
Fault Injection for Web-services

Marek Rychlý and Martin Žouželka
Department of Information Systems, Faculty of Information Technology, Brno University of Technology,

IT4Innovations Centre of Excellence, Božetěchova 2, 612 66 Brno, Czech Republic
rychly@fit.vutbr.cz, xzouze00@stud.fit.vutbr.cz

Keywords: Software Testing, Fault Injection, Fault Model, Service-oriented Architecture, Web-service, Tool.

Abstract: Recently, web-services have become a popular technology for implementing information systems as service-
oriented applications. The service orientation allows to decompose complex software systems into collections
of cooperating and autonomous components which communicate asynchronously via messages of appropriate
formats. Nevertheless, the assurance of reliability and robustness of these systems is becoming more and more
complicated matter. For this reason, the new testing methods such as fault injection and specialised tools for
automated validation of web-services appear. This paper discusses the design, implementation, and evaluation
of a tool for software implemented fault injection into web-services. This tool allows to monitor and to test
the most common types of web-services according to given setup criteria.

1 INTRODUCTION

Currently, information systems are often designed
as component-based systems with service-oriented
architecture and web-service technology. The ser-
vice orientation allows to decompose a complex soft-
ware system into a collection of cooperating and au-
tonomous components known as services. These ser-
vices communicate asynchronously via messages of
appropriate formats and through various protocols.
They cooperate with each other to carry out a busi-
ness process representing a particular functionality of
the implemented software system.

Design of an information system as service-
oriented architecture (SOA), i.e. its decomposition
into a collection of cooperating services, increase
reusability of its components and usually reduces its
development time and effort. The system designed
as SOA can adopt existing services and integrate
them together with new services implementing miss-
ing functionality. The services can be adopted from
other information systems developed in-house includ-
ing their full development documentation and their
source code, or they can be purchased as commercial
third-party services available as “black-boxes” only,
i.e. with limited or without any insight into their extra-
functional or safety-critical properties. In the second
case, it is necessary to perform thorough reliability
testing, i.e. unit tests of the adopted services as well
as integration tests of their compositions.

Although the intensive reliability testing may in-

crease trustworthiness of the services and decrease
probability of undetected failures, it is often impos-
sible to test the services in all configurations and all
possible integrations and guarantee robustness (fault
tolerance) of the resulting system (Crnkovic, 2002,
pp. 197–198). For this reason, new testing methods
such as fault injection and specialised tools for au-
tomated validation of the services appear. The fault
injection, contrary to the previously mentioned reli-
ability testing, tries to reveal how robust (tolerant) a
software system is to potential failures caused by the
unreliable services.

This paper discusses the design, implementation,
and evaluation of a tool for software implemented
fault injection into web-services. The tool allows
to monitor and to test robustness of the most com-
mon types of web-services compositions according to
given setup criteria, i.e. to reveal the consequences of
failures of the web-services to the rest of a system.

The rest of this paper is organised as the fol-
lows. Section 2 describes software implemented fault
injection (SWIFI) techniques, their applications in
fault injection into web-services, and existing SWIFI
tools and their usability for robustness testing of web-
services of different technologies. In Section 3, we
introduce the architecture and the implementation
of our SWIFI tool for SOAP and RESTful web-
services. Its evaluation is described in Section 4. Fi-
nally, Section 5 sums up the results, provides a con-
clusion, and outlines a future work.

377



2 SOFTWARE IMPLEMENTED
FAULT INJECTION INTO
WEB-SERVICES

The goal of software implemented fault injection
(SWIFI) is to ensure robustness testing, as it has been
mentioned in the introduction of this paper. Accord-
ing to (Crnkovic, 2002, p. 198), the fault injection into
a software component means to artificially corrupt a
function of this component, input data consumed by
the component, or output data produced by the com-
ponent and sent to its successors, to observe how the
component, the successors, or the whole system be-
haves. To perform this tasks, a fault injection tool has
to inject one or more faults into a software component
under test and to help to analyse the consequences of
potential failures. By simulating the faults in various
software components, we determine whether or not
their failures can be tolerated.

