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Abstract— Microscopic traffic simulation models have be-
come very popular in the evaluation of transportation engineer-
ing and planning practices in the past few decades. To achieve
high fidelity and credibility of simulations, a model calibration
and validation must be performed prior to deployment of the
simulator. In this paper, we proposed an effective calibration
method of the microscopic traffic simulation model. The model
is based on the cellular automaton, which allows fast large-scale
real-time simulation. For its calibration, we utilized a genetic
algorithm which is able to optimize different parameters much
better that a human expert. Furthermore, it is possible to
readjust the model to given field data coming from standard
surveillance technologies such as loop detectors in our case. We
have shown that the precision of simulations can be increased
by 20 % with respect to a manually tuned model.

I. INTRODUCTION
Microscopic traffic simulation models distinguish and

trace every single vehicle and driver on the road. These mod-
els typically employ the characteristics such as individual
vehicle speeds, accelerations, time and distance headways to
the preceding vehicle or some rudimentary human character-
istics that describe driving behavior [1], [2]. This allows us
to simulate the traffic very precisely. Today, the microscopic
traffic simulation software is widely accepted and applied
in all branches of transportation engineering as an efficient
and cost effective analysis tool. On the other side, a lot of
modeled entities extremely increase the simulation time.

A. Model performance

In case when the simulation is used as a part of a complex
ITS (e.g. for online traffic states prediction), the simulation
time becomes extremely critical. To be able to simulate large
traffic at the microscopic level of detail, different acceleration
techniques have already been developed. Some of them
utilized special hardware [3], other ones employed multicore
architectures or even high performance graphic cards [4]
that are becoming parts of nowadays commodity hardware
too. The simulation time significantly depends on the traffic
model representation (e.g. form of the model). It seems
that a reasonable representation is used when the traffic is
simulated with cellular automaton (CA) based models. Re-
cently, CA have become popular in the area of microscopic
traffic simulations because of their simplicity and suitability
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for acceleration. For example, in paper [5], an online CA
based simulation model of city of Duisburg was introduced.
The authors showed that for the most frequently occurring
densities the road network of Duisburg can be simulated
around 100 times faster than real time. It is necessary to
mention that their road network is modeled using only
22 000 cells and their simulator is not suitable for more
cells. An example of explicitly implemented parallelism
in a simulation model was presented in [6]. The authors
have used a CA model to implement a traffic simulator
for city of Geneva and they reported a super linear speed-
up for 15 000 vehicles. However, their simulations are not
expected to match the exact traffic situation of Geneva,
as they mentioned. CELLSIM is another good example of
a recent CA based microscopic simulator [7]. Computational
performance of this model, as for other microscopic models,
is dependent on the number of vehicles in the system. It
was shown, that CELSIM is able to simulate around 2300
vehicles in shorter than real time. As computational power
is constantly increasing, we can assume that this number of
vehicles will increase too.

In our previous work, we also utilized such techniques
to speed-up our large-scale CA based model with special
libraries for explicitly programmed parallel model for mul-
ticore processors [8] or for modern graphic cards [9], which
allowed us to simulate huge networks (e.g. 935 000 km with
50% crowdedness) multiple in real-time.

B. Model quality

However, not only the performance is crucial in micro-
scopic traffic simulation models. A very important stage of
development of any traffic model is its comparison with
reality, namely calibration and validation. In [10], authors
proposed an effective three-step process for the microscopic
traffic model calibration. Another paper [11] gives some
basic guidelines for calibration of microscopic simulation
models in form of framework and applications. The devel-
opers usually calibrate and validate the model on their own
using some data sets that they have access to and publish the
results obtained. For example, in paper [12] authors tried
to perform a simple calibration of ten microscopic traffic
simulation models in a way that the models were calibrated
and compared to each other with the GPS based field data
from year 2004 in Japan. But it should be noted, that in
almost all previous calibration approaches, some real data are
desired in a form, which is not generally available. It was
shown that it is important to find a few basic parameters
for the model calibration [13]. Namely a driver sensitivity
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(e.g. reaction time), a jam density headway and free-speed
(maximum speed when vehicle is not constrained) have to
be determined. It was also stated that this process is neither
a straight-forward nor an easy task. For example, while
the free-speed is relatively easy to estimate in the field
and generally lies between the speed limit and the design
speed of the roadway, the jam density headway is more
difficult to calibrate but typically ranges between 110 to 150
vehicles/km/lane. The driver sensitivity factor is extremely
difficult to calibrate because it can not be measured using
standard surveillance technologies (e.g. detection loops that
work on magnetic-induction principle).

