that could be effectively distributed and mutually

optimized.

This short paper introduces the novel Automated Intrusion

Prevention System (AIPS) which uses honeypot systems for

the detection of new attacks and the automatic generation of

behavioral signatures based on network flow metrics. While

the long-term objective of AIPS is to address all types of

attacks and aspects of intrusion detection, in this paper we

present only the detection technique and the process of

generation of the behavioral signature upon buffer overflow

attacks [2].

The paper is organized as follows. Section 2 discusses

related work in a network intrusion detection and signature

M. Barabas is a PhD student at Faculty of Information Technology, Brno

University of Technology, Czech republic (e-mail: ibarabas@fit.vutbr.cz).

M. Drozd is a PhD student at Faculty of Information Technology, Brno

University of Technology, Czech republic (e-mail: idrozd@fit.vutbr.cz).

P. Hanacek is an associate professor at Faculty of Information Technology,

Department of Intelligent Systems, Brno University of Technology, Czech

republic (e-mail: hanacek@fit.vutbr.cz).

generation. In Section 3 we describe the detection model and

signature generation technique. Section 4 presents the metrics

definition used for training detectors. Section 5 presents the

results and evaluations of two attack examples in comparison

with valid behavior and section 6 contains the conclusion of

this paper.

II. STATE OF THE ART

There are many signature-based IDS and statistic ADS

systems that fail on detecting unknown or zero-day attacks and

new variants of old exploits. Thus a new generation techniques

and systems based on anomaly detection appeared. The

Anomaly Detection systems model the normal or expected

behavior in a system, and detect interest deviations and

differences that may indicate a security breach or an attempted

attack [3]. There are two types of systems based on anomaly

detection: those that work with a predefined specification (or

set of rules) of what is regarded as normal behavior and others

that learn the behavior under normal operation.

In [4] authors introduced the MINDS detection system

which uses data mining techniques to automate the detection

process. This system works with netflow [5] data with 10-

minute data windows and time and connection features that

represent complex metrics upon netflow data. In the case study

section (section 5) we show that a full network dump is needed

to model the connection to represent some attacks for further

detection. That extensive netflow cannot be described. The

second problem of this approach is a need of a human expert

that has to look at the output of the system to determine if the

detected connection is actually an attack. But this approach

can have suitable results in detection of unknown threats and

some malware morphisms.

Our approach is similar to those systems that reconstruct the

network packets and extract features that describe the higher

level interactions between the end hosts like MADAMID [6],

Bro [7], EMERALD [8], STAT [9], ALAD [10] etc. The

extracted features – for example session duration time, service

type, bytes transferred and so forth – are regarded as higher

level, temporally ordered features not discernible by inspecting

only the packet content.

Approach presented in this paper uses much lower level of

abstraction and focuses on the processing of generated metrics

for the attack description.

III. AIPS DETECTION MODEL

We developed a new system for automate intrusion

prevention (AIPS) that focuses on different subset of behaviors

of anomaly detection techniques that is common for most

existing detectors. Our system does not specify what a normal

Maros Barabas, Michal Drozd, Petr Hanacek

Behavioral signature generation using shadow

honeypot

M

behavior is, but what seems to be abnormal or is very likely an

attack. In this approach we need an expert knowledge that

defines what the abnormal behavior is. For this purpose we use

Shadow Honeypot systems for the detection of new threads.

We primary focused on Buffer Overflow attacks. These high-

interaction honeypots simulate various operation systems with

many vulnerable services that attract attackers. There is a

tcpdump listening on the network interface and sniffing the

communication on the honeypot. The next parts of the AIPS

system are communication and metric extractor that work upon

tcpdump data. These two parts are used to extract metrics from

the communication for further analysis. The last but not least

parts of the system are IDPS with metric dataset used by IDS

learning algorithms.

The schema of AIPS system is shown in the fig. 1:

Detection model. We can see three honeypot systems

connected to the network. These systems are Argos honeypots

[11] emulating different operating systems with various

vulnerable services. In the real deployment we assume that

similar honeypot functionality will be implemented directly to

the virtualized system with capability of detection unknown or

zero-day buffer overflow attacks [12].

