
Towards Adaptive and Semantic Database Model for RDF Data Stores

Svatopluk Šperka, Pavel Smrž
Brno University of Technology

Faculty of Information Technology
IT4Innovations Centre of Excellence

Božetěchova 2, 612 66 Brno, Czech Republic
Email: {isperka, smrz}@fit.vutbr.cz

Abstract—RDF Schema is a basic and yet very important
language for specifying ontologies in the context of Semantic
Web. Ontologies can be used to obtain more information from
that explicitly stated. Traditionally, the process of revealing
implicit knowledge, known as inference or reasoning, is realised
by a reasoner – a component which either processes data to
infer all conclusions in advance or, given a query, infers all
implicit answers during a query evaluation process. In this
paper, we present an alternative approach based on structuring
data in a database according to underlying ontologies. This
knowledge structure is employed for directing query evaluation
to data relevant for the given query. Thus, this method reduces
reasoning to retrieving. We show that the proposed schema
preserves the semantics of RDF and RDFS in standard use
cases.

Keywords-database model; triple store; RDF; RDFS; infer-
ence; semantics; Semantic Web

I. INTRODUCTION

Ontologies allow capturing knowledge structures by iden-
tifying concepts and their relations within a domain. They
can be used to obtain implicit information from that ex-
plicitly stated. Some systems materialize all facts inferable
from given information by a forward chaining strategy.
However, when applied to extensive knowledge bases and
rich ontologies, this approach can easily exceed storage
limits. Moreover, it is an expensive strategy when new
statements are continuously added and existing ones are
retracted or modified. This paper deals with the cases when
it is infeasible to precompute implicit statements in advance,
i.e. where they need to be inferred during an evaluation of
the query.

We focus on the problem of the in-query-time reasoning
with ontologies specified in RDF Schema. It is a basic
language for expressing ontologies in the context of Seman-
tic Web. It is based on and intended for its standard data
model – Resource Description Framework (RDF). RDFS
allows specifying hierarchies of classes and relationships
and declaring types of individuals participating in specific
relations. Although RDFS is lean compared to Web Ontology
Language (OWL) that offers more expressive constructs, it
is still extremely useful for basic domain modelling.

Traditionally, reasoning is carried out by a specialised
component which has to frequently interact with the data.

No matter whether the reasoner is tightly or loosely coupled
with the data store, interactions between storage itself and
a reasoner are computationally expensive.

This paper proposes an alternative approach to RDF
Schema reasoning. It does not require any kind of symbolic
inference and thus effectively dissolves a reasoner as a
specialised component.

The principle of the proposed technique lies in modelling
of ontological concepts and relations directly in the database
schema. A separate table is created for each concept and
relation defined in an ontology. Statements using ontology-
structuring properties from RDFS vocabulary are reflected
into references among tables. These references are then
used for directing the evaluation of queries to tables which
are potential sources of consequences of deduction rules if
reasoning were of a symbolic nature.

The following section introduces basic concepts of RDF
and SPARQL query language that are used in the rest of the
paper. Section III presents the model in detail. The query
evaluation strategy is discussed in Section IV. Then, we
show that the introduced approach preserves the semantics
of RDF and RDFS. Related research is briefly outlined in
Section VI. The paper concludes by discussing directions of
our future work.

II. PRELIMINARIES

To present the proposed database model, let us first
introduce key concepts related to the RDF data model and
the SPARQL query language that is used to query RDF data.

The set of RDF terms (RDF -T) is the union of three
pairwise disjoint sets – I , RDF -L and RDF -B . I is the set
of Internationalised Resource Identifiers or IRIs [1]. They
are used to identify resources, both abstract and physical.
RDF -L is a set of literals – direct values such as strings,
numbers or dates. The last set, RDF -B , consists of blank
nodes which are used to refer to unidentified (anonymous)
resources.

