
Acta Electrotechnica et Informatica, Vol. Y, No. X, 2008, 1–2 1

MULTI-LEVEL SEQUENCE MINING BASED ON GSP

Michal ŠEBEK, Martin HLOSTA, Jan KUPČÍK, Jaroslav ZENDULKA, Tomáš HRUŠKA
Department of Information Systems, Faculty of Information Technology, Brno University of Technology,

Božetěchova 1/2, 612 66 Brno, Czech Republic, tel. +420 54114 1100,
e-mail: isebek@fit.vutbr.cz, ihlosta@fit.vutbr.cz, ikupcik@fit.vutbr.cz, zendulka@fit.vutbr.cz, hruska@fit.vutbr.cz

ABSTRACT
Mining sequential patterns is an important problem in the field of data mining and many algorithms and optimization techniques

have been published to deal with that problem. An GSP algorithm, which is one of them, can be used for mining sequential patterns
with some additional constraints, like gaps between items. Taxonomies can exist upon the items in sequences. It can be applyed to mine
sequential patterns with items on several hierarchical levels of the taxonomy. If a more general item appears in apattern, the pattern
has higher or at least the same support as the one containing the corresponding specific item. This allows us to mine more patterns
with the same minimal support parameter and to reveal new potentially useful patterns.. This paper presents a method for mining
multi-level sequential patterns. The method is based on the GSP algorithm and generalization of more specific sequences based on the
information theory.

Keywords: sequence pattern mining, GSP, taxonomy

1. INTRODUCTION

A great amount of data is being collected and stored
in databases for various purposes. After years the size of
these databases became enormous. In such amount of data
hidden and interesting patterns may occur. Data mining,
also known as knowledge discovery in databases, is a field
of study to find these patterns in data. One of the typi-
cal data mining task is discovery of frequent patterns and
association analysis. The latter one is seeking for rules in
the form antecedent→ consequent, which occur in the data
often enough and are so called strong. The strength means
that the conditional probability P(consequent|antecedent)
is above a given threshold. The association analysis is abun-
dantly used in market basket analysis to discover habits of
customers. Its results can be employed for product rec-
ommendation. An example of such a rule can be TV →
DV D player telling that when customers buys TV it’s likely
that a DVD player will appear in their market basket too.

If time information occurs in the data, not only asso-
ciation analysis but also a sequential patterns mining task
can be sspecified. In such a case, the task is to reveal fre-
quently occurring sequences in a sequence database. Ac-
cording to previously mentioned market basket analysis, an
example of such a sequence pattern is 〈TV DV D player〉.
This means that customers very often buy a TV set and later
a DVD player.

In addition, a one or multiple taxonomies of items can
be stored in the database. This allows mining patterns with
items on different levels of hierarchy specified by the tax-
onomies. Then, the resulting pattern set can contain items
from more general levels that might not be directly stored
in the database. This can provide the analyst better insight
of the data and reveal patterns that he wouldn’t get with a
pure sequence mining algorithm. It also allows us to set
the minimum support parameter to a higher value and to
get results containing more database sequences, because
sequences with more general items have at least the same
support as their more specific variants. Some algorithms
can only find patterns, where all items in one pattern are

on the same level of the hierarchy. They are referred to
as intra-level patterns. If items of the pattern can be on
different levels of hierarchy, they are called inter-level or
level-crossing patterns. Our method is capable of revealing
both intra-level and inter-level sequence patterns.

The remainder of the paper is organized as follows. In
section 2 there is formally defined the problem of mining
sequential patterns with taxonomies and terms related to
that problem and to the information theory. Algorithms re-
lated to our work are described in section 3. The proposed
method for mining sequential patterns with taxonomies is
described in section 4. In section 5 we present performance
evaluation of our method.

2. PROBLEM DEFINITION

In this section we present definitions of notions for min-
ing sequential patterns with taxonomies from databases and
the problem is formally defined. The section begins with
terms related to sequential pattern mining, then focuses on
taxonomy and ends with terms of the information theory
necessary for our algorithm.