A. Principle of detection

In case that an attacker attacks this vulnerable system and

causes buffer overflow incident, his attempt is detected and

recorded by honeypot in real time. The dump of the

communication from tcpdump with the timestamp of the attack

and the actual packet that caused the buffer overflow (from

Argos) are sent to the communication extractor where all data

are parsed. From this set of data the extractor parse only

relevant packets that are further sent to the metric extractor

system. Metric extractor creates dataset of metrics for this

specific attack and sends all relevant information with dataset

to the database. The metric dataset is then further distributed

from database to the IDPS systems for learning process

(artificial intelligence, data mining algorithms, etc.). We

assume that the whole process could run in real time (the

performance testing is planned in the near future).

Fig. 1 Detection model

The part of the system with honeypots creates a set of expert

knowledge. This set is expanded only when the honeypot

detects a new attack so this new entry is apriority set as true

positive and is added to the knowledge set. In the next section

we will describe in more detail how is honeypot connected

with the tcpdump and other detection systems thru a database.

B. Database scheme

In the fig. 2 is shown an important part of database schema

used for storing the incident data from various subsystems.

This part consists of four primary classes. First class “aips”

represents the bridge between subsystems. It connects the

Argos system, tcpdump and other detection systems like snort

IDS. Argos is represented by classes “incidents” and “exploit

packets”.

In case that a new attack is detected, then this attack is

recorded as incident with unique ID, timestamp and other

properties. The honeypot also saves the packet that causes the

buffer overflow and adds it to the incident data. The system

that manipulates with tcpdump data will record whole TCP

traffic associated with the incident. AIPS system actually

works only with the TCP communication, other protocols of

third and fourth layer will be implemented in the future.

Fig. 2 Database model

IV. METRIC DEFINITION

The detection model described in previous section records

detailed network flow dumps which can be used for automated

generation of metrics that describe properties, process and

behavior of the attack. By using these metrics we are able to

unambiguously identify the attack.

For this purpose the number of measurable metrics is

defined to be able to describe properties of detected attack not

upon the fingerprint of common signature, but based on its

behavior – behavioral signature. Behavioral metrics are in a

limited extent used in commercial ADS (A-NIDS) or NBA

systems for intrusion detection. However they are not used for

creation of portable detection profiles. Detection behavioral

metrics were described here [1], nevertheless they were not

suitable for describing malware but for the detection of

network attacks such as port scan, different types of DoS

attacks or as existing variant of ping tools. To a certain extent

a similar principle is used in, nowadays obsolete,

KDDCUP 99 [13] which was created with a much higher

abstraction level. This model already worked with

compromised system and information from the honeypot such

as an attacker’s access to shell, the escalation of privileges

from local to root etc.

Our goal was to define such metrics that can be used for

detailed description of malware behavior and its behavioral

characteristics and features during the attack in network and

transport layer.

112 unique metrics were defined on the whole. About a one

quarter of them is represented by vector set describing the

attack in time and data axis with various dependencies. The

individual metrics that make up the behavioral signature are

divided according to their nature into five categories (Fig. 3).

Fig. 3 Types of detection metrics

A. Static metrics

 Static metrics define the attack properties from the static

events point of view, such as amounts of data, the number of

flows, the number of ports, the number of resources in defined

flow/event. It was defined 49 unique static metrics.

B. Dynamic metrics

 Dynamic metrics represent dynamic network behavior such

as speed, number of bytes/packets per second in the outbound

and inbound traffic etc. changing in the timeline.

It was defined 30 unique dynamic metrics.

C. Localization metrics

 Localization metrics are used to specify the position of

sources and trace of the attack. Their aim is to provide the

arguments in decision-making process of the data mining

engine. 9 localization metrics were defined.

D. Behavior metrics

 Behavior metrics is a set of metrics based on the description

of the properties directly associated with the attack behavior.

Examples include legal or illegal connection closing, number

of flows at defined time intervals, polynomial approximation

of the length of packets, polynomial approximation of the sum

of packets and similar information that are directly related to

the exploitation of vulnerable service. This includes also the

parallel creation of new services, periodic communication or

the change of the profile in terms of ADS. Behavior metrics

were defined 9.

E. Vector and Polynomial metrics

Vector metric is defined as an ordered n-tuple. Each value

represents the current state of monitored function (the amount

of outgoing and incoming data, the size of outbound and

inbound packets) per unit time (sampling frequency is 1ms,

5ms, 10ms, 30ms, 50ms and 1s) in the measured network flow.