C. Goals of the paper

In this work we propose to utilize our CA based mi-
croscopic traffic simulation model, which was shown not
only to be extremely fast to achieve multiple in real-time
simulations, but also updated to eliminate unwanted prop-
erties of ordinary CA based models. The quality of this
updated model has been previously evaluated by comparison
with fundamental diagrams and discussed [8]. Secondly, we
will try to calibrate parameters of this model to various
field data that can be obtained from standard surveillance
technologies. We will show, that it is possible to achieve
a better precision of simulation for a given road segment.
Moreover, except ordinary traffic parameters, we will also
optimize some CA model parameters as well as calibrate
some parameters which, as stated for example in [13], are ex-
tremely difficult to calibrate with other common techniques.
The optimization/calibration will be performed by genetic
algorithm (GA).

The rest of the paper is organized as follows. Section II
introduces a stream model calibration technique that allows
us to fairly compare real data with the calibrated simulation
model. Then, in Section III, cellular automaton based mi-
croscopic traffic simulation model is presented with all its
updates and parameters utilized in the process optimization.
Section IV describes the process of optimization of the model
with selected GA. Results of experimental evaluations for
each field data set are then presented in Section V. Finally,
conclusions and suggestions for future work are given in the
last Section VI.

II. STREAM MODEL CALIBRATION

Gazis et al. [14] were the first ones who formulated a re-
lation between microscopic and macroscopic traffic models.
In their theory, the flow rate can be expressed as the inverse
of the average vehicle time headway. Similarly, the traffic
stream density can be approximated for the inverse of the
average vehicle spacing for all vehicles within a section of
the roadway.

Road traffic is always in a specific state that can be
characterized by three macroscopic parameters: flow (q),
vehicle space-mean speeds (u) and density (k) shown in
Eq. 1:

q = k × u. (1)

By combining all the possible traffic states (steady or non-
steady) in an equilibrium function, one can derive three
fundamental traffic diagrams [15]. A diagram shows the
relation between two of the three variables (speed-density,
speed-flow, flow-density). The third variable can always be
recovered using Eq. 1.

It was shown [16], that estimation of the traffic stream
parameters requires the calibration of a traffic stream model
to field data. This effort entails making some decisions, such
as defining the functional form to be calibrated, identifying
dependent and independent variables, defining the optimum
set of parameters, and finally developing an optimization
technique to compute the set of parameter values. Unfortu-
nately, in the traffic flow theory it is not always clear which
variable should be set to be independent or dependent. In
paper [13] and later in [17], authors developed a calibration
approach that minimizes the orthogonal error about the
fundamental diagram to estimate the expected value of the
traffic stream parameters. The model, which is also used to
preprocess our data, is briefly described here, however a more
detailed description can be found in [17]. Also, this approach
is unique because it does not require the identification of
dependent or independent variables since it applies a neutral
regression (i.e. minimizes the orthogonal error as shown in
Eq. 2).
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where ui, ki, and qi are the field observed space-mean speed,
density, and flow measurements, respectively. The speed,
density, and flow variables with hats are estimated speeds,
densities, and flows while the tilde variables are the maxi-
mum field observed speed, density, and flow measurements.
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c1, c2, and c3 are then selected model constants. The
objective function ensures that the formulation minimizes
the normalized orthogonal error between three-dimensional
field observations and the functional relationship – in this
case the Van Aerde functional form is utilized. The error
terms are normalized in order to ensure that the function
is not biased towards reducing the error in one of three
variables at the expense of the other two variables. This
data normalization ensures that the parameters in each of
the three axes range from 0.0 to 1.0 and thus a minimization
of the orthogonal error provides fitting equivalent across all
three axes. The initial constraint, which is non-linear, ensures
that the Van Aerde functional form is maintained, while the
second constraint is added to constrain the third dimension,
namely the flow rate. The third and fourth set of constraints
guarantee that the results of the minimization formulation
are feasible. The fifth and sixth set of constraints ensures
that the four parameters that are selected do not result in
any inflection points in the speed-density relationship (e.g.
it ensures that the density at any point is less than or
equal to the jam density). Next set of equations provides
estimates for three model c-constants [18] based on the
roadways mean free-flow speed (uf ), speed at capacity (uc),
capacity flow (qc), and jam density (kj). The final set of
constraints provides a valid search window for four traffic
stream parameters that are being optimized (uf , uc, qc, and
kj). All details can be found in paper [16].