2.1. Sequential pattern mining

Definition 2.1. (Itemset) Let I = {I1, I2, I3 . . . Ik} be a set
of all items, that are stored in the database. Then item-
set i = (x1x2 . . .xm) is a nonempty subset of I contain-
ing m distinct items. Thus itemset is an unordered list of
items, but with no loss of generality we can assume that
items in the itemset are ordered lexicographically. Given
I = {a,b,c,d,e} an example of an itemset is (abd).

Definition 2.2. (Sequence) A sequence s = 〈e1e2e3 . . .en〉
is an ordered list of n itemsets, sometimes called as ele-
ments or events. Based on this notation, example of such
a sequence is s1 = 〈av(ab)(ce)d(edgi)〉. When the itemset
contains only one item, the braces can be omitted as it is
shown in this example. The length of a sequence is consid-
ered as a number of instances of its items. The sequence
of length l is called l-sequence. The length of previously

ISSN 1335-8243 c© 2010 FEI TUKE

2 Multi-level Sequence Mining Based on GSP

mentioned sequence is 11, thus it is called 11-sequence. A
sequence α = 〈a1a2 . . .an〉 is a subsequence of sequence
β = 〈b1b2 . . .bm〉 if there exist integers 1≤ j1 < j2 < · · ·<
jn ≤m such that a1 ⊆ b j1 ,a2 ⊆ b j2 , . . . ,an ⊆ b jn . We denote
it α v β and β is a supersequence of α [1].

Definition 2.3. (Sequence DB) A sequence database D is
a set of tuples 〈SID,s〉 , where SID is the identification of
a sequence and s is the sequence. The support of the se-
quence s1 is defined as a number of tuples in the database
in which sequences are supersequences of s1. Formally, the
support of sequence s1 is

support(s1) = |{〈SID,s〉|(〈SID,s〉 ∈ D)∧ (s1 v s)}|. (1)

Definition 2.4. Sequence pattern is defined as a frequent
sequence, support of which is greater than the minimum
support parameter, which is provided by the user.

Based on the defined terms, we can formally define the
problem of mining sequential patterns as follows: Given a
sequential database D = {i1, i2 . . . in}, where each ii in this
database is an itemset, and the minimal support parameter
min sup, we are looking for all the sequences with support
≥ min sup.

2.2. Taxonomy

Definition 2.5. (Taxonomy) A taxonomy structure is an
ordered directed tree. The taxonomy structure has l+1 lev-
els. The node on the level h = 0 is called root node, the
nodes on a level h where 0 ≤ h ≤ l are internal nodes and
the nodes on the level h = l + 1 are leaf nodes. The edges
between nodes form is-a relation, the specialization of terms
related to nodes is from the root to the leaf nodes. The gen-
eralization is from the leaf node to the root. An example
of a taxonomy structure is depicted in figure 1, which rep-
resents some food products. The cheese is a dairy product
and all dairy products and pastry are food. In our prob-
lem the items can be considered as nodes in the taxonomy
structure.

Fig. 1 Example of a food taxonomy with three levels and root
containing all food.

Definition 2.6. (Parents) Given an item i on a level h in the
taxonomy structure, the parent of i, denoted as parent(i), is
its generalized item on level h− 1, the ancestor(i) is a set
of all generalized items of i on a level l where 0≤ l < h.

Given an element e = {i1, i2, . . . , in}, a set of parent ele-
ments of the element e is a set of the elements which are

same as e but exactly one of the items is generalized. This
is defined as

parent(e) = {{ j1, j2, . . . , jn}|∃k : ik ∈ e

∧parent(ik) = jk (2)
∧∀l 6= k : il = jl}.

Notice that we took advantage of the property that items
in elements are lexicographically ordered. Based on the
definition of parent of an element, we can define the par-
ent of a sequence. Given a sequence s = 〈e1e2 . . .en〉, the
parent of s is the set of sequences which are the same as the
sequence s but one of their element is replaced by its parent.
This can be defined as

parent(s) = {〈 f1 f2 . . . fn〉|∃k : ek ∈ s

∧parent(ek) = fk (3)
∧∀l 6= k : el = fl}.