According to (Hsueh et al., 1997), SWIFI tech-
niques can be classified into two types, compile-time
injection and run-time injection. In the first technique,
a source code is modified to inject simulated faults
into a software component in its compile-time. In the
second technique, the software component’s function-
ality or data are modified in its run-time.

The compile-time injection requires availability of
the source code of a software component provided by
its developers or obtained by its disassembling. This
technique does not require any modifications of the
component’s run-time environment, and therefore, it
is applicable especially in the case of in-house de-
veloped software components deployed into different
uncontrollable environments. The compile-time in-
jection into web-services with available source codes
can be done by common SWIFI tools without any
specialisation to web-service technologies.

During the run-time injection, a software compo-
nent is executed as a “black-box” in a special run-
time environment without need of any modifications
or recompilation of the component’s source code. The
run-time environment enables a tester to modify the
component’s control-flow and internal memory (inva-
sive testing) as well as input and output data trans-
mitted via the component’s interfaces (non-invasive
testing). In the case of the run-time injection into a
web-service, a run-time modification of the service’s
control-flow or its internal memory does not require
any knowledge of a web-service technology contrary
to a modification of data transmitted via the service’s
interfaces, which are technology dependent. For the
first type of modifications, common SWIFI tools can
be used while the second type of modifications re-
quire SWIFI tools specialised for web-services.

The SWIFI tools for the run-time injection into
web-services usually act as HTTP proxies encapsulat-
ing web-services under test, or they can be integrated
into web-servers providing run-time environments for
the web-services (i.e. service containers).

2.1 SWIFI Tools for Web-services

This section describes the state of the art for the
SWIFI tools specialised for (non-invasive) run-time
fault injection into web-services. In addition to
the specialised tools, also SWIFI tools providing
network-level fault injection, such as DOCTOR (Han
et al., 1993) or ORCHESTRA (Dawson et al., 1996),
can be used for the fault injection into web-services to
corrupt the services’ messages without understanding
their content, i.e. a particular web-service technology.

WS-FIT (Looker et al., 2007) is a tool implement-
ing targeted perturbation of web-services’ RPC pa-
rameters as well as generic network-level fault in-
jection, which can be applied to a range of other
RPC-based middlewares, such as DCE, DCOM, and
CORBA. To enable the run-time fault injection into
web-services, WS-FIT requires to insert a hook code
into a SOAP stack of web-servers providing run-
time environments for the web-services to capture
SOAP messages. A reference implementation of
WS-FIT includes its integration into service contain-
ers of Apache Jakarta Tomcat web-servers versions 4
and 5. The implementation of WS-FIT tool is not
publicly available.

wsrbench (Laranjeiro et al., 2008) is a publicly
available on-line tool for robustness testing of SOAP-
based web-services represented by their WSDL de-
scriptions. The tool acts as a web-service client which
automatically generates SOAP requests according to
a given test-case specification (e.g. to call a web-
service with parameters outside a given domain, etc.).
This approach allows to test only single services, but
not service compositions. Faults also cannot be in-
jected outside parameters of a web-service’s opera-
tions, e.g. to test a corruption of message headers.

WSInject (Valenti et al., 2010) is a fault injection
tool for testing single and composed web-services.
It allows to inject both communication and interface
faults, i.e. to simulate a network-level malfunction as
well as wrong service calls which do not match their
descriptions. The tool acts as a HTTP proxy inject-
ing faults into passing SOAP messages while trans-
mitting non-SOAP HTTP messages without modifi-
cation. WSInject is able to inject faults into service
compositions, but it is not applicable to web-services
using non-SOAP technologies (e.g. RESTful web-
services).

ICEIS�2012�-�14th�International�Conference�on�Enterprise�Information�Systems

378



All the mentioned tools are capable of run-time
injection into SOAP-based web-services. However,
they are not useful for testing of RESTful web-
services which are recently becoming popular on the
Internet.

3 FAULT INJECTION TOOL FOR
WEB-SERVICES

As it has been mentioned in the previous sections,
the demand for SWIFI tools which enable a tester to
create test specifications for fault injection and to ap-
ply them automatically at the specified parts of web-
services is still growing.

