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Abstract 

Nowadays, the flight guidance equipment 

supplies practically all the information, required for 

aircraft navigation. Pseudo-realistic terrain 

visualization is undoubtedly an important part of this 

information. Although modern graphics processors 

are able to render realistic terrain at interactive frame 

rates, in some applications, it is beneficial to use low-

power graphics hardware, perhaps from weight or 

power supply capacity restrictions. These low-power 

graphics processors typically manifest much lower 

computational power than conventional hardware, 

severely limiting the capability of terrain 

visualization. A novel method for caching terrain 

tiles is presented in this paper, enabling faster and 

more detailed terrain rendering, using lighter devices 

that consume less power. The main focus was on 

memory and time efficiency on common low-power 

graphics hardware. The terrain rendering algorithm 

being employed in our implementation is derived 

from the seamless patches algorithm. Different 

aspects of terrain tile swapping were examined in 

order to devise a simple hardware metric. An 

efficient tile caching approach was developed, based 

on this hardware metric, and its performance was 

evaluated. 

Introduction 

Present advances in mass-production low-power 

consumption graphics hardware allow us to 

build low-cost hardware-software codesign solutions 

suitable for small aircraft on-board 

instrumentation systems. Our modular 'smart' 

autopilot system includes primary flight display with 

high-performance instrument indicators and a terrain 

visualization rendering framework running on 

embedded commodity graphics hardware with 

OpenGL ES 2.0 support. This paper will describe 

impact of certain aspects and parameters of our 

terrain visualization algorithm on overall rendering 

performance and visual quality. 

Pseudo-realistic terrain visualization is an 

important part of flight state information flow coming 

to pilot's perception system during instrument-guided 

aircraft control. Its implementation require some 

optimizations to be able to run on the low-power 

hardware. A special care has to be taken to avoid 

time domain artifacts which could be introduced by 

such optimizations and which can be particularly 

disturbing. Such artifacts can be caused by 

switching the level of detail of the terrain 

surface, yielding characteristic popping effects. A 

different kind of artifact is caused by loading terrain 

tiles as the observer moves across the terrain. 

Because the tiles are usually loaded from an external 

storage, the access latencies are high and can 

ultimately lead to stuttering. 

 

Figure 1. A screenshot from our terrain 

visualization, running on low-power hardware 

A common characteristic of the low-power 

hardware is its highly optimized graphics 

processing unit (GPU). The main limitation of those 

GPUs, from the terrain rendering perspective, is the 

absence of unified shader architecture. That is 

especially advantageous for the GPU manufacturers, 

as vertex shaders are usually much simpler than 

fragment shaders. Vertex shader units therefore 

require smaller area on chip and draw fewer current 

than comparable fragment shader units. This 



simplification often involves the absence of 

interconnect between the texturing hardware and 

vertex shader units. Vertex texturing is broadly 

supported in commodity GPUs and most of the 

common terrain algorithm implementations utilize 

this functionality at their core. 

Another characteristic of the low-power low-

cost devices is limited size of the main memory. 

Detailed large-scale height map datasets required for 

the practical function of the primary flight display 

will not fit in the main memory and therefore need to 

be frequently swapped from an external storage. Due 

to the graphic hardware limitations, some common 

algorithms such as clip maps are not optimal. A new 

algorithm is needed. 

A novel method for caching terrain tiles is 

presented in this paper. The main focus was on 

memory and time efficiency on common low-power 

graphics hardware. The terrain rendering algorithm 

being employed in our implementation is derived 

from the seamless patches algorithm. Different 

aspects of terrain tile swapping were examined in 

order to devise a simple hardware metric. Several 

approaches were developed, based on this hardware 

metric, and their performance was compared and 

evaluated. 

Previous Work 

Recent algorithms rely on batched rendering of a 

geometry precomputed to vertex buffers. This 

minimizes a CPU-to-GPU data transfer bottleneck 

but also lowers an adaptivity of a generated shape. A 

main question it must be dealt with is how to 

optimally organize geometry clusters and the 

algorithms mostly differ in an used shape of the 

clusters and in a way how they are stitched together. 