Based on the definition of the parent of a sequence, the
ancestor of the sequence s is defined as the set ancestor(s)
as follows:

1. parent(s) ∈ ancestor(s) (4)
2. ∀x ∈ ancestor(s) : parent(x) ∈ ancestor(s).

Notice that the sequence s and all the sequences in the
ancestor(s) has one common ancestor. This sequence con-
sists of elements with root items of the items in sequence s.
We denote this sequence as root sequence.

Example 2.1. These notions can be well understood by
looking at the figure 2 with two taxonomy structures for
two root items A and B. Item A is an ancestor and a
parent of items a and a′. The bottom of the figure de-
picts ancestors for the sequence 〈a(a′b)〉. The arrows in
the figure represent which nodes are parents to the selected
node. Sequences 〈a(a′B)〉,〈A(a′b)〉,〈a(Ab)〉are parents of
the sequence 〈a(a′b)〉, because one of their elements is
the parent of an element in 〈a(a′b)〉, for example (a′B)
is the parent of the (a′b). All of the sequences in nodes
above sequence〈a(a′b)〉 are its ancestors and the sequence
〈A(AB)〉 is its root sequence.

Fig. 2 Hierarchy in sequences.

ISSN 1335-8243 c© 2010 FEI TUKE

Acta Electrotechnica et Informatica, Vol. Y, No. X, 2008 3

Definition 2.7. The generalized support gen supp is based
on the definition of support in definition 2.2. It’s only neces-
sary to redefine it, if an element e1 is a subset of an element
e2. For this purpose we define the generalized subset rela-
tion ⊆g as

e1 ⊆g e2 ⇔ ∀i ∈ e1 : i ∈ e2∨
∃ j ∈ e2 : i ∈ ancestor(j). (5)

A sequence α = 〈a1a2 . . .an〉 is a generalized subse-
quence of sequence β = 〈b1b2 . . .bm〉 if there exist inte-
gers 1≤ j1 < j2 < · · ·< jn ≤ m such that a1 ⊆g b j1 ,a2 ⊆g
b j2 , . . . ,an ⊆g b jn . We denote α vg β . For completeness,
the definition of the generalized support of a sequence s1 is

gen supp(s1) = |{〈SID,s〉|(〈SID,s〉 ∈D)∧(s1 vg s)}|. (6)

Example 2.2. An example of how the generalized support
of a sequence is computed can be shown on a sequence
database from table 1 and taxonomy structures over items
a,a′,b,b′ from figure 2. For sequence s1 = 〈a(Ab)〉 gener-
alized support gen supp(s1) = 2, because it is generalized
sequence of tuples with SID ∈ {1,5}. If we take a parent of
s1, the sequence s2 = 〈a(AB)〉, the generalized support will
be even higher. In addition to s1, s2 is contained in the tu-
ple with SID = 4 , because 〈a(AB)〉 vg 〈b′aa(a′b′)b〉. The
higher support is the consequence of (AB) ⊆g (a′b′). Ele-
ment (Ab)*g (a′b′) , so that is why sequence s1 has lower
support than s2.

Table 1 Example of sequence database D with 5 sequences,
|D|= 5.

SID sequence
1 〈ab(a′b)b〉
2 〈b(aa′)b(ab′)aa〉
3 〈(ab)ba′a(bb′)〉
4 〈b′aa(a′b′)b〉
5 〈(ab)(ab)(ab)〉

Having the definition of the taxonomy structure, we can
define the task of mining sequential patterns with taxonomy
in almost the same way as the problem without taxonomies.
In addition, the presence of the taxonomies over the items
in a sequence database causes that more general terms will
occur in the result.

However not all of these patterns are interesting for an
analyst. The question is: which of the generalized se-
quences are interesting to incorporate them into result set
of patterns? This decision can be based on information the-
ory which is described in more details in section 4.