This section describes the development of the
FIWS tool (Fault Injector for Web Services), which
can be classified as a tool for software implemented
run-time fault injection and non-invasive robustness
testing of SOAP-based, XML-RPC, and RESTful
web-services and their compositions. It allows to in-
ject faults in run-time of tested web-services, into
communication between the web-services and their
partners. After the injection, the resulting abnormal
states and erroneous behaviour of the web-services
can be observed.

Figure 1: The communication scheme.

Figure 1 describes an application style of the tool
in the communication scheme between a tested ser-
vice (i.e. “WS under test”) and its surroundings. All
communication of the tested service with its clients
and another web-services required by the tested ser-
vice (i.e. “WS client” and “Web service 1–3”, re-
spectively) is routed via a proxy server where the
FIWS tool monitors incoming and outgoing mes-
sages. When the communication meets particular cri-
teria given by a test specification, the corresponding
messages are corrupted with faults of defined types.

The FIWS tool does not require a specific type of
the message routing method – the routing can be done
by an arbitrary network setting (e.g. network routing
or firewall rules), by a transparent HTTP proxy, by a
modification of a web-server providing web-services’
run-time environment (i.e. service containers), etc.

The tool’s internal architecture is described in Fig-
ure 2. The three-layered architecture divides program

Figure 2: The three-layered architecture model.

components into three groups of different responsi-
bilities for different tasks. The top-level layer is the
presentation layer that contains modules and classes
responsible for a (graphical) user interface of the tool
(it consists of classes representing windows and di-
alogs). The next one is the business layer implement-
ing the application logic, which is composed of three
units:

� Proxy Monitoring Unit – Its goal is to act as a
HTTP proxy, which listens at a given port for in-
coming connections and mediates the communi-
cation between services. Behaviour of this com-
ponent is a bit different from common proxy
servers. It waits until a whole HTTP message is
read, and then, it analyses important parts of the
message and forwards them to the Fault Injector.

� Fault Injector – It receives specific parts of
service-call messages from the Proxy Monitoring
Unit and processes them by classes representing
different types of conditions and faults. The pro-
cessing is defined by a particular test specifica-
tion in the tool’s user interface and received by
the Controller.

� Controller – It is a unit controlling the business
layer according to events from the tool’s user in-
terface. It also implements the persistence of tests
and results which are stored in a XML database.

Finally, the bottom-level layer is the data layer,
which consists of classes accessing the mentioned
XML database with test specifications and results.

3.1 Conditions and Faults

The fault injection mechanism in the FIWS tool is
based on a model of conditions and faults and with
respect to the general fault model by (Looker et al.,
2005). In the tool, the fault injection mechanism is
controlled by user-defined test specifications. Every
test specification contains a list of named rules and
every rule consists of a set of conditions and a set of
faults. When a service message meets all conditions

Fault�Injection�for�Web-services

379



of a particular rule, each of the corresponding faults
is applied.

A rule in a test specification can include a combi-
nation of the following conditions:

� Content linked Condition – fulfilled iff a particular
message contains a specified string;

� URI linked Condition – fulfilled iff a particular
message contains a specified string in URI ad-
dress;

� Destination linked Condition – fulfilled iff a par-
ticular message is a HTTP request (i.e. a service
call) or a HTTP response (i.e. a service response).

Moreover, the rule can include a set of the fol-
lowing faults, which will be applied to the communi-
cation between services or between a service and its
clients. Some faults have been adopted from exist-
ing SWIFI tools (see Section 2.1) and the others have
been designed for our needs solely.

� String Corruption is a simple fault which replaces
all specified sub-strings in a message for another
sub-string. Since this is done on the string level
regardless the message’s format, it can be used
with various data interchange formats (e.g. XML,
JSON, YAML, HDF, etc.).

� XPath Corruption is similar to the previous fault
except that the replaced parts are specified by
an XPath expression (the message has to be in
XML). This kind of fault is useful when we want
to modify a value of a particular element or an at-
tribute representing parameters of a service’s op-
eration.