The basic unit of expression in RDF is a triple. It is
an atomic statement of the form subject-predicate-object.
A triple can mathematically be represented as a tuple
(s, p, o) ∈ (I ∪RDF -B)× I ×RDF -T . If both subject and
predicate are IRIs, the triple states a specific relationship,

2012 Sixth International Conference on Complex, Intelligent, and Software Intensive Systems

978-0-7695-4687-2/12 $26.00 © 2012 IEEE

DOI 10.1109/CISIS.2012.137

810

given by the predicate element, between two entities. The
triple is to be interpreted as stating a value of an attribute of
a resource identified by the subject in the case that a literal
takes the position of the object. Blank nodes are interpreted
as existential variables in RDF triples. The definition of RDF
triple poses syntactic constraints on what can appear as the
subject and the predicate. Subjects can only be IRIs or blank
nodes. This means that one can only talk about resources
and not about direct values. There is also a restriction on
the predicate – an identity of a relationship has to be known
and it has to be an IRI. A set of RDF triples is called an
RDF graph or a dataset.

SPARQL is the primary language for querying RDF
data [2]. The basic building block of a SPARQL query
is a triple pattern. It serves as a template for triples in
a dataset. For all triples that match the pattern, values on
positions of variables (prefixed by ?) in the query are bound
to these variables in a solution. Variables come from a set V
disjoint from RDF -T . A triple pattern can then be defined
as p ∈ (I ∪ RDF -B ∪ V) × (I ∪ V) × (RDF -T ∪ V). A
solution of a SPARQL query is defined in terms of a multiset
Ω of partial functions (i.e. a variable may be unbound in a
solution) µ : V → RDF -T called solution mappings.

A query is transformed into the SPARQL algebra [2,
section 7.4] in order to be evaluated. The algebra provides
three operators for forming more complex graph patterns
(a triple pattern is the basic graph pattern; BGP) – Join
(./S1), LeftJoin (./S , OPTIONAL in SPARQL syntax) and
Union (∪S , UNION in syntax). Join is the implicit operator
and it combines two solutions Ω1 and Ω2 such that Ω1 ./S
Ω2 = {µ1 ∪ µ2 | µ1 ∈ Ω1, µ2 ∈ Ω2 are compatible}.
Solution mappings µ1, µ2 are compatible if, for every
variable in a domain of µ1 and of µ2, µ1(v) = µ2(v).
Union of two mappings is defined as Ω1 ∪S Ω2 = {µ |
µ ∈ Ω1 ∨ µ ∈ Ω2}. For LeftJoin we need a difference
between two solutions – Ω1 \S Ω2 = {µ ∈ Ω1 | ∀µ′ ∈
Ω2 : µ and µ′ are not compatible}. LeftJoin itself is then
Ω1 ./S Ω2 = (Ω1 ./S Ω2) ∪ (Ω1 \S Ω2) [2][3].

III. DATABASE MODEL

The fundamental idea is to reflect an RDFS ontology
(or ontologies; there is no difference in principle) into a
database schema. We translate terminological knowledge
into a set of tables while maintaining relations between
these tables in the form of references, i.e. in a non-symbolic
way. The model is thus inherently adaptive as the schema
is specific for the particular set of ontologies. Relationships
between ontological entities are employed when the database
is queried in order to provide implicit triples.

The translation to a specific schema involves ontology-
structuring properties only. These properties come from

1We use S in subscript to denote operators of SPARQL algebra. Symbols
without it will be used to denote operators of the relational algebra.

the RDFS vocabulary and they have two important fea-
tures. Firstly, they strictly relate terminological entities
and, secondly, they take part in entailment rules defined
for RDFS [4, section 7]. Ontology-structuring proper-
ties are rdfs:subClassOf, rdfs:subPropertyOf,
rdfs:domain and rdfs:range. The first couple allows
specifying class and property hierarchies, respectively. The
second pair allows defining types of resources connected
by a property described using these constructs. Notice that
rdf:type which assigns a type to a resource is not
included because it may relate a terminological entity and
an individual.

The database schema D is defined as D = (C,P), where
C is a finite set of relational tables of type Class (class
tables) and P is a finite set of tables of type Property
(property tables). Tables are created when triples of a
certain form are encountered during a loading of an RDF
dataset into the database. We forbid a non-standard use of
RDFS vocabulary [5], particularly of ontology-structuring
properties. This means that these properties cannot be used
as subjects and objects of triples because that would lead to
a redefinition of RDFS [6].