3. RELATED WORK

The first algorithm for mining sequential patterns Aprio-
riAll was published by Agrawal and Strikant in 1995 in [2].
It was the modification of the well-known Apriori algorithm
for mining association rules such that it can mine sequen-
tial patterns. The general idea of both Apriori and Aprior-
iAll is based on a candidates generate-and-test framework.

The same authors then presented algorithm Generalized Se-
quence Patterns (GSP) in [3]. Our proposed algorithm is
based on GSP, so this algorithm will be described in more
detail.

3.1. GSP algorithm

As mentioned, the general idea of this algorithm is
based on the Apriori property and candidates generation
and testing approach. The apriori property states: Every
nonempty subsequence of a sequential pattern is a sequen-
tial pattern [1].

The algorithm works in several phases. In each of them
it makes a pass over the sequence database:

1. In the first phase, the support of items is counted and
those having it higher than the min sup are inserted in
the resulting set L1 containing frequent 1-sequences.

2. Each of the next phases iconsists of two sub-steps.

(a) At first, in the join step, the candidate set Ck is
generated from the set of frequent items from
the previous phase Lk−1. The candidate se-
quences Ck contain one more item than se-
quences in Lk−1. Candidates of length two are
generated from items in the manner, that either
they occur in one transaction, thus forming an
element, or one is after the other, thus forming
a sequence. For example, for items a,b either
〈(ab)〉 or 〈ab〉can be generated . Candidates of
higher length are generated from s1 and s2 such
that if the first item of s1 and the last item of s2
are omitted, the resultant subsequences are the
same. The sequences s1 and s2 are called con-
tiguous and those k-sequences which has non-
frequent contiguous subsequences are pruned.

(b) After that, in counting step, the support of each
candidate is counted resulting in frequent set Lk.
The algorithm terminates in phase n when no
candidate sequence satisfies the minimum sup-
port condition or no candidate sequence can be
generated because of pruning step. The result
set is composed of

⋃n−1
k=1 Lk.

In comparison to AprioriAll, the GSP incorporates time
constraints, sliding time windows and taxonomies in se-
quence patterns and thus allowing to mine for generalized
patterns. The patterns with given time constraints and slid-
ing time windows are achieved by a procedure which de-
tects if the candidate is a subsequence of any sequence in
database satisfying the constraints.

3.2. Other sequence pattern mining algorithms

Some modifications of algorithm GSP were published
later, for example PSP in [4] introduces a different tree
structure for maintaining candidates. In the category of
algorithms based on candidate generating and testing, it’s
worth mentioning algorithm SPADE [5] which uses for
mining vertical representation of sequence database; and

ISSN 1335-8243 c© 2010 FEI TUKE

4 Multi-level Sequence Mining Based on GSP

also SPAM [6], which is similar to SPADE but uses internal
bitmap structure for database representation.

The next family of algorithms is based on the pattern-
growth principle. The key idea of these algorithms is that at
first, it is created a representation of the sequence database
to partition the space and then the search space is often tra-
versed in depth-first manner to generate less candidate se-
quences. The most famous representative is the PrefixSpan
published by Pei et al. in [7], which uses projected database
with respect to some prefix for database representation.

The most recent algorithms are based on early pruning.
The algorithms try to prune the searched space in the earli-
est phases based on the position induction. They store the
last positions of items in database sequences and use this
information to prune candidates which can’t be appended
to the current prefix. The rest of the algorithm is the same
as in pattern-growth based. LAPIN [8] is the typical repre-
sentative of these algorithms.

3.3. Hierarchies in sequence pattern mining

The authors of GSP presented the way how to in-
corporate the taxonomies into the process of sequential
pattern mining [3]. The idea is based on replacing all
the sequences in database with “extended-sequences”. In
this extended form, in addition to the item, the infor-
mation of all its ancestors is stored. For example se-
quence 〈(milk,bread)(croissant)〉 from the taxonomy in
figure 1 is replaced by 〈(milk, pastry, dairy product, food)
(croissant, pasrty, food)〉. Then the GSP algorithm is
the same as was mentioned before on these “extended-
sequences”. Although the authors proposed two optimiza-
tions, this approach requires much more space for storing
the database sequences. It also allows to mine all the fre-
quent sequences, even those which could be uninteresting.