� XPath Multiplication also uses XPath expressions
to find a particular part of a message in XML,
however, the targeted part is not changed, but mul-
tiplied (which is a specific type of the corruption).

� WSDL Operation Corruption uses a WSDL ser-
vice description to identify service operation calls
or responses inside a SOAP message and to mod-
ify the message’s body. By means of these faults,
we are able to test robustness of service opera-
tions.

� Header Corruption allows to modify parameters
of an URI inside a message’s HTTP header. This
is useful for testing of RESTful services contain-
ing data (or meta-data) also in the HTTP header.

� Emptying Fault empties the content of a HTTP
message (just its header remains and the rest of
the message is discarded). This can be used for
testing a service’s response to empty HTTP mes-
sages.

-ID
-Nam e
-filePath

Test Set
-ID
-Nam e

Test St at em ent

-ID

+ getDescript ion()
+ isFulfilled()

Condit ion
-ID

+ getDescript ion()
+ inject ()

Fault

Cont ainsCondit ion

.. .Condit ion St ringCorrupt ionFault

. . .Fault

0..*
contains

0..*
contains

0..*

is m ade of

Figure 3: The class diagram of test specifications.

� Delay Fault delays a targeted message for a spec-
ified number of milliseconds. This fault allows to
simulate some network anomalies caused by mes-
sage loss or problems with network latency.

Figure 3 outlines the class diagram of test spec-
ifications1. A test specification is represented by an
instance of class TestSet and consists of several state-
ments represented by TestStatement. Each statement
contains several test conditions and injected faults
represented by classes Condition and Fault, respec-
tively.

The pre-defined list of test conditions and in-
jected faults can be extended by new specialisations
of classes Condition and Fault, respectively. Each
specialisation of class Condition has to implement
method getDescription to obtain its informative de-
scription and method isFulfilled, which decides, ap-
plied to a HTTP message, whether the condition is
meet or not. Each specialisation of class Fault has to
implement method getDescription analogously to the
previous case and method inject performing desired
modifications of the HTTP message (i.e. the fault in-
jection).

4 EXPERIMENTS

We performed several experiments with robustness
testing of various web-services by the FIWS tool.
At first, we tested sample web-service projects in-
cluded in the Netbeans IDE as demonstrations of
JAX-WS and JAX-RS standard Java EE frameworks

1Please note that for space reasons the class diagram is
not complete in the sense that it contains classes of all the
mentioned conditions and faults and full definitions of the
mentioned methods of the classes.

ICEIS�2012�-�14th�International�Conference�on�Enterprise�Information�Systems

380



for SOAP-based and RESTful web-services, respec-
tively. The web-services have been deployed into ser-
vice containers of the Oracle GlassFish web-server in
version 3.2 providing a run-time environment for the
services.

Our goal has been to analyse fault tolerance of
web-services in the JAX-WS and JAX-RS frame-
works and also compatibility of the tool with the web-
server. The results are in Sections 4.1 and 4.2. Fi-
nally, we also focused on several publicly available
web-services with results described in Section 4.3.

4.1 SOAP-based Calculator (JAX-WS)

The first tested service is called Calculator. It is a
common SOAP-based web-service implemented as
a composition of web-services and providing a few
methods to perform basic arithmetic operations. The
composition has been slightly modified to allow test-
ing interception and corruption of messages sent be-
tween services inside the composition (i.e. not only
between the main web-service and its client).

The testing scenario consists of two SOAP-based
web-services in the composition and one client. The
client sends its requests to the first service, which
serves as a mediator to access operations provided
by the second service. This arrangement creates
three HTTP interactions to monitor, which means six
HTTP messages in one service call by the client.

In the first test set, we focused on a parameter cor-
ruption test, i.e. a fault injection into input parame-
ters of the service’s operations and into return values
produced by the operations and consumed by another
service in the service composition. Each test was per-
formed two times to eliminate unexpected conditions.

