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Abstract:  
Single nucleotide polymorphisms are the substitution of one nucleotide in the DNA sequence that may or may 
not have phenotypic consequences. Here we describe a new system for ranking non-synonymous protein 
substitutions by their deleterious effects. The computational core of the proposed system is based on a rational 
combination of the results from the selected subset of publicly available tools. The weight coefficients for the 
individual tools are calculated on the basis of their confidence score and their reliabilities are assigned 
accordingly to their performance measured on the extensive dataset. The validation of the performance on the 
dataset consisting of 5 000 substitutions shows that overall accuracy of the system was improved by 6% in 
comparison to the simple majority vote. 
 

INTRODUCTION 

Human genetic variation occurs primarily as a result 
of single nucleotide polymorphism (SNPs) [8]. SNP 
is the substitution of one nucleotide in the DNA 
sequence for another with the frequency about 0.1%. 
Although the most of these substitutions are 
considered as neutral, some substitutions can affect a 
gene expression or the function of a translated 
protein. SNPs can have drastic phenotypic 
consequences leading to the development of various 
diseases. Approximately half of the known disease-
causing mutations are the result of amino acid 
substitutions [8]. Thus it is very important to 
distinguish non-neutral substitutions that affect 
protein function from those that are functionally 
neutral. There are many computational methods for 
predicting the effect of amino acid substitution on a 
protein function, however, these methods show 
limited reliability and accuracy. The main reason for 
their limited reliability lies in the fact that they were 
trained on datasets which were not sufficiently 
diverse. They also employ different principles of 
decision making, some of which work well on one 
type of dataset, but fail on another [8]. Today, there 
are many tools for predicting the effect of amino acid 
substitution on protein function. Most of these tools 
are designed to predict whether the substitution is 
neutral or deleterious [8]. Decision about the effect 
on function is made on the basis of parameters 
derived from the evolutionary information, e.g., 
MAPP [12], Panther [13], PhD-SNP , SIFT [9], or 
from combination of sequence with structural or 
functional characteristics, e.g.,  MutPred [7], 
nsSNPAnalyzer [4], PolyPhen-1 [10], PolyPhen-2 [1] 
and SNAP [2]. 

The prediction using the methods based on the 
sequence information assumes that the amino acids 
important for the function are conserved within the 
protein family. The algorithms find related sequences 
in the databases and create multiple sequence 

alignment. Then the rate of conservation on 
individual positions is determined [3]. The properties 
of the amino acids can also be taken into account, 
e.g., if there is only hydrophobic amino acid on one 
specific position, its change to polar amino acid is 
mostly considered as deleterious. Structure-based 
prediction methods find the best match of the input 
sequence with the sequences available in the database 
of protein structures. These prediction methods use 
the general structural features surrounding the site of 
substitution, and thus do not require specific 
information at the atomic level. For this reason, they 
can model the substitution in the structure of a 
homologous protein without a need of the exact 
structure of the input sequence [3]. They often take 
into account several structural factors of substituted 
amino acid, e.g., solvent accessibility, 
crystallographic B-factor, or the difference in the free 
energy after introduction of substituting amino acid. 
Some of these prediction methods use annotations to 
refine the prediction. Annotations provide 
information about function of a particular position in 
the protein. Amino acids on positions belonging to 
the binding site, active site or forming a disulfide 
bond are considered as deleterious [8]. 

PREDICTION METHODS 

As the current prediction tools show limited accuracy, 
the main purpose of the methodology presented here 
is to combine the existing tools to obtain more 
reliable results. The idea of improving accuracy by 
applying consensus was proposed in previous study 
[11], which successfully combined methods 
employing only conservation analysis, with the 
method employing only structural parameters. The 
most important criterion for the selection of tools is 
their performance on testing dataset. Other significant 
factors include the number of citations of the article 
describing a given method, or the average speed of 
the tool. Finally, the algorithm used for the prediction 
and the level of its description is also taken into 



 

consideration as the diversity of used techniques is 
the cornerstone for obtaining more accurate results. 