In [9], the authors were using their framework for mul-
tidimensional sequence mining. They presented the HYPE
algorithm to incorporate hierarchies into this framework
and mine for multidimensional sequences over several lev-
els of hierarchy.

In [10] T. Huang presented the concept of fuzzy multi-
level sequential patterns. In this concept the item is al-
lowed to belong among more general concepts, for example
tomato can be considered either as fruit or vegetable. This
relationship can be represented by a value between 0 and
1. They proposed the algorithm based on the divide-and-
conquer strategy and an efficient algorithm to mine fuzzy
cross-level patterns.

4. THE HGSP ALGORITHM

In this section we describe our algorithm hGSP
(hierarchical-GSP) for mining level crossing sequence pat-
terns. The algorithm is based on GSP algorithm [3]. The
objective of the algorithm is to get the complete set of maxi-
mally concrete frequent sequences. The concreteness mea-
sure will be evaluated using information theory explained
in following subsection. In following text we use support
term in meaning of our defined generalized support.

4.1. Algorithm concept

The main idea of our algorithm is that if a sequence s has
support gen supp(s), there can exist a generalized sequence
sg ∈ parent(s) such that gen supp(sg)> gen supp(s). This
can be applied repeatedly. Notice that ∀sg ∈ parent(s) :
gen supp(s)≤ gen supp(sg). Unfortunately, during gener-
alization some information is being lost. Because of this,
the quality of mined generalized frequent items strictly de-
pends on the selection of a the generalized sequence from
the set of generalized sequences. The concepts of informa-
tion theory is used for this purpose. Generally, we expect
that more specific sequence s is more important result than
it’s generalized form sg because the generalized sg is more
expectable in the result set. This corresponds with meaning
of information content.

Definition 4.1. The Shanon information content [11] of
value x with probability p(x) is defined as

h(x) = log2
1

p(x)
. (7)

The probability p(s) that sequence s occurs in source
database D is

p(s) =
gen supp(s)
|D|

. (8)

The information content of sequence s in database D is

h(s) = log2
1

gen supp(s)
|D|

=− log2
gen supp(s)
|D|

. (9)

For a sequence s, the dependence between information
content h(s) and generalized support gen supp(s) causes
that if the generalization from s to sg is performed and
gen supp(sg) > gen supp(s), then h(sg) < h(s). There-
fore the generalization should be performed only if the
candidate sequence is not frequent (i.e. gen supp(s) <
min supp) or the GSP algorithm cannot perform join of two
candidate sequences with joinable ancestors.

Definition 4.2. Concreteness The sequence s is more
concrete than another sequence s1 if (h(s1) < h(s)) ∧
(ancestor(s)∪ s)∩ (ancestor(s1)∪ s1) 6= /0.

4.2. Algorithm hGSP

The hGSP algorithm uses the modified join step and
pruning step of the GSP algorithm. The rest of algorithm
remains the same.

The join step is modified for generating candidates of
length k = 3 and more. Let’s have a pair of frequent se-
quences s1 and s2 of length k−1. A join can be performed
if subsequences of s1 after omitting the first item and s2 af-
ter omitting the last onehave a common ancestor sequence.
Then the joined sequence of length k is composed from first
item of s1, most concrete ancestor sequence of common part
and the last item of s2. The last item is added same as in
GSP.

The support of candidates is being counted almost the
same as in the original GSP. The only difference is that we

ISSN 1335-8243 c© 2010 FEI TUKE

Acta Electrotechnica et Informatica, Vol. Y, No. X, 2008 5

use gen supp(s) defined in Definition 2.7 instead of com-
mon support. Thus only modified procedure for checking if
a candidate is subsequence of a given database sequence is
used.

The modification of pruning step is shown in Algorithm
1. The algorithm uses method for finding the most concrete
generalization set of sequence which is described in Algo-
rithm 2. We have formulated theorem, that is not necessary
to evaluates all information contents with logarithm func-
tions but it is possible to only compare ratios of supports of
sequences and theirs generalized forms.