The primary goal for using this stream model calibration
to the field data sets is to fairly compare the real data with
results obtained from the calibrated simulation model. So
it is possible to get all three fundamental traffic diagrams,
which is very important, because a good fit in one domain
(e.g. speed-flow) does not necessarily imply a good fit in
another domain (e.g. speed-density) [16].

III. CA BASED TRAFFIC SIMULATION MODEL

The first highly suitable CA model of single-lane freeway
traffic was introduced by Nagel and Schreckenberg in 1992
[19]. Because of simplicity of this model, it was possible
to perform millions of updates in a second [20]. Hence, the
model can be used for simulating a high volume of traffic
over very large networks. Due to some critics of unrealistic
behavior (such as [21]), simple CA based models are often
extended. On the other hand, these models were shown to be
able to capture all basic phenomena that occur in traffic flows
[22], not only in the field of vehicular traffic flow modeling,
but also in other fields such as pedestrian behavior, escape
and panic dynamics, etc.

Nagels and Schreckenbergs traffic model was initially
defined on a one-dimensional array with open or periodic
boundary conditions and with every single cell representing
a road segment [19]. A local transition function (a rule)
defines the new state of a cell on the basis of its current
state and the state of neighboring cells. Globally viewed,
it describes the movements of vehicles from one cell to
another cell in a discrete way. In space domain, each cell
represents only a defined length of road segment, so space

is coarse-grained. This coarse graininess is fundamentally
different from the usual microscopic models, which adopt
a semi-continuous space. The length of 7.5 m was chosen
in the original model because each car occupies about this
amount of space in a complete jam [19]. In other words, this
is the average vehicle length on the road, including a constant
gap in front of and/or behind each car. In order to model
other kinds of vehicles in CA based models, it is better to
use different cell lengths, or even more precisely, use more
smaller cells for representing a single vehicle – especially
for bigger types of vehicles (e.g. [23]).

Each CA simulation step represents an amount of time
in reality. In the CA model this value is crucial because
together with the cell length it gives us the granularity of
minimal vehicle speed jumps. This value also represents
a minimal time for any responds, e.g. it is also the driver
reaction time. Based on suggestions given in [24] and field
data measurements [23], it is reasonable to consider one such
simulation step as 0.6 – 1.5 s.

Normally, urban traffic road networks are very complex. It
was shown that arbitrary kinds of road and intersections can
be reduced to only a few basic elements. For constructing
more complicated networks, we shall simply connect more
various kinds of cells to the desired topology. In this way it
is possible to build more traffic lanes, roundabounds or very
complex topologies for whole cities [6], [5].