In test statements, WSDL Operation Corruption
and XPath Corruption types of faults were utilised
(see Section 3.1). Based on these fault types, parame-
ter mutation rules for numeric values were adopted
from (Vieira et al., 2007) as it is described in Ta-
ble 1. The table describes names of the tests and
corresponding actions which are applied to the oper-
ation’s parameters or to the return values by the men-
tioned types of faults.

During the testing, the NumNull corruption was
interpreted by Calculator as a number zero in all per-
formed cases, so the operation was completed without
any errors or exceptions shown. The NumMax and
NumMin tests resulted in data type overflow, while
the service responded without any error messages and
returned wrong values. For example, the additive op-
eration with parameters 2147483647 and 4 returned
�2147483645. On the other hand, during the corrup-
tion of the return values, the consuming service inter-

Table 1: Numeric parameter curruption.

Test name Parameter corruption
NumNull Replace by null val.
NumEmpty Replace by empty val.
NumAbsoluteMinusOne Replace by �1
NumAbsoluteOne Replace by 1
NumAbsoluteZero Replace by 0
NumAddOne Add one
NumSubtractOne Subtract 1
NumMax Max. type valid
NumMin Min. type valid
NumMaxPlusOne NumMax + 1
NumMinMinusOne NumMin � 1

preted the overflowed value as a zero number.
In the second test set, several tests were performed

to verify robustness of interfaces of the tested ser-
vices. The XPath Multiplication fault was injected
into a SOAP message, however, it did not effect pro-
cessing the message in a service, since SOAP parsers
process only the first occurrence of an element within
the message. The injection of Emptying Fault resulted
into a SOAP error message response informing that an
XML reader exception was thrown. Finally, we tried
to inject Delay Faults with delays for 10, 20, and 60
seconds. The first two cases run correctly, however,
the one-minute delay resulted in the unavailable con-
suming service (it did not close its connection).

4.2 RESTful CustomerDB (JAX-RS)

The second tested service is a RESTful web-service
which is called CustomerDB. This service pro-
vides standard RESTful HTTP methods GET, PUT,
POST, and DELETE, to query and update resources
representing data in a Java Derby database.

In this test set, we created test statements using
the Header Corruption fault to be able to modify
the specific parts HTTP URIs containing service re-
quest parameters, i.e. describing a database query go-
ing towards the web-service. The parameters were
corrupted as values of the string data-type by actions
shown in Table 2. Each test was performed two times
to eliminate unexpected conditions.

Table 2: String parameter corruption.

Test name Parameter corruption
StrNull Replace by null val.
StrEmpty Replace by empty str.
StrNonPrintable Replace by nonprintable
StrAddNonPrintable Add one nonprintable
StrAlphaNumeric Apply alphanumeric string
StrOverflow Overflow max size

After the fault injection, some of the corrupted ser-
vice calls resulted in inconsistencies in the queried
database while no errors were indicated. The web-

Fault�Injection�for�Web-services

381



service came into the “silent” failure mode accord-
ing to the wsCrash scale introduced by (Vieira et al.,
2007).

Contrary to the SOAP parsers in the case of
SOAP-based web-services (see Section 4.1), the
RESTful approach does not provide any implicit val-
idation of formats of incoming messages. The mes-
sages of RESTful web-services can be in various for-
mats (e.g. XML, JSON, YAML, HDF, etc.) and
the fault tolerance of such web-services has to be en-
sured by their developers, e.g. by usage of a particular
validator corresponding to a specific message format.
Obviously, this was not the case of the CustomerDB
web-service.

4.3 Publicly Available Web-services

Finally, we performed robustness testing of the fol-
lowing publicly available web-services:

� Affiliate Web Service by alpharooms.com2

� WSCore Web Service by altaircom.net3

� ForeignExchangeService by as.asp2.cz4

� wvWAVKY by cuni.cz5

These services have been tested as “black-boxes”
without any knowledge of their internal implemen-
tations. Therefore, we were not able to inject faults
into communication between services of potential ser-
vice compositions (we cannot redirect the communi-
cation between the externally provided services via
our proxy). We also did not have access to error logs
of the web-services’ containers, so could not detect
internal errors of the services which were not exter-
nally visible.