Let’s have a sequence s and it’s generalized form
s1. Information contents of these sequences are h(s) =
− log2

gen supp(s)
|D| and h(s1) = − log2

gen supp(s1)
|D| . The in-

formation lost during generalization of s to s1 is ∆h =
h(s)−h(s1). It follows that

∆h = log2

 gen supp(s1)
|D|

gen supp(s)
|D|

= log2

(
gen supp(s1)

gen supp(s)

)
. (10)

The generalization of s with the smallest informa-
tion loss is found because then the sequences will be the
most concrete. Therefore the algorithm minimizes ratio
gen supp(s1)
gen supp(s) .

Algorithm 1: Method find generalization()

Input: Candidate sequence s
Output: The set of the most concrete generalizations Gs.
Method:

Gs = {};
min supp ratio =+∞;
foreach (ps ∈ parent(s)) do:

ratio = gen supp(ps)/gen supp(s);
if (gen supp(ps)<> gen supp(s)

∧ratio < min supp ratio) then
Gs = {ps};
min supp ratio = ratio;

elseif (ratio = min supp ratio) then
Gs = Gs∪{ps};

endif;
endforeach;
return Gs;

Algorithm 2: hGSP Pruning Step

Input: The set of candidates - Ck, minimal support
min supp
Output: The set of frequent sequences Lk of length k
Method:

Lk = {};
foreach sc ∈Ck do:

C′k = {sc};
sequence added = f alse;
while (sequence added = f alse∧|C′k|> 0) do:

Gs = {};
foreach s ∈C′k do:

if gen supp(s)≥ min supp then
Lk = Lk ∪{s};
sequence added = true;

else

Gs = Gs∪ f ind generalization(s);
endif;

endforeach;
C′k = Gs;

endwhile;
endforeach;
return Lk;

5. EXPERIMENTS

We have used synthetic datasets created by the genera-
tor described in [12] with our hierarchical extension. The
evaluation was performed on PC Intel Core Duo 2.66 GHz,
2GB RAM, OS Windows XP 32-bit. The implementation
of hGSP algorithm was integrated into MS Analysis Ser-
vices.

5.1. Performance evaluation

The performance test is focused on the execution time
of the algorithm. We did not compare execution times with
GSP because hGSP generates much more candidates. Also,
GSP generates shorter sequences and it is finished after se-
quences of length 2 in most cases. Therefore, we show only
execution times of hGSP. Parameters of datasets were:

• average DB sequence length = 25,

• hierarchy count = 25,

• average hierarchy depth = 3,

• frequent sequences count = 0.2 % of |D|

• and average length of frequent sequences = 7.

Results of experiment are shown in Figure 3. The algo-
rithm was executed on datasets of a different size and the
execution time was measured. The number of transaction
items ranged from 25,000 in a database of 1,000 sequences
up to 225,000 transaction items in a database of 9,000 se-
quences. The plot shows that processing time increases lin-
early with the dataset size because the algorithm checks if
each candidate sequence is subsequent of any database se-
quence.

�

��

���

���

���

���

���

���

���

���� ���� ���� ���� ����

���

�
�
��
��
�
�
	

�
��
�

��
��

	
��
��

Fig. 3 Average processing time of one candidate sequence.

ISSN 1335-8243 c© 2010 FEI TUKE

6 Multi-level Sequence Mining Based on GSP

5.2. Generalization evaluation

The generalization evaluation experiment is focused on
generalization property of hGSP algorithm. The method-
ology of the evaluation is following. It is known that the
number of frequent sequences in results strictly depends on
the minimal support value. Therefore, we have compared
the number of candidates and mined frequent sequences
for different values of the minimal support. The results
were measured for relative supports from 20% up to 80%.
Predefined parameters of frequent sequences in the dataset
were: the average length 5 and support 50%. Results of
hGSP are shown in comparison to GSP results.