A. Local transition function

Properties of a single lane traffic are modeled on the
basis of integer-valued probabilistic cellular automaton rules.
The local transition function can be formalized as follows:
each vehicle (i) in a cell has an integer velocity vv(i) with
values between zero and vmax(i). We let gap(i) denote the
cell gap in front of the vehicle i – i.e. a leader to the
follower distance. For an arbitrary configuration, one update
of the simulation system consists of four consecutive steps,
which are performed in parallel for all vehicles. The original
procedure consists of (1) acceleration (every vehicle tends to
accelerate), (2) slowing down (i.e. collision avoidance), (3)
randomization with a given probability and finally (4) vehicle
motion, where each vehicle is advanced based on a new
computed speed vv(i). It is important to note, that this simple
CA based traffic model shows nontrivial and realistic behav-
ior. The randomization step is essential in simulating traffic
flows since the model dynamics is completely deterministic,
and without this randomness, every initial configuration of
vehicles and corresponding velocities reaches a stationary
pattern which is shifted backwards. This simple model is
also capable of reproducing characteristic properties of real
traffic, such as certain aspects of flow-density relation, spatio-
temporal evolution of jams, stop-and-go waves, etc. [25].

B. Updated local transition function

In our previous work [8], we updated the original function
briefly described in previous section to a new form, where
some brand new parameters can be found. The traffic simu-
lation model is extended to eliminate unwanted properties of
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ordinary CA based models, such as stopping from maximum
velocity to zero in one time step [8]. This is possible due
to storing the previous (or the leading) vehicle velocity
vprev(i+ 1). When there is such vehicle, the following
vehicle (i) is able to determine its positive or negative
acceleration with acc(i+ 1). According to Alg. 1, it is

Algorithm 1 Updated local transition function.

if vv(i) < p4 and vv(i) < vmax(i) then
vv(i) := vv(i) + 1 with probability p7

end if
if (gap(i) + acc(i+ 1)) > vv(i) then

if vv(i) < p6 then
vv(i) := vv(i)− 1 with probability p5

else
vv(i) := vv(i)− 1 with probability p8

end if
else

if acc(i+ 1) > 0 then
vv(i) := 1/p9 × (gap(i) + acc(i+ 1))

else
vv(i) := 1/p10 × (gap(i) + acc(i+ 1))

end if
end if

Ensure: Each vehicle at sites i is advanced vv(i) times and
vprev(i) := vv(i).

firstly determined, if investigated vehicle could accelerate
(i.e. vehicle velocity vv(i) is not greater than maximal
vehicles speed p4 or given vehicle velocity limit vmax(i)).
If so, its speed-up is accomplished with probability p7, so
not all vehicles tend to always accelerate as in the original
model [19]. Then, if there is a plenty of room for vehicle to
get in (i.e. gap(i)+acc(i+1) > vv(i)) or there is no previous
vehicle in the same lane, collision avoidance mechanism is
not performed. Similarly to the original CA local transition
function, only deceleration based on probabilities could be
applied in this situation. In case of small vehicle velocities
(vv(i) < p6), deceleration is performed with probability p5,
otherwise (vv(i) > p6) with probability p8.

Collision avoidance occurs when there is no free room for
vehicle i in the same lane to get in (i.e. gap(i) + acc(i +
1) <= vv(i)). Two situations may occur. If the leading
vehicle tends to accelerate (acc(i+1) > 0), the actual vehicle
velocity vv(i) is reduced to 1/p9 × (gap(i) + acc(i + 1).
Otherwise, (acc(i+ 1) <= 0), actual vehicle speed vv(i) is
reduced to 1/p10× (gap(i) + acc(i+1). It can be seen that
these two parameters are more driver-based parameters than
model oriented. We will try to find out if these ones could
be determined statistically for a given road segment. Finally,
each vehicle is advanced vv(i) sites and vehicle velocity
updates must be also performed.

IV. OPTIMIZATION OF THE CA BASED MODEL

In this work, genetic algorithm (GA) is used to find
the most useful parameters of the CA model in order to
maximize the precision of the traffic simulator. The main idea
of GA is to evolve a population (set) of candidate solutions
to find better ones [26]. Such candidate solution is encoded
as a chromosome which is an abstract representation that
can be modified with genetic operators (e.g. mutation and
crossover, etc.).

A. Parameters encoding

In order to simplify GA, all simulation model parameters,
which will be optimized, are encoded in binary form. In
case of real numbers from a given interval (e.g. [1, 0]), the
interval is divided into the N pieces of the same size. The
value N depends on the number of bits used for encoding
of the parameter.