A first representative of tiled methods is 

Geometrical Mip-Mapping by de Boer [1]. The 

whole terrain is split into regular grid tiles of a same 

geometric size and a certain number of downsampled 

versions is made for each of them. A quad-tree of 

bounding boxes is constructed to perform a fast view-

frustum culling during run-time. Leafs of the tree 

correspond to the tiles and point to them. A mesh 

continuity is achieved by rendering an interior of the 

tile first and then by stitching borders using triangle 

strips. 

The Chunked LOD this algorithm [2] uses a 

quad-tree of tiles (chunks) too but in a different way 

than Geometrical Mip-Mapping [1]. A root of this 

tree contains a square tile with an arbitrary terrain 

shape simplified to some error value. Its children are 

four square tiles each covering a quarter of the terrain 

simplified with a half of the error value of the parent 

and so on. The tree is traversed from a top to a 

bottom and each time a projected error of the tile 

satisfies a pixel error threshold, the descending stops 

and the tile is rendered. 

Pouderoux et al. [3] published an elaboration of 

a Geometrical Mip-Mapping technique [1], called 

Strip Masks, that more deeply explains a caching 

strategy for a tile streaming at different levels of 

detail. Another contribution is that they propose to 

visually mend gaps between tiles with textured planes 

placed under a terrain's surface projected using a 

view parameters. 

Batched Dynamic Adaptive Meshes (BDAM) 

[4, 5, 6, 7] are an approach employing a triangular 

tile topology. A main idea exploits a property of 

RTINs that a triangle can be connected to another 

triangle from a same level, or a one level higher 

triangle through its hypotenuse or a one level lower 

triangle through one of its catheti. A terrain 

triangulation can be then represented as a set of 

triangular tiles from a binary tree hierarchy simplified 

to some error measure which is shared between 

possibly neighboring triangles from adjacent tree 

levels at tile borders and which is smoothly grading 

inside the tile. 

An algorithm called Seamless Patches for GPU-

Based Terrain Rendering [8] is a hybrid solution that 

integrate benefits of triangular tiles, which is a better 

local adaptivity and easier ways to avoid cracks at 

borders, and rectangular tiles that are more suitable 

for hardware optimizations. A rectangular patch is 

split by its diagonals into four triangular tiles. A 

hierarchy of this patches similar to one as in a 

Chunked LoD [2] algorithm is constructed but a 

branching factor is determined by a number of 

possible discrete level of details of each triangular 

tile to ensure a seamless connectivity. The tree is 

traversed from a root where an error metric is 

evaluated. If it is not detailed enough, procedure 

descends to its children and so on. If, on the other 

hand, the patch as a whole has a suitable resolution 

according to view parameters, an exact resolution for 



each of its border edges is determined and an 

appropriate levels of detail of the triangular tiles are 

selected. A proper continuity is guaranteed by 

diagonal strips that fill holes between the triangular 

tiles. All, the tile and a strip geometry, is 

preprocessed into vertex buffers without heights 

which are then added using a vertex shader during 

rendering. This algorithm was chosen as a basis for 

our terrain visualization implementation. 

Hardware Metrics 

In order to focus the optimization of any 

hardware accelerated algorithm, it is necessary to 

devise some kind of hardware metric that could be 

used to highlight the bottlenecks and compare results. 

In the current low-power hardware, there is 

mostly no option to read height data from a texture in 

vertex shader, the way the modern terrain rendering 

algorithms do. Broadcoms graphics chip on the 

Raspberry PI computer is a notable exception to that, 

but unfortunately, no samples of that hardware were 

available at the time of writing this paper. Therefore, 

all the data for terrain rendering needs to be available 

in vertex buffer(s) prior to actual rendering. 

To render a terrain, one typically stores the 

necessary data in a few vertex buffers. One of the 

vertex buffers would hold vertices for all possible tile 

resolutions or configurations. There would be also a 

second buffer, containing indices to render the vertex 

data as a triangle strip or just bare triangles. And at 

last, there would need to be a buffer with height data 

per every vertex. Note that this buffer needs to 

contain unique data per every tile being displayed, 

unlike the afore-mentioned two buffers, which can be 

used to display practically any terrain tile. Keeping 

this buffer separate is a logical choice, as one only 

needs to update the height coordinate, and the CPU-

GPU traffic is therefore reduced, compared to 

updating full 3D coordinates of tile vertices. 