We performed random fault injection into calls of
the services by their clients and observed the services’
external behaviour, specifically their responses and
availability. The fault injection caused few failures
resulting into unpredictable behaviour. The Emptying
Fault corruption mostly ended with the “HTTP 400
Bad Request” notification, however, in some cases,
the response was “HTTP 500 Internal Server Error”
indicating that a failure of a web-service occurred.
Moreover, the fault injection into XML element Af-
filiateAuthentication in a call of Affiliate Web Service
resulted into the unexpected behaviour where non-
printable characters in the element’s content did not
caused the “permission denied” message.

2http://xml.alpharooms.com/affiliate.asmx
3http://palehorse.altaircom.net/WS/WSCore.asmx
4http://as.asp2.cz/ForeignExchangeService.asmx
5http://is.cuni.cz/webapps/ws.php

5 SUMMARY AND
CONCLUSIONS

In this paper, we introduced the FIWS tool for soft-
ware implemented fault injection (SWIFI) into web-
services. Contrary to the previously existing SWIFI
tools, the FIWS tool is able to inject faults into ser-
vice compositions and to perform robustness test-
ing of common SOAP-based web-services as well
as contemporary RESTful web-services. To evalu-
ate applicability of the tool, several web-services have
been tested using both web-service technologies. We
performed fault injections into a SOAP-based web-
service implemented in Java JAX-WS, a RESTful
web-service implemented in Java JAX-RS, and sev-
eral publicly available web-services.

The further research will focus on integration of
the tool and the fault injection in general into inte-
grated development environments (IDEs) to enable
developers to define and automatically perform tests
of web-services’ robustness in desired service com-
positions.

ACKNOWLEDGEMENTS

This work was supported by the research programme
MSM 0021630528 “Security-Oriented Research in
Information Technology”, the BUT FIT grant FIT-
S-11-2, and by the European Regional Development
Fund in the IT4Innovations Centre of Excellence
project (CZ.1.05/1.1.00/02.0070).

REFERENCES

Crnkovic, I. (2002). Building Reliable Component-Based
Software Systems. Artech House, Inc., Norwood, MA,
USA.

Dawson, S., Jahanian, F., and Mitton, T. (1996). ORCHES-
TRA: A fault injection environment for distributed
systems. Technical Report CSE-TR-318-96, Univer-
sity of Michigan, Michigan.

Han, S., Rosenberg, H. A., and Shin, K. G. (1993). DOC-
TOR: An integrated software fault injection environ-
ment. Technical Report CSE-TR-192-93, University
of Michigan, Michigan.

Hsueh, M.-C., Tsai, T. K., and Iyer, R. K. (1997). Fault
injection techniques and tools. Computer, 30:75–82.

Laranjeiro, N., Canelas, S., and Vieira, M. (2008). wsr-
bench: An on-line tool for robustness benchmarking.
In Proceedings of the 2008 IEEE International Con-
ference on Services Computing - Volume 2, SCC ’08,
pages 187–194, Washington, DC, USA. IEEE Com-
puter Society.

ICEIS�2012�-�14th�International�Conference�on�Enterprise�Information�Systems

382



Looker, N., Burd, L., Drummond, S., Xu, J., and Munro,
M. (2005). Pedagogic data as a basis for web ser-
vice fault models. In IEEE International Workshop
on Service-Oriented System Engineering, pages 125–
136, Los Alamitos, CA, USA. IEEE Computer Soci-
ety.

Looker, N., Xu, J., and Munro, M. (2007). Determining
the dependability of service-oriented architectures. In-
ternational Journal of Simulation and Process Mod-
elling, 3:88–97.

Valenti, A. W., Maja, W. Y., Martins, E., Bessayah, F., and
Cavalli, A. (2010). WSInject: A fault injection tool for
web services. Technical Report IC-10-22, Institute of
Computing, University of Campinas, Campinas.

Vieira, M., Laranjeiro, N., and Madeira, H. (2007). Bench-
marking the robustness of web services. In 13th
Pacific Rim International Symposium on Dependable
Computing, pages 322–329.

Fault�Injection�for�Web-services

383