Using a 6-bit value and the minimal length of the cell
0.125 m the maximal cell length is 8 m (64 × 0.125). The
cell length is the first model parameter – p1. One vehicle
always occupies as many such cells as it fits into the 5.5 m
(or nearer, but not smaller). For example, for the smallest
cell length (0.125 m) it is exactly 44 cells. Bigger vehicles,
such as trucks, occupy only two times bigger place (11 m).
The second model parameter, p2, is the simulation step or
also the reaction time with the minimal value of 0.05 and
maximum value of 3.2 seconds encoded again using 6 bits.
The cell neighbor, p3, is encoded using 12 bits (e.g. when
the cell length is at minimum then the maximum neighbor
is 0.125 × 4096 = 512 m). The next parameter is maximal
vehicles speed p4 (encoded on 11 bits, i.e. 2048 possible
values for a chosen reaction time and cell lenght) giving,
as in the original model, the number of cells per simulation
step. The probability of slowing down is represented by p5
(encoded on 8 bits) and slow speed boundary is encoded as
p6 (1 − 512 cells per simulation step on 9 bits). Then, the
speed-up probability is denoted as p7. The parameter p8 is
probability of vehicles slowing down in case of a vehicle
speed greater than the slow speed p6. Further model con-
stants p9 and p10 are coefficients of vehicle approximation
in case of previous vehicle acceleration and previous vehicle
slowing-down. Both parameters have minimal value of 1 and
maximal value of 32 (encoded on 5 bits). All parameters with
their respective minimal values, maximal values and step, are
briefly summarized in Tab. I.

B. Chromosome

The proposed GA has an auto-evolution or also self-
adaptation capability, which means that parameters of the
algorithm (the probability of mutation pm and crossover pc)
are also part of the chromosome. Hence the user is not forced
to set them. The whole set of parameters is represented using
one 92-bit number. It is important to note that each parameter
of the chromosome is encoded using Gray encoding to
ensure that the maximal Hamming distance between two
successive values is only one. This setup does not allow big
jumps between values in case of a single bit change. The
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TABLE I: CA model parameters and values.

Bits used [#] Min. value Max. value Step
p1 6 0.125 8.000 0.125
p2 6 0.05 3.20 0.05
p3 12 p1 212 × p1 p1
p4 11 p1/p2 211 × p1/p2 p1/p2
p5 8 0.00392 1.00000 0.00392
p6 9 p1/p2 29 × p1/p2 p1/p2
p7 8 0.00392 1.00000 0.00392
p8 8 0.00392 1.00000 0.00392
p9 5 1 32 1
p10 5 1 32 1
pm 10 0.00097 1.00000 0.00097
pc 4 0.06667 1.00000 0.06667

first population (X(0)) consists of 60 such chromosomes
(|X(0)| = 60) generated randomly.

C. Fitness function

All chromosomes from population Xi are separately eval-
uated using the same fitness function. Firstly, a candidate
CA model is constructed using the parameters obtained from
a candidate chromosome. Then simulation is performed for
the given model. Because field data usually consists of
various scenarios over different traffic speeds, densities and
flows, it is possible to initialize the new model with random
data inputs (e.g. random times of vehicle arrivals) to gather
different flow/density/speed situations from calibrated model.
Note, that this random data generation could be notably
simplified, if the average incoming vehicle speed and also the
average incoming times with their respective variability are
enumerated from given field data set. Whole measurement
procedure (from the simulation model) is performed in same
way as measurements from the field, which will be described
later on. Depending on the facility type, also various vehicle
types are generated where possible. Whole simulation is
executed until the same number of samples (flow vs. speed
and flow vs. density) as the number of field data samples is
reached (see Tab. II). After that, the fitness function F (x)
is calculated as a sum of error function E(x) (shown in
Eq. 2) and the penalty function P (x), where x represents
a candidate solution. Due to noticeable slower simulation
runtime for solutions where the cell length is very small,
the fitness function must be adjusted with the penalization
function P (x) as showh in Eq. 3.