The list of selected tools with their short descriptions 
is shown in the Table 1.Table 1: Summary of the integrated 
methods for analysis the effect of non-synonymous substitutions. 
All of them, except but MAPP, SIFT and Panther, use 
the machine learning methods for the predictor 
construction. For these methods it is particularly 
important to choose a suitable training dataset, since 
the quality of dataset affects the result to the same 
extend, as the selection of the decision attributes. The 
dataset should not only be sufficiently large in the 
sense of number of entries but it should also be 
sufficiently diverse to enable the universal prediction. 
If the final decision about pathogenicity is based on 
the conservation analysis, the quality of multiple 
sequence alignment (MSA) is crucial. In terms of 
objectivity of the overall results, it would be desirable 
to use the same MSA for all methods which employ 
it. Unfortunately only MAPP and SIFT enable the 
insertion of user defined MSA. If the tools offer 
additional parameters, e.g., choice of structural 
database for finding homologs, default setting is 
automatically chosen. With the exception of MAPP, 
all the tools were queried remotely. 
 

Table 1: Summary of the integrated methods for analysis the effect 
of non-synonymous substitutions. 

Method Principle Inputs for predictor 

MAPP 
 

Alignment 
score 

Conservation analysis  
(with using own alignment and 
phylogenetic tree) 

MutPred 
 

Decision tree 
(random 
forest) 

Conservation analysis 

Structural parameters 

Functional parameters  

nsSNP 
Analyzer 
 

Decision tree 
(random 
forest) 

Conservation analysis 

Structural parameters 
 

Panther 
 
 
 

Alignment 
score 

Conservation analysis (with using 
Panther library and Hidden 
Markov models) 

PhD-SNP 
 

Support vector 
machine 

Conservation analysis (with using 
sequence environment, 
sequence profiles and Panther) 

PolyPhen-1 Rule-based 
classifier 

Conservation analysis (with using 
position-specific independent 
count profiles) 

Structural parameters (derived 
from homologous structure + 
predicted by known methods) 

Annotation generated from 
SwissPort  

PolyPhen-2 
 
 

Naive bayes 
classifier 

Conservation analysis (with using 
with using position-specific 
independent count profiles ) 

Structural parameters (derived 
from homologous structure + 
predicted by known methods) 

Annotation generated from 
SwissPort  

SIFT 
 

Alignment 
score 

Conservation analysis (with using 
own / generated alignment) 

SNAP 
 
 

Feed-forward 
neural network 

Conservation analysis (with using 
Pfam, with using position-
specific independent count 
profiles and PSI-BLAST) 

Annotation generated from 
SwissProt 

CONSTRUCTION OF THE 
CONSENSUS FUNCTION 

A key step in the development of the integrative 
scoring system is the design and implementation of 
computational framework, which defines the way to 
combine the results from the individual tools. With 
the exception of nsSNPAnalyzer, all of the selected 
tools offer a way to estimate the degree of 
pathogenicity for evaluated mutation, so called 
confidence score, which it is unique for each pair 
tool and mutation. Another important parameter of 
given tool is its performance on testing dataset, so 
called tool reliability, which is unique for each tool. 
These two values are combined with prediction for a 
given mutation (neutral/deleterious) in the process 
that is further described in details using mathematic 
notation. 

Suppose there are q different integrated prediction 
tools and p non-synonymous amino acid 
substitutions. Each of them is expressed as a discrete  
variable Xi (i=1, ..., p) which carries the value of 
amino acid replacing wild-type at the given position. 
Then, for each SNP and each tool there is a specific 
prediction δij (i=1, ..., p; j=1, ..., q) which is assigned 
1: if tool prediction for this SNP is be deleterious and 
-1 otherwise. Most of the tools also provide 
confidence score Sij which represents the degree of 
confidence of the given tool in its own decision 
where higher value means higher confidence. 
Because scales of the confidence scores of the 
individual tools are different, the Sij has to be 
transformed into ijS  which carries confidence scores 

normalized to the continuous interval <0,1>. The 
normalized confidence scoreijS  for the given tool is 

calculated on the basis of corresponded equation from 
the Table 2. The tools MAPP and nsSNPAnalyzer, 
which do not provide confidence score, derive this 
value according to the weighted arithmetic mean of 
confidence scores of tools with the same result 
prediction of the pathogenicity (neutral/deleterious). 
If there is not any tool with the same result 
prediction, default value 0.5 is used. 
 