So the number of individual members in n-tuples is not the

same and is dependent on sampling frequency and the duration

of the measured flow.

Polynomial metrics are defined as polynomial

approximation of the length of packets and polynomial

approximation of the sum of packets.

There were defined 22 of these metrics.

The final dataset consist of all 112 metrics mentioned in

previous subsections. Each metric represents a value in a form

of number, polynomial and vector (time-dependent values). In

all metrics the statistical functions such as mean, median,

mode, the sum etc. are used.

V. CASE STUDY

In this section we show the use of defined metrics in the

behavioral analysis of the network flow on two reference

examples of buffer overflow attack. First example is an attack

that exploits stack buffer overflow in MKD command of FTP

server [14]. The second one is well known Conficker worm

that exploits parsing flaw in the path canonicalization code of

NetAPI32.dll through the Server Service [15].

Fig. 4 FTP attack and valid connection

In the fig. 4 are presented inbound and outbound packets of

the valid connection and connection that represents an attack

on the server. The bordered line filled with red color is the

attack communication, with yellow color is filled the flow of

the valid communication. The orange parts of the graph are the

parts of communication identical for both connections. Yellow

flows are the incoming and outgoing data parts, in this case it

represent the downloading of files. Under the x axis there is

outbound part and above the x axis there is inbound part of

communication. By the red vertical line is marked the packet

that caused the buffer overflow. This example shows a human-

friendly way how to detect buffer overflow attack by

occurrence of specific packet in the communication (in this

case specific by size and location). In case that buffer overflow

occurred in the first part of communication – in the

authentication part – the detection is instantaneous. In case that

the buffer overflow packet is injected beyond the legitimate

initialization part (for example by anonymous account) the

detection is more complicated and other metrics have to be

used.

In the next three graphs is presented the time analysis of the

same attack as was mentioned before and is shown that

common IDS systems using time analysis based on higher

abstraction of the communication (several seconds) are not

able to detect an incident that is caused in very low time

interval (milliseconds), for example by specialized malware.

Fig. 5 Inbound and outbound packets in 1s interval metrics

On the fig. 5 is shown the time analysis of communication in

second level granularity. This granularity is not able to show

the attack peak because the injection of exploit packet

occurred within the time interval that includes the data

segment of the communication. On the fig. 6 we can see the

same attack with the granularity level of tenths of seconds

where the exploit incoming packet is marked by vertical red

line. The fig. 7 illustrates the communication with the

granularity level of milliseconds where the exploit packet

(marked with red vertical line as well) can be better

differentiated from other communication.

Fig. 6 Inbound and outbound packets in 10-1s interval metrics

As we can see in this example, a very high abstraction or too

high granularity of communication analysis can lead to higher

false-negative rate.

Fig. 7 Inbound and outbound packets in 10-3s interval metrics

In the second example we show the valid communication

and the attack on IIS server on port 445 by Conficker worm,

which exploits MS08-067 vulnerability in Server service. In

the fig. 8 is shown the communication that is divided into two

parts. There is a valid communication with the check of the

operating system version and service implementation in the

left side and the exploitation by the worm on the right side.

The picture illustrates the way of how to use the “right”

metrics for detection of possible exploitation. The packet

which carries the exploit data is marked with the red circle.

From the graph it is evident that the last two peaks on the

server (last two local maxims of data-inbound communication)

can be replaced by other type of valid communication with

even higher data size and still it can be a valid behavior and

with common metrics it could be detected as malicious

packets. We can't say for sure that if any packet exceeds the

data threshold it is malicious. The question is how we can

detect this attack.

Fig. 8 Conficker check and attack behavior

We can see that in a certain cases it is impossible to

determine whether this anomaly is the malicious one or not

without increasing false-positive rate. In these situations it is

possible to apply more different metrics that could characterize

the communication in a more complex way and then we can

determine if the communication is valid or if it is an attack.

The example of solution in the situation from fig. 8 could be a

detection if a new dynamic port has been opened during or

after the suspicious packets (the connection was closed) or the

case in which attacked process has been replaced by a new one

(for example shell) and parameters of the communication have

changed or if exploitation caused the process to crash or the

communication is not ended properly (missing FIN packets)

and then the attack can be detected.

During the experiments with various attacks on honeypot

systems with implementation of AIPS we used other available

systems for detection of malicious behavior like Snort IDS. In

some tested cases of attacks on honeypots these systems

couldn't detect the attack as was described in this section.