P (x) = 10/cel length(x) (3)

This penalization ensures that the solutions with smaller cell
lengths will not be preferred. Moreover, this penalization is
multiplied three times (the error function is calculated for
three different variables separately) and also multiplied by
the number of samples (to add a constant error to every
sample) as shown in Eq. 4.

F (x) = E(x)+(3×number of samples(x)×P (x)) (4)

Finally, GA tries to minimize the fitness function F (x), so
better solutions are always with lower fitness value.

D. Creating a new population

1) Selection: After evaluation of all chromosomes from
the population X(i) is complete, some of them are selected
for next operations using a tournament selection with base 2
giving a new population XS(i), where |XS(i)| = 30.

2) Crossover: Two-point crossover is applied between
two randomly selected individuals giving a new set XC(i)
(where XC(i) ⊂ XS(i) and |XC(i)| = 30). The first point
of crossover operation is between the p3 and p4 parameter
and the second one right after p10 parameter, to allow alterna-
tion of the model and the GA parameters individually. This
operator is applied with the average probability calculated
from two chosen chromosomes (pc).

3) Mutation: On all chromosomes from XC(i) a mutation
operator (i.e. changing bit 0→ 1 or 1→ 0) is applied with
the probability (pm) taken from evaluated individual, which
gives a brand new population XM (i) of the same size.

4) Population recovery: Finally, a new population of 60
individuals X(i+1) is selected from the previous population
X(i) and the XM (i) population. This ensures that the best
solution will always survive (i.e. elitism is present) [26].

Described GA procedure is repeated until 125 000 gener-
ations are exhausted as shown in Alg. 2.

Algorithm 2 Genetic algorithm procedure.

i = 0
Generate population X(i) randomly, |X(i)| = 60
Evaluate all candidates from X(i) with F (x)
repeat
1. Create XS(i) using tournament selection from X(i)
2. Create XC(i) using crossover operator on XS(i)
3. Create XM (i) using mutation operator on XC(i)
4. Evaluate all candidates from XM (i) with F (x)
5. Create X(i+ 1) by selecting 60 best individuals from
XM (i) ∪X(i)
6. i := i+ 1
until (i <= 125000)

V. EXPERIMENTAL RESULTS

A. Field data

In order to evaluate the proposed method, field data from
different facility types have been utilized. These macroscopic
data sets consist of data captured by our industrial partners
in year 2010.

The first data set (a) is a bit crocked road segment between
two bigger villages in the Slovak Republic with a maximum
allowed speed of 50 km/h. The particular segment is on the
way to the country seat, so the road is utilized mostly by
drivers going to work and back on ordinary business days,
but traffic is not strictly homogenous here. This road segment
is also a part of the route between two biggest cities in the
region and statistically given 5% of traffic comes from bigger
vehicles (e.g. busses, trucks, etc.).

The second data set (b) comes from two climb-lanes on
the freeway road segment between two biggest cities in
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TABLE II: Number of field data samples for each data set.

Data set Usable samples [#] Empty samples [%]
(a) 31157 11.08
(b) 32268 7.91
(c) 29396 16.11

the Czech Republic. There is a speed limit of 130 km/h
and compared to previous data set (a), vehicles are less
constrained by the roadway geometry and/or friction, but
they are more constrained by regulatory conditions (e.g.
speed limit). Field data tend to demonstrate a fairly linear
increase in speed as a function of the distance headway. The
traffic is not homogenous, but it is important to note, that
there is also a vehicle classification system installed here,
so it was possible to classify various types of vehicles. The
precision of classification is 88.5%.

The last data set (c) comes from a short and (compared
to previous ones) small road segment in the city of Prague
bordered from both sides with traffic lights. All the days,
there is a heavy traffic with high probability of traffic jams.
This facility is with no admission for heavy and/or long
vehicles. Motorbikes do not often appear here. The maximum
speed on this segment is restricted to 80 km/h.