Tables of type Class are of the form iri(member), where
iri ∈ I is the name of a relation and member ∈ I ∪RDF -B
is the only attribute. Class table contains members of the
class and thus rows of the table are given by loaded triples
of the form any:iri1 rdf:type any:iri2, i. e. iri1
becomes a row in the table iri2.

Tables of type Property have the structure
iri(subject , object) where iri ∈ I is the name of a
relation. It follows from the definition of the RDF triple
that subject ∈ I ∪ RDF -B and object ∈ RDF -T .
A property table emerges when a triple of the form
any:iri rdf:type rdf:Property or any:iri1
any:property any:iri2 is being imported (where
any:property is not an ontology-structuring property or
rdf:type, i. e. an IRI not interpreted by the system). A
row (iri1 , iri3) is created in the table iri2 when the triple
of the form iri1 iri2 iri3 is encountered.

Table I
METADATA ENTRIES FOR CLASS AND PROPERTY TABLES

Class subClasses ∈ P(I) Property subProperties ∈ P(I)
superClasses ∈ P(I) superProperties ∈ P(I)
domainOf ∈ P(I) domains ∈ P(I)
rangeOf ∈ P(I) ranges ∈ P(I)

Tables are relational but they have additional metadata
attached to them. The metadata can be thought of as at-
tributes in object-oriented sense (if a table is considered
to be an object). It contains an entry iri that determines
the identity of a class or property table. Other entries are
collections of references to related tables according to triples
using ontology-structuring properties that were encountered
during data loading. Table I shows these metadata entries

811

for both types of tables. They determine evaluation of triple
patterns of SPARQL queries. In order to facilitate evaluation
of patterns involving ontology-structuring properties, they
capture these relationships in a bidirectional manner – only
a part of them is needed for reasoning itself. For example,
domains of property tables is never used for reasoning
because properties are sources of members for domain
classes. Thus, a class needs the direction to a property it is
a domain of, not vice versa. Evaluation strategy is described
in detail in Section IV.

Axioms for both RDF [4, section 3.1] and RDF Schema
[4, section 4.1] need to be true in the database. This way we
can ensure that the query evaluation mechanism described
in the next section is correct. We ensure presence of these
axioms by loading definitions of RDF and RDFS.

Concepts like rdfs:Resource (the class of all re-
sources), rdf:Property (the class of all properties) and
rdfs:Class (a superclass of all classes) are defined in
the RDF and RDFS vocabularies. Tables identified by IRIs
of these concepts in our database schema can be used as
a catalogue of individuals and terminological entities. The
query evaluation process takes use of this catalogue to
obtain sets of classes or properties present in the system.
Let us take triple pattern test:iri1 ?p test:iri2
as an example. To get all tables that need to be searched
for a presence of the tuple (test:iri1, test:iri2),
rdfs:Property can be employed.

IV. QUERY EVALUATION

We have described crucial operators of SPARQL algebra
in Preliminaries. Tables in our database model are of a
relational nature and therefore we use the transformation of
SPARQL operators into relational algebra described in [7].

SPARQL algebra’s Join is translated to inner join (./) of
the relational algebra. It joins tuples from input relations
that equal on their shared attributes. Shared attributes are
those that are bound in both tuples. LeftJoin operator can
be mapped to the left outer join (./). It does not discard
tuples from the left relation for which there is no matching
in the right one. Therefore, the solution can have unbound
variables. Union operator of SPARQL is mapped onto outer
union of two relations, i.e. the set union of tuples in
both relations. Attributes unbound in an input relation stay
unbound in the resulting one.

Some basic operations of the relational algebra are also
needed. A projection to a set of attributes is designated by
π. For example, πsubject table denotes extracting the subject
column from a property table. Binding values of matched
triples to variables in a solution mapping can be modelled
as a combination of the projection and the rename (%) opera-
tors. For the triple pattern ?p foaf:name "xxx", values
are bound to the variable ?p by projecting foaf:name
on the attribute subject and subsequently renaming it to
?p, i. e., ρ?p←subject(πsubject foaf:name) or more succinctly

π?p←subject(foaf:name). Filtering tuples based on constants,
i. e., when a component of a triple pattern is given (as well
as evaluating SPARQL expression FILTER which we do
not consider here) is analogous to restriction (σ) of the
relational algebra. In the former case, the restriction is based
on equivalence.