 

Table 2: Summary of the methods of calculation of normalized 
confidence score for the integrated tools. 

Method Calculation of the norm. confidence score 

MutPred derived from the probability score (general score) 

S
ij

= (0 .5− delScore )�2… for delScore∈〈0,0 .5〈

S
ij
= (delScore− 0.5)…otherwise

 

Panther derived from the probability score (pScore) 

( )
( ) otherwisedelScore=S

delScore fordelScore=S

ij

ij

…−

∈…⋅−

0.5

0,0.520.5
 

PhD-SNP derived from the reliability index (relIndex): 
integer value belongs to the interval <1, 9> 
where lower value express lower confidence 

( )
( )

100,

1

1

=IndextoolMaxRel=IndextoolMinRel where

+IndextoolMinRelIndextoolMaxRel

+IndextoolMinRelrelIndex
=Sij −

−
 

PolyPhen1 derived from the assigned pathogenic cathegory: 
possible values: possibly damaging, probably 
damaging, possibly neutral, probably neutral 

neutraldamag,probably  scathegorie for=S

neutraldamagpossibly  for=S

ij

ij

/1

/.0.5…
 

PolyPhen2 derived from the probability score (pScore): 
value from the continuous interval <0, 1>: 
<0, 0.5> … deleterious, (0.5, 1> … benign, 
0.5 … neutral 

( )
( )

100,

1

1

=IndextoolMaxRel=IndextoolMinRel where

+IndextoolMinRelIndextoolMaxRel

+IndextoolMinRelrelIndex
=Sij −

−
 

SIFT derived from the median of sequence conservation: 
value from the continuous interval <0,4>: 
median = log2(X), where X is number of amino 
acids which are not occurring on the given 
position in MSA. 

otherwise=S

>median for=S

median

ij

ij

…−−

…

10

102
1

3.251

 

SNAP derived from the reliability index (relIndex) 
integer value belongs to the interval <1, 9> 
where lower value express lower confidence 

( )
( )

91,

1

1

=IndextoolMaxRel=IndextoolMinRel where

+IndextoolMinRelIndextoolMaxRel

+IndextoolMinRelrelIndex
=Sij −

−
 

 

While Sij expresses confidence of the tool for its 
own decision, continuous variable 
TRj ( j=1, ..., ...p), belonging to the interval <0,1>, 
expresses the overall tool reliability. TRj was 
assigned to individual tools according to their 
Matthews correlation coefficient (MCC) obtained 
from the tools performance evaluation on the 
extensive dataset (see section Experiments and 
results). MCC allows to handle unbalanced classes 
and therefore it is regarded as more significant 
assessment than other performance measures [3]. 
This coefficient belongs to the interval <-1,1>, 

where i means perfect prediction, 0 means average 
random prediction and -1 means an inverse 
prediction. Finally, using the introduced 
mathematical notation, the prediction score is 
defined as follows: 

∑

∑ ⋅⋅

q

j=

ijij

q

j=

j

i

TRj

SδTR

=PS

1

1  (1) 

 

The permitted values of the variable PSi belong to 
the continuous interval <-1,1>. The substitutions 
are considered to be neutral for the values from the 
interval <-1,0) and they are considered to be 
deleterious for the values from the interval (0,1>. If 
the PSi is equal to 0, it is not possible to predict 
pathogenicity. The absolute distance of the 
prediction score from zero expresses confidence of 
predictor about its own decision. 

EXPERIMENTS AND RESULTS 

The presented consensus function was validated 
with the subset of dbSNP database containing 5 000 
mutations. This database is a free public archive for 
genetic variation within and across different species 
[15] and it was filtered exclusively for single 
nucleotide polymorphisms (SNPs). The distinction 
between disease-causing missense variants and 
neutral variants was performed on the basis of 
activity code, associated with the given record (the 
activity code [=] was considered as disease-causing 
and all the others as neutral). The efficiency of the 
proposed predictor has been scored by using the 
following statistical measures (in the following 
equations, parameters TP, TN, FP, FN refer to true 
positive, true negative, false positive, false 
negative): 

• Accuracy=
TP+TN
TP+TN+FP+FN , 

• Precision=
TP
TP+FP , 

• Sensitivity=
TP
TP+FN , 

• Specificity=
TN
TN+FP , 

• NPV=
TN
TN+FN , 

• 
( ) ( ) ( ) ( )FP+TPFN+TPFP+TNFN+TP

FNFPTNTP
=MCC

×××

×−× . 