All three data sets (a, b and c) were obtained using stan-
dard surveillance technologies and measured using detection
loops and detection cameras (used as a supplying secondary
or correlation source of data) for every day and night of the
year on each facility. Therefore it was possible to measure
macroscopic variables (q, u) across a certain time interval.
The third macroscopic value (k), can always be calculated
from the relation of the traffic flow theory (see Eq. 1). The
discrete nature of traffic requires capturing time intervals
of a least half a minute if we want to achieve meaningful
information. Also, when time intervals exceed the duration
of five minutes, certain dynamic characteristics are lost as
stated in [15]. Based on this, we decided to divide every
day of the year to 96 time intervals of 15 minutes each.
These intervals are then divided into the two parts. First part
(5 minutes) is a measurement time interval where the field
data are used. Second interval (10 minutes) is thrown away.
Thus we got 35040 samples of flow versus vehicle speed
relation samples during the measurement interval on each
facility during a year. If there is an empty one (i.e. no vehicle
occurred), a sample from a given data set is deleted. The final
number of usable field data samples as well as percentage
of empty samples from original 35040 samples is given in
the Table II.

B. Calibrated models

All parameters of the CA based microscopic traffic sim-
ulation model (p1 . . . p10, pm and pc), which were evolved
for all three data sets (a), (b) and (c) separately, are shown
decoded as real values in Tab. III. All comes from the best
solution of the last generation of GA. Tab. III also shows
parameters of our previously manually tuned and updated CA
model as introduced in [8] and [9]. Some of those manually

TABLE III: Parameters and per point errors for updated
model and models evolved for each data set (a, b and c).

Upd. model Model for a) Model for b) Model for c)
p1 5.500 m 2.625 m 7.125 m 2.250 m
p2 1.20 s 1.35 s 1.50 s 0.65 s
p3 60.5 m 231 m 441.75 m 69.75 m

p4 181.5 km
h

84.00 km
h

153.9 km
h

87.23 km
h

p5 0.3000 0.2902 0.1012 0.9098

p6 181.5 km
h

28.00 km
h

51.3 km
h

74.77 km
h

p7 1.0000 0.8471 0.9294 0.6392
p8 n/a 0.2863 0.0431 0.7294
p9 12 2 8 11
p10 12 3 5 9
pm n/a 0.00293 0.02248 0.00879
pc n/a 0.66667 0.40000 0.20000

Ep(a) 31.81% 3.24% 29.01% 24.78%
Ep(b) 12.69% 13.96% 2.78% 14.8%
Ep(c) 25.82% 22.98% 17.80% 4.02%

updated values, are generally not available (GA parameters)
or have a bit different meaning in our previous model. Such
an example is the low speed boundary value p6, which is
identical with maximal vehicles speed p4. This is caused by
absence of the first parameter in updated model, because
slowing down was performed for all available vehicles (with
probability p5). Also all vehicles in the updated model tend
to always accelerate, so p7 = 1.0.

Tab. III also shows the quantified error Ep(x) (see Eq. 5)

Ep(x) = E(x)/(3× number of samples(x)) (5)

for a single sample point and for a given data set x. We also
measured this error for our manually updated model with
additionam maximal speed adjustment for given datasets (in
the first column). It is very important to note, that some error
is not bad at all, because this error is enumerated on the
regressed function (e.g. some sample point could be out of
the scope of this function). It can be seen that all three new
calibrated models, which were obtained using our GA, are
significantly better on a particular data set in comparison to
our manually updated model. Moreover, all new models are
also better when compared to different data sets. The only
exception is the result for data set (b) which is probably
due to the original purpose of updated model (made for
simulating freeways). It is also remarkable in the cell length
parameter (p1), which has the biggest value meaning the
biggest distance to previous vehicle in case of a complete
jam. On the other side, the smallest cell length was evolved
for (c), so a single vehicle (and the corresponding gap) must
be modeled with two cells representing 5.5 meters. The same
holds in the model for (a), where this length is 5.25 meters.
In order to check whether this value is not only a result
of stochastic nature of GA, Fig. 1 shows the evolution of
this parameter during 125 000 generations as an average for
100 independent runs of GA. Nevertheless, it can clearly be
seen that this parameter tends to converge to one particular
value in all three data sets. A similar test was performed for
every one evolved parameter, but due lack of space we do
not illustrate them here.
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Fig. 1: Evolution of parameter p1 in 125 000 generations for
data set (a), (b) and (c).