The process of finding all solutions for a triple pattern is
defined iteratively. The starting point depends on the form
of the triple pattern:
• If the predicate of a triple pattern is the rdf:type

then the starting point is the class table identified by
the object of the pattern or all of class tables in the
case that the object is a variable.

• When the predicate is an ontology-structuring property,
we start from a class/property table explicitly men-
tioned in the pattern, either as the subject or the object.
If both are variables, we have to take all class or
property tables, depending on which particular property
is used.

• If the predicate is any other property then the process
starts at the table representing this property.

• The last case is the predicate being a variable – then
the the process starts at the set of all property tables.

The process extracts content from starting tables and then
follows relevant references stored in metadata. In such a
manner the process is repeated until there are no tables to
process. Cycles in references among tables are detected in
order to prevent infinite loops in the evaluation.

Let us show which references are considered as relevant.
For reasoning in a class or a property hierarchies, references
in subClasses and subProperties need to be followed, respec-
tively. Entities lower in the hierarchy are lifted to a concept
or a property of explicit interest (that would be a reasoner’s
task in a symbolic processing system). This lifting ultimately
satisfies semantic requirements of rdfs:subClassOf and
rdfs:subPropertyOf. The evaluation process addition-
ally follows domainOf and rangeOf references in the case of
class tables in order to satisfy semantics of rdfs:domain
and rdfs:range, i.e. to extract subjects/objects of prop-
erties that a particular class table is domain/range of.

Querying ontology-structuring properties is realised by
obtaining entries in the tables’ metadata while traversing
tables in the same manner as for uninterpreted properties.
For example, a triple pattern requiring subclasses of a given
class is evaluated by traversing the class hierarchy and
collecting iri metadata entries of all classes the process
encounters – including the starting class in order to satisfy
the reflexivity of subclassing.

Figure 1 presents the pseudocode of the algorithm for
the evaluation of triple patterns that do not use ontology-
structuring properties. It is easily extensible to be able to
collect contents of metadata for solutions of such patterns
but the point is to show the principle of the evaluation on
the minimal example. We use a queue as a data structure

812

for holding tables to be processed. The queue is initialised
by pairs consisting of starting tables and related relational
operators that extract required columns. At each iteration, a
pair is dequeued from the queue and current solutions are
united with the result of an application of the operator to
that table. In the next step, relevant tables from metadata
entries of the currently evaluated table are queued along
with relational operators. It is analogous to the initialisation
phase. In order to prevent an infinite loop in the evaluation,
it is also ensured that the same combination of a table and
a relational operator is not evaluated twice.

solutions ← starting (table, operator) tuples
while !queue.empty do

(t, op) = queue.dequeue
if op(t) was not evaluated in the context of this triple
pattern then

solutions ← solutions ∪ op(t) {collect all relevant
tables from metadata}
if t.isClass then {collect all relevant tables – class}

A ← map(λx.(x, πmember), t.subClasses)
B ← map(λx.(x, πsubject), t.domainOf)
C ← map(λx.(x, πobject), t.rangeOf)
queue.enqueueAll(A ∪ B ∪ C)

else {property}
queue.enqueueAll((t.subProperties, op))

end if
end if

end while

Figure 1. Pseudocode for evaluation of a triple pattern without ontology-
structuring properties.

For example, consider the evaluation of the triple
pattern ?p rdf:type test:Person captured in figure
2. The starting point is the class table for persons because
rdf:type is used as the predicate and test:Person
is used at the object. In the first step, the queue only
contains a pair (test:Person1, πmember). Starting
table has no explicit members and so there are no
solutions yet. Its subclasses, however, are queued along
with properties which test:Person1 is the domain
or range of (test:participatesOnCourse).
The queue then contains two pairs –
(test:AssistantProfessor, πmember) and
(test:participatesOnCourse, πsubject).