The first experiment compares the performance of 
proposed system on the testing dataset with the 
results of the individual integrated tools. Weighted 
consensus obtained the highest scores with respect to 
accuracy, sensitivity, specificity and MCC among all 
integrated tools, with exception of MutPred, and also 



 

significantly surpassed simple majority vote (Table 
3). 

Table 3: Performance evaluation of the integrated methods, simple 
majority vote and weighted consensus calculated according by the 
description in section Methods. 

Method MAPP MutPred nsSNP 
Analyzer 

Panther PhD-
SNP 

Poly-
Phen1 

TP 1 429 1 927 626 666 1 678 1 429 

FN 1 058 81 351 411 330 577 

TN 2 029 1 818 175 1 319 1 899 1 733 

FP 469 645 86 380 525 689 

Cases+ 2 487 2 008 977 1 077 2 007 2 006 

Cases- 2 498 2 463 261 1 699 2 423 2 422 

Acc. 0.694 0.838 0.646 0.715 0.807 0.714 

Prec. 0.753 0.749 0.879 0.637 0.762 0.675 

Spec. 0.812 0.738 0.670 0.776 0.783 0.716 

Sens. 0.575 0.959 0.640 0.619 0.836 0.712 

NPV 0.657 0.967 0.332 0.763 0.852 0.750 

MCC 0.429 0.812 0.379 0.448 0.700 0.506 

Method Poly-
Phen2 

SIFT SNAP Majori-
ty vote  

Weight. 
consen. 

 

TP 1 754 1 442 1 289 1 699 1 770  

FN 254 257 708 309 238  

TN 1 416 1 231 1 842 1 670 1 864  

FP 1 044 705 601 793 599  

Cases+ 2 008 1 699 1 998 2 487 2 487  

Cases- 2 461 1 936 2 442 2 498 2 498  

Acc. 0.709 0.735 0.705 0.753 0.813  

Prec. 0.627 0.672 0.682 0.682 0.747  

Spec. 0.576 0.636 0.754 0.678 0.757  

Sens. 0.873 0.849 0.645 0.846 0.881  

NPV 0.848 0.827 0.722 0.844 0.887  

MCC 0.592 0.608 0.460 0.636 0.734  

Cases+, Cases- express the absolute number of deleterious 
mutations, respective benign mutations from the original dataset 
for which the given tool was able to predict any pathogenicity 
class (unknown predictions are not taken into consideration). NPV 
denotes negative predictive value and MCC denotes Matthews 
correlation coefficient. 

 
The second experiment compares the distribution of 
prediction score of the proposed weighted consensus 
function for neutral and pathogenic dataset. The 
Figure 1 shows significant difference in the 
distributions of prediction scores. While the median 
of the neutral dataset is -0.31, the median of the 
pathogenic dataset is 0.49. With regards to the 
decision threshold set to 0 only 22.5% of the neutral 
substitutions have incorrect prediction score > 0 and 
similarly only 17.8% of pathogenic substitutions have 
incorrect prediction score < 0. 
 
 

CONCLUSIONS 
The present paper describes a new integrative scoring 
system for assessment of pathogenicity of non-
synonymous protein substitutions. The system 
integrates nine existing tools and combines their 
individual results to obtain a more robust prediction. 
The increased robustness of the system was 
confirmed in the validation of the performance on 
dataset consisting of 5 000 substitutions, where both 
high sensitivity and high specificity was attained at 
the same time. The overall accuracy of the introduced 
weighted consensus is about 6% better than a simple 
majority vote. 
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Figure 1: The distribution of prediction scores for (A) 
pathogenic and (B) neutral dataset.  
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