The results in Figure 4 show that the number of can-
didate/frequent sequences increases exponentially with de-
scending value of minimal support for both hGSP and GSP.
In general, hGSP creates more than 10 times more frequent
sequences than the GSP because of the generalization prop-
erty. This is the main substance for analyst – the hGSP does
not prune important candidate sequences if there is a possi-
bility to generalize them. In addition, Figure 5 shows that
the hGSP creates sequences with more items than GSP.

1

10

100

1000

10000

100000

1030507090

Relative Support [%]

C
o

u
n

t
o

f
S

eq
u

en
ce

s

Candidates - GSP Candidates - hGSP Results - GSP Results - hGSP

Fig. 4 Numbers of candidate and frequent sequences with
dependancy on minimal support

0

2

4

6

8

10

12

1030507090

Relative Support [%]

M
ax

im
al

 F
re

q
u

en
t

S
eq

eu
n

ce

L
en

g
th

GSP hGSP

Fig. 5 Lengths of frequent sequences with dependancy on
minimal support

5.3. Comparsion of hGSP algorithm and GSP using
“extended-sequences”

Experiments show dependency of execution time and
number of patterns on different number of frequent sequen-
tial patterns in database of length 7 |L7|. The hGSP algo-
rithm is compared with recommended taxonomy extension
of GSP based on “extended-sequences” (see section 3.3)
without using optimizations. Parameters of the datasets
were transactions count = 5 000, hierarchy count = 15, av-
erage hierarchy depth = 5, other parameteres were same as
in experiment in section 5.1.

In Table 2 is shown that hGSP is faster up to 10 % than
the GSP using “extended-sequences”. The main disadvan-
tage of GSP approach is shown in Table 3. GSP using
“extended-sequences” generates a huge amount of redun-
dant (candidate and frequent) sequences and the result has
to be filtered, suggested author’s optimization reduces the
amount but the result set still contains many redunadnt pat-
terns.

Table 2 Execution times of hGSP and GSP in seconds.

|L7| hGSP GSP
25 1 536 s 1 546 s
50 3 968 s 4 229 s

100 1 327 s 1 515 s

Table 3 Total sum of sequential patterns of all lengths |
⋃

k≥1 Lk|.

|L7| hGSP GSP
25 3 329 13 350
50 7 750 33 611

100 4 187 11 316

6. CONCLUSIONS

In this paper we presented a new way how to incorporate
taxonomies into the process of mining generalized sequen-
tial patterns. Our approach is based on information theory
and modifies the well known GSP algorithm. The algorithm
is trying to generalize sequences only if it is requried. This
is because of either low support of the sequence or inability
to join two sequences with joinable ancestors. In the experi-
ments, we showed that in comparison to GSP, the algorithm
was able to find more patterns and patterns of higher length
thanks to the generalization.

In the future work, we want to focus on optimization
of the algorithm. Because the hGSP generates more candi-
dates, it is naturally slower than GSP but outperforms the
approach of extended databases for mining patterns with
taxonomies. Because of unefficient candidates generating
and testing we will also try to apply our ideas to more effi-
cient algorithm such as PrefixSpan.

ACKNOWLEDGEMENT

This work has been supported by the research funding
TAČR TA01010858, BUT FIT grant FIT-S-11-2, the Re-

ISSN 1335-8243 c© 2010 FEI TUKE

Acta Electrotechnica et Informatica, Vol. Y, No. X, 2008 7

search Plan No. MSM 0021630528 and the IT4Innovations
Centre of Excellence CZ.1.05/1.1.00/02.0070.

REFERENCES

[1] HAN, J. – KAMBER, M.: Data mining: concepts and
techniques. The Morgan Kaufmann series in data man-
agement systems. Elsevier, 2006.

[2] AGRAWAL, R. – SRIKANT, R.: Mining sequential
patterns. pp. 3–14, 1995.

[3] SRIKANT, R. – AGRAWAL, R.: Mining sequential
patterns: Generalizations and performance improve-
ments. In Proceedings of the 5th International Con-
ference on Extending Database Technology: Advances
in Database Technology, EDBT ’96, pp. 3–17, London,
UK, 1996. Springer-Verlag.

[4] MASSEGLIA, F. – CATHALA, F. – PONCELET, P.:
The psp approach for mining sequential patterns. pp.
176–184, 1998.