VI. CONCLUSION

This short paper shows the first observation and results of

the project focused on the behavioral description of network

communication of malware abusing the buffer overflow

vulnerability.

We have provided a way of detecting zero-day attacks that

combines traditional methods based on extensive knowledge

of attack signatures and the generation of signatures based on

characterization of network flow and honeypot systems

representing the expert knowledge systems.

The model for generating the behavioral structures and

description of metrics characterizing the malware behavior

were presented. On two case study examples were shown the

principles of describing the buffer overflow attacks and

possible ways of their detection. The first experiment results

show that the method is effective with minimal impact on false

positives. The model assumes the expertise knowledge

provided by the honeypot systems. For online system

deployment a relatively large computational resources are

needed because of the complexity of the proposed metrics and

low abstraction. These findings are still subject of further

study and will be presented in a short time.

In the future we plan to check the effectiveness of each

metric using genetic algorithms, optimization of detection sets

and processing of individual metric by the agent system

capable to mutually communicate the results to increase the

efficiency of signature generated.

One of the interesting issues that were found during the tests

is the detection of unknown attacks misusing the old

vulnerability (MS08-067) which were not recognized by IDS

and which performed the effective exploitation. During the

three days, when this system was exposed to the Internet, 68

various undetected attempts to abuse the Microsft-ds/tcp 445

service were detected.

ACKNOWLEDGMENT

This project has been realized with a financial support from

the Czech Republic state budget through the Ministry of

Industry and Trade by the research plan FR-TI1/037. This

work was partially supported by the research plan

MSM0021630528.

REFERENCES

[1] Garcia-Teodoro, P., Díaz-Verdejo, J. E., Maciá Fernández, G., Vázquez,

E., Anomaly-based network intrusion detection: Techniques, systems

and challenges", p. 18-28, 2009.

[2] C. Cowan, P. Wagle, C. Pu, S. Beattie, J. Walpole, BufferOverflows:

Attacks and Defenses for the Vulnerability of the Decade, Oasis, p.227,

Foundations of Intrusion Tolerant Systems (OASIS'03) 2003.

[3] Ke Wang, Salvatore J. Stolfo, Anomalous Payload-Based Network

Intrusion Detection", 2004.

[4] L. Ertoz, E. Eilertson, A. Lazarevic, P.-Ning Tan, P. Dokas, V. Kumar,

J. Srivastava, Detection and Summarization of Novel Network Attacks

Using Data Mining", 2004.

[5] “NetFlow”, Cisco Systems, Inc, 2011, URL: www.cisco.com/

go/netflow.

[6] W. Lee and S. Stolfo, "A Framework for Constructing Features and

Models for Intrusion Detection Systems", ACM Transactions on

Information and System Security, 3(4), November 2000.

[7] M. Mahoney, P. K. Chan, "An Analysis of the 1999 DARPA/Lincoln

Laboratory Evaluation Data for Network Anomaly Detection", RAID

2003, 220-237.

[8] P. Porras and P. Neumann, "EMERALD: Event Monitoring Enabled

Responses to Anomalous Live Disturbances", National Information

Systems Security Conference, 1997.

[9] G. Vigna and R. Kemmerer, "NetSTAT: A Network-based intrusion

detection approach", Computer Security Application Conference, 1998.

[10] M. Mahoney, P. K. Chan, "Learning Nonstationary Models of Normal

Network Traffic for Detecting Novel Attacks", Proc. SIGKDD 2002,

376-385.

[11] G. Portokalidis, A. Slowinska, H. Bos, "Argos: an Emulator for

Fingerprinting Zero-Day Attacks", in Proc. ACM

SIGOPSEUROSYS'2006, 2006.

[12] J. Berg, E. Teran, S. Stover, "Investigating Argos", an Article in

USENIX Magazine: ;login, 2008.

[13] KDD Cup 1999, October 2007, URL: http://kdd.ics.uci.edu/

databases/kddcup99/kddcup99.html.

[14] Stack-based buffer overflow in CesarFTP 0.99g, , URL:

http://cve.mitre.org/cgi-bin/cvename.cgi?name=2006-2961.

[15] Server Service Vulnerability, URL: http://cve.mitre.org/cgi-bin/

cvename.cgi?name=2008-4250.