The reaction time (p2) also corresponds to what it could be
expected when looking closer at the field data. The calibrated
model for the second data set has again the biggest value of
1.5 seconds, that corresponds to the minimal increment of
speed which is 17.1 km/h (p1/p2 as seen in Tab. I) and
this is the biggest increment for all data sets. Surprisingly, a
very big increment value could be seen also for the model
calibrated to the third data set (12.46 km/h) where the data
comes from often jammed short road segment, where it
was thought that too big speed increments should not be
supposed.

The smallest cell neighbor (p3) was evolved for the model
calibrated to (c) (i.e. 31 cells). On the other side, the biggest
cell neighbor (62 cells) can be seen in model calibrated
to (b). This also corresponds to nature of field data. Next
parameter, the maximum allowed speed (p4), is for all models
higher than local speed restrictions as we have supposed.

For the model calibrated to (a), the probability of slowing
down (p5) is 0.2902 for vehicle speeds lower than the evolved
boundary (p6) of 28.00 km/h. The same slowing down (in
case of speed lower than 51.3 km/h) occurs for 10.12% in
the model calibrated to (b) and finally, up to 90.98% of
vehicles are slowing down in case of their speed is lower
than 74.77 km/h in the last model calibrated to (c). On
the other hand, the probability of acceleration (p7) is the
highest for the second model (0.9294), then for the model
calibrated to (a) (0.8471) and the lowest probability (0.6392)
is in the last model. The parameter of slowing down (p8)
in case of speeds greater than the evolved boundary speed
has an opposite sequence as the previous one. This could
indicate that it would be possible to interoperate both of
these parameters.

Parameters p9 and p10 are surprisingly quite small. How-
ever, based on their convergence tests, we claim that these
parameters (i.e. driver sensitivity) can be also statistically
obtained for a desired road segment.

The CA traffic simulation model for the last data set was
relatively easy to find which can be seen in the fastest fitness

Fig. 2: Fitness F (a) in all generations as an average value out
of 100 independent runs with its the best and worst values
when calibrating to data set (a).

Fig. 3: Fitness F (b) in all generations as an average value out
of 100 independent runs with its the best and worst values
when calibrating to data set (b).

convergence. However, this model exhibits the biggest error.
Models for other two sets were evolved after a longer time.
It is also important to note, that completing all runs for
one data set (100 runs of 125 000 generations) takes more
than four days running at Intel Xeon CPU5420 @ 2.5 GHz.
Fig. 2, Fig. 3 and Fig. 4 show the average fitness value for
100 successive runs for each data set. It can be seen, that
it tends to decrease during evolution which is ensured by
elitism. In these figures one can also see the best solution
and the worst solution during the evolution as an average of
100 independent runs. After 125 000 generations, the quality
of population is not changing dramatically. Our genetic
algorithm was tuned to always find a reasonable solution
after this number of generations. The whole tuning process
will be described in the forthcoming paper.
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Fig. 4: Fitness F (c) in all generations as an average value out
of 100 independent runs with its the best and worst values
when calibrating to data set (c).

VI. CONCLUSIONS

In this paper, we proposed an effective calibration method
for a simple microscopic traffic simulation model. The pro-
posed model is based on the cellular automaton, which can
easily be accelerated. We utilized evolutionary approach, in
particular genetic algorithm, that was able to find suitable
parameters of the CA model for a given field data. For those
test road segments, we increased the precision of simula-
tor by 20.09% in average in comparison with a manually
updated and tuned model. The proposed methods seem to
be promising in calibration of pre-selected road segments
of interest. Moreover, with this process it is possible to
readjust the model to given field data which could come from
standard surveillance technologies such as loop detectors in
our case.

In our future work, we would like to analyze different
calibrated models in greater details. For example, to compare
the distribution of lead to follower distances during the time
against the field data. This could be the first step to precisely
predict the future traffic states or travel time. Also, it would
be very interesting to derive how much data has to be used
for a proper model calibration in the case when a sufficient
amount of data is not available.
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