All members of test:AssistantProfessor
are added to the result in the second step. There
are no references to be queued. Next, subjects of
test:participatesOnCourse are taken into
account. There are no pairs contained in this property table
and therefore the result is still unchanged. Its subproperties
are added to the queue because, again, subjects in triples
using this property are wanted. test:Person2 – the
subject of the only pair in the table test:teaches – is

added to the result in the last step. There are no more links
to follow. Solutions thus contains test:Person1 and
test:Person2.

test:AssistantProfessor

test:Person1

test:teaches

test:Person2 test:Course1

domainOf
test:Person

subClass

test:participatesOnCourse

subProperty

1

2
3

4

Figure 2. Visualisation of the evaluation of triple pattern ?p rdf:type
test:Person

Now when we are able to evaluate triple patterns
we can combine their solutions according to the
SPARQL algebra form of the query. That is, we use
the bottom-up evaluation strategy of expressions [3].
For example the SPARQL pattern { ?s x:p1 ?v1
OPTIONAL {?s x:p2 ?v2 } } is transformed into
LeftJoin(BGP(?s x:p1 ?v1),BGP(?s x:p2 ?v2)2

[2]. Obtaining solution mappings proceeds by evaluating
the left basic graph pattern (triple pattern), then the right
one and followed by applying LeftJoin on their solutions.

V. CONFORMITY WITH RDF AND RDFS SEMANTICS

Given the database model and the evaluation strategy
described in previous sections, let us show that the proposed
system preserves both RDF and RDFS semantics by imple-
menting all relevant RDF/RDFS entailment rules.

As we noted in section III, we forbid usage of ontology
structuring properties as subjects and objects of RDF triples.
Such statements can lead to redefinition of RDFS [5] and
it would cause difficulties in the the design of the query
evaluation process. We also omit the datatype reasoning
because it is not in the scope of this work.

It is necessary to note that the semantics is limited to
what can be provided as solutions to queries according to the
RDFS entailment regime of SPARQL 1.1 [8]. In particular,
this means that no solution will contain blank nodes or
IRIs of the form rdf:_n for any natural number n that
is actually not present in the graph in consideration.

RDF and RDFS semantics is formed, as any logical the-
ory, by axioms (in this case axiomatic triples) and entailment
rules. These triples are contained in schemata for RDF and
RDFS and, because we ensure their presence in the database,
they are indeed always true.

Entailment rules of RDF and RDFS [4, section 7] are
satisfied either by the query evaluation itself or by additional

2We omit filter conditions used in the source document.

813

steps during the loading of RDF data. We mention which
method is used for each rule.

Rules of simple entailment (se1, se2, lg and gl) produce
triples containing blank nodes only and these cannot be
retrieved due to SPARQL’s RDFS entailment regime. RDF
entailment rule rdf2 and RDFS rule rdfs1 can be ignored for
the same reason.

Rule rdf1 (everything that occurs as a property in a triple
is in fact of type rdf:Property) is satisfied by adding an
IRI on the property position in a triple to rdf:Property
table – but only if this property is not interpreted by the
system (i.e. it is not an ontology-structuring property or
rdf:type) and if it is not already contained.

To simplify the discussion in the rest of this section, let us
employ the convention used in [4] for denoting elements of
triples. In particular, aaa will be used for IRI; uuu, vvv for
IRI or a blank node; xxx for IRI, a blank node or a literal.

Entailment rules rdfs2 and rdfs3 are analogous. They state
that if a class xxx is a domain or a range of a property aaa,
then subjects/objects of triples using this property are of the
type xxx. These rules are satisfied by directing the evaluation
of a query asking for members of xxx to subjects or objects
of the table identified by aaa.

Rules rdfs5 and rdfs11 that capture transitivity of
rdfs:subPropertyOf and rdfs:subClassOf, re-
spectively, are satisfied because the evaluation of any query
involving class/property xxx will also be directed towards
vvv and subsequently to uuu for any uuu being a sub-
class/subproperty of vvv and vvv of xxx.

The reflexivity of rdfs:subPropertyOf and
rdfs:subClassOf that is captured by rules rdfs6 and
rdfs10 is satisfied trivially by adding the iri element from
table’s metadata to solutions of triple patterns asking for
subclasses or subproperties of a given terminological entity.