[5] ZAKI, M. J.: Spade: An efficient algorithm for mining
frequent sequences. In Machine Learning, pp. 31–60,
2001.

[6] AYRES, J. – FLANNICK, J. – GEHRKE, J. – YIU,
T.: Sequential pattern mining using a bitmap repre-
sentation. In Proceedings of the eighth ACM SIGKDD
international conference on Knowledge discovery and
data mining, KDD ’02, pp. 429–435, New York, NY,
USA, 2002. ACM.

[7] PEI, J. – HAN, J. – MORTAZAVI-ASL, B. – WANG,
J. – PINTO, H. – CHEN, Q. – DAYAL, U. – HSU, M.:
Mining sequential patterns by pattern-growth: The pre-
fixspan approach. IEEE Trans. on Knowl. and Data
Eng., pp. 1424–1440, November 2004.

[8] YANG, Z. – WANG, Y. – KITSUREGAWA, M.:
Lapin: effective sequential pattern mining algorithms
by last position induction for dense databases. In
Proceedings of the 12th international conference on
Database systems for advanced applications, DAS-
FAA’07, pp. 1020–1023, Berlin, Heidelberg, 2007.
Springer-Verlag.

[9] PLANTEVIT, M.– LAURENT, A. – TEISSEIRE, M.:
HYPE: mining hierarchical sequential patterns. In
DOLAP 2006, ACM 9th International Workshop on
Data Warehousing and OLAP, pp. 19–26, November
2006.

[10] HUANG, T. Ch.: Developing an efficient knowledge
discovering model for mining fuzzy multi-level sequen-
tial patterns in sequence databases. Fuzzy Sets Syst.,
160:3359–3381, December 2009.

[11] MACKAY, D.: Information Theory, Inference, and
Learning Algorithms. Cambrifge University Press,
2003.

[12] AGRAWAL, R. – SRIKANT, R.: Fast algorithms for
mining association rules. In Proc. of the VLDB Confer-
ence., pp. 487–499, Santiago, Chile, 1994. Expanded
version available as ABM Research Report RJ8939.

Received December 12, 2007, accepted February 24, 2008

BIOGRAPHY

Michal Šebek is PhD student at Faculty of Information
Technology, Brno University of Technology. He received
his master’s degree in Computer Science in 2009. His mas-
ter theses was focused on development of open-source data
mining system FIT-Miner. His PhD research focuses on
knowledge discovery from data streams.

Martin Hlosta is a second year PhD student. He received
his master’s degree in Computer Science in 2010 from Fac-
ulty of Information Technology, Brno University of Tech-
nology. Both his bachelor and master theses were focused
on methods of knowledge discovery in databases. His PhD
research focuses on knowledge discovery from malware de-
tection data.

Jan Kupčı́k received the Masters degree in Information
Systems from Faculty of Information Technology, Brno
University of Technology in 2007. He is currently pursuing
the PhD degree at the same university. His research inter-
ests include database and OLAP technologies, data mining
and software engineering.

Jaroslav Zendulka received his M.Sc. degree in com-
puters and Ph.D. in technical cybernetics at the Brno Uni-
versity of Technology, Czech Republic. He is currently an
Associate Professor at the Department of Information Sys-
tems at the Brno University of Technology. He has partic-
ipated in several projects and has written tens of papers in
international journals and conference proceedings. He is a
PC member of several international conferences. His re-
search interests include data and object modeling; database
technology and information systems; data mining.

Tomáš Hruška received his Ing. (MSc.) and CSc. (PhD)
titles from Brno University of Technology, Czech Republic.
Since 1978 works at the Brno University of Technology,
since 1998 as full professor. In 1978-1983, he dealt with
research in the area of compiler implementation for sim-
ulation languages. He dealt with an implementation of an
object-oriented database systems as a tool for modern infor-
mation systems design and Lissom/Codasip project now. It
is focused on the research of the processor description lan-
guage for transformations of processor models

ISSN 1335-8243 c© 2010 FEI TUKE