Rule rdfs7 simply states that if a pair of resources is
connected by a specialisation of some property, it is also
connected by this more abstract property. The analogous rule
for classes is the rule rdfs9. This lifting of pairs/individuals
in a property/class hierarchy is satisfied by following sub-
Properties/subClasses references to tables stored in table’s
metadata and retrieving their contents.

For the rules rdfs8, rdfs12 and rdfs13, it is neces-
sary to add references into metadata of particular ta-
bles during the loading process. For rdfs8, a refer-
ence to a newly created class table needs to be added
to subClasses of rdf:Resource. A property table must
be created for every resource that is stated to be a
rdfs:ContainerMembershipProperty (rdfs12) and
a reference to it added to subProperties of rdfs:member.
It is an analogous case for rdfs13.

Rules rdfs4a and rdfs4b represent a peculiar case because
there is no premise in them involving ontology-structuring
properties. We employ extensional semantics to satisfy
them [4, section 7.3.1], i.e. we state that rdfs:Resource

is a domain and a range of every property. When asking
for everything of type rdfs:Resource, a content of any
property table will be included.

VI. RELATED WORK

If we use only property tables for all properties, including
ontology-structuring properties and rdf:type, then we get
a vertical paritioning schema for storing RDF introduced
in [9]. The paper discusses usage of a column-oriented
relational database in order to speed up query processing. A
critique of this approach is linked to an evaluation of a triple
patterns with a variable on the predicate position [10]. There
is a danger of a large number of tables to be investigated if a
lot of properties are used. That is usually the case for datasets
with extensive domain scope (for example DBpedia contains
44469 distinct properties3). For more specifically oriented
datasets, however, numbers are much lower. For example
SWDF4 uses 156 properties; Jamendo dataset hosted at
dbtube.org that holds data from Jamendo music service uses
45 properties; GenBank@NCBI dataset which is part of the
Bio2RDF5 project uses 139 properties. Those numbers are
not unusual for larger relational database schemas and can
be handled by contemporary database systems.

The evaluation of the proposed model can be thought
of as a deductive database with Datalog rules but without
symbolic processing. Everything is encoded in the model
itself and the way evaluation process works. With rules, the
proposed query evaluation could be captured as shown in
the following example:

person(X) : − persone(X). (1)
person(X) : − assistantProffesor(X). (2)

assistantProffesor(X) : − assistantProffesore(X). (3)

Predicates with e in the subscript are extensional (values
for which they are true are stated explicitly). Predicates
without it are intensional (values for which they are true
can be deduced by symbolic reasoning). Ullman showed that
Datalog queries can be translated into the relational algebra
and thus implemented by relational databases [11]. Exten-
sional predicates become tables in the relational database and
intensional predicates become views. In the model proposed
in the paper, references in metadata entries of a table can
be seen as definitions of views. Triple store DLDB [12] and
subsequent DLDB2 [13] used this concept by employing ma-
terialised views. As discussed in the beginning, the material-
isation of views is inappropriate for applications where data
changes continuously. DLDB also implemented semantics of
rdfs:subClassOf and rdfs:subPropertyOf only.

RDFSuite [14] follows a similar approach. Instead of
views, it exploits the object-relational feature of SQL99

3As of 21st January 2012
4http://data.semanticweb.org
5http://www.bio2rdf.org

814

for representing subsumption relationships by using sub-
table definitions. The semantics of the sub-table relationship
states that contents of sub-tables are included in super-tables.
Using this construct, the semantics of rdfs:subClassOf
and rdfs:subPropertyOf is satisfied. On the other
hand, reasoning with support for domains and ranges of
properties cannot be specified this way. The biggest lim-
itation of the sub-table approach is that SQL99 does not
support multiple inheritance – a table cannot have more
super-tables [15].

VII. CONCLUSION AND FUTURE DIRECTIONS

This paper introduced a database model for storing in-
formation encoded in RDF with support for RDF Schema
semantics. Unlike traditional approaches, the RDFS seman-
tics is not realised by any form of a dedicated component
employing symbolic reasoning. References among tables
that reflect relationships of terminological entities specified
in an ontology are used to direct the evaluation of a triple
pattern to obtain all solutions – including those that are
entailed by explicit information. This fact can improve
performance as it excludes interactions between the reasoner
and the stored data.

A prototype of the proposed model was implemented as
a proof-of-concept demonstrating the conformance with the
RDFS semantics. A new version is currently being devel-
oped with performance in mind. The realized solution will
then be evaluated and its performance will be compared to
that of other triple stores implementing the RDFS semantics.
As the vertical partitioning method for storing RDF proposed
in [9] is similar to our model, an open-source column-
oriented relational database MonetDB will be used as a
basis.

ACKNOWLEDGEMENTS

The research leading to these results has received fund-
ing from the European Community’s Seventh Frame-
work Programme (FP7/2007-2013) under grant agree-
ment number 256910 (mOSAIC Cloud) and by the
IT4Innovations Centre of Excellence project, Registration
number CZ.1.05/1.1.00/02.0070, supported by Operational
Programme “Research and Development for Innovations”
funded by Structural Funds of the European Union and the
state budget of the Czech Republic.

REFERENCES

[1] W3C Working Group, “RDF Primer (W3C Recommendation
10 February 2004),” 2004.

[2] W3C Working Group, “SPARQL 1.1 Query Language (W3C
Working Draft 14 October 2010),” 2010.

[3] J. Pérez, M. Arenas, and C. Gutierrez, “Semantics and
complexity of sparql,” ACM Trans. Database Syst., vol. 34,
pp. 16:1–16:45, September 2009.

[4] W3C Working Group, “RDF Semantics,” 2004.

[5] J. D. Bruijn and S. Heymans, “Logical Foundations of
(e)RDF(S): Complexity and Reasoning,” in Proceedings of
the 6th International Semantic Web Conference and 2nd Asian
Semantic Web Conference (ISWC/ASWC2007), Busan, South
Korea (K. Aberer, K.-S. Choi, N. Noy, D. Allemang, K.-
I. Lee, L. J. B. Nixon, J. Golbeck, P. Mika, D. Maynard,
G. Schreiber, and P. Cudré-Mauroux, eds.), vol. 4825 of
LNCS, (Berlin, Heidelberg), pp. 85–98, Springer Verlag,
November 2007.

[6] S. Muñoz, J. Pérez, and C. Gutierrez, “Simple and Efficient
Minimal RDFS,” Web Semant., vol. 7, pp. 220–234, Septem-
ber 2009.

[7] R. Cyganiak, “A Relational Algebra for SPARQL,” Technical
Report HP-2005-170, Digital Media Systems Laboratory, HP
Laboratories Bristol, 2005.

[8] W3C Working Group, “SPARQL 1.1 Entailment Regimes
(W3C Working Draft 14 October 2010),” 2010.

[9] D. J. Abadi, A. Marcus, S. Madden, and K. J. Hollenbach,
“Scalable Semantic Web Data Management Using Vertical
Partitioning,” in Proceedings of the 33rd International Con-
ference on Very Large Data Bases, pp. 411–422, 2007.

[10] L. Sidirourgos, R. Goncalves, M. Kersten, N. Nes, and
S. Manegold, “Column-store Support for RDF Data Manage-
ment: Not All Swans are White,” Proceedings of the VLDB
Endowment, vol. 1, no. 2, pp. 1553–1563, 2008.

[11] J. D. Ullman, Principles of Database and Knowledge-Base
Systems, Volume I. Computer Science Press, 1988.

[12] Z. Pan and J. Heflin, “DLDB: Extending Relational Databases
to Support Semantic Web Queries,” Technical Report LU-
CSE-04-006, Dept. of Computer Science and Engineering,
Lehigh University, 2004.

[13] Z. Pan, X. Zhang, and J. Heflin, “DLDB2: A Scalable Multi-
perspective Semantic Web Repository,” in Web Intelligence
and Intelligent Agent Technology, pp. 489–495, 2008.

[14] S. Alexaki, V. Christophides, G. Karvounarakis, D. Plex-
ousakis, and K. Tolle, “The ICS-FORTH RDFSuite: Manag-
ing voluminous RDF description bases,” in 2nd International
Workshop on the Semantic Web, 2001.

[15] C. Türker, “Schema Evolution in SQL-99 and Commercial
(Object-)Relational DBMS,” Database Schema Evolution and
Meta-Modeling, pp. 1–32, 2006.

815