There are several aspects of terrain rendering on 

low-power GPU, under above mentioned conditions. 

These include rendering from more than one vertex 

buffer, rendering from more than one index buffer, 

updating shader uniform parameters for individual 

tile transformation, setting constant vertex attribute 

for individual tile transformation, setting a different 

vertex attribute pointer to source data from arbitrary 

portion of vertex buffer, and last but not least, the 

size of the batch in which the tiles are updated. All 

these are described in subsequent paragraphs. 

Rendering from more than one vertex buffer 

may come in handy when having multiple sets of 

vertex data. The scenarios may include having 

separate vertex buffers for different tile resolution or 

topology, or having a tile allocation scheme, 

requiring the use of separate buffers. Also, one might 

want to consider sourcing data from multiple vertex 

buffers to reduce the number of index buffers 

required (the index buffers for tiles can be typically 

shared among the tiles of the same resolution, and 

since the indices cover the same range of vertices, 

typically starting with zero). 

Rendering from more than one index buffer is 

typically not a strong requirement, as the rendering 

API functions enable simple selection of range of 

data in the buffer, being used as indices in order to 

render some geometry. In particular, the 

glDrawElements() functions enables selection of byte 

offset in the buffer, and of the number of indices 

being read. On the other hand, it might be an 

architectural requirement of the terrain rendering 

subsystem to keep the buffers separate. 

Because of sharing position data (except the 

height) among the tiles (or at least among the tiles of 

the same resolution), the tile transformation needs to 

be somehow passed to the GPU. This may include 

tile position, rotation and possibly scale. One of the 

ways to pass this information is to employ uniform 

shader parameters, that would be read and interpreted 

by the vertex shader. 

The other way of accomplishing the same goal 

might be to use constant vertex attributes. Vertex 

attributes are usually sourced from arrays, stored in 

vertex buffer objects. On the other hand, it is possible 

to set the value of any vertex attribute to constant 

value for the use in the next draw calls. The only 

difference between constant vertex attribute and 

uniform shader parameter is that the vertex attribute 

is a global property and uniform is a property 

associated with a program object. 

In order to reuse index data, it might be 

necessary to change the physical address from where 

the vertex data are sourced, inside a vertex buffer 

object. This is done by a call to the 

glVertexAttribPointer() function, entering a format of 

the vertex attribute, and offset in the buffer. This is a 



complementary method to using multiple vertex 

buffers. 

Finally, due to severe limitations of available 

memory, so typical for low-power devices (such 

devices can share e.g. 256 MB of memory between 

GPU, the application and indeed the operating 

system), there needs to be an efficient caching 

scheme for replacing the tiles in memory as they are 

needed. Since the GPU and the CPU needs to 

communicate the data, be it using a bus and direct 

memory access in high end systems, or possibly a 

plain memory copy in low-power systems, there is 

always some latency overhead before the transfer is 

initiated. Therefore, it might be a good strategy to 

transfer tile data in bigger batches, rather than 

transferring individual tiles separately. 

To obtain the above mentioned hardware 

metrics, a simple benchmark was devised. Since most 

of the times can be expected to be of the magnitude 

of tenths of milliseconds, it is not possible to use a 

direct approach of measuring the time. Instead, a 

minimalist real-world terrain rendering loop was 

devised, initially rendering the terrain by a single 

draw call, all the tiles being stored in one long vertex 

buffer and all the indices in one long index buffer. 

This gives baseline frame time, which is averaged 

over many frames. In the actual benchmark, the 

rendering loop ran for 10 seconds while counting the 

frames, and as the time budget was exceeded, the 

resulting frame time is simply a ratio of time elapsed 

to number of rendered times. It is important to make 

sure that the frame time is limited by the vertical sync 

to 1/60th of a second, by issuing sufficient workload 

to keep the GPU busy for longer time. The results 

were also validated as not being rasterizer-bound by 

setting the viewport from its original size (800 x 600) 

to 2 x 2 pixels, and comparing the results. Then, to 

measure any of the above-mentioned metrics, the 

rendering loop is modified so as to incorporate a 

method of implementing an operation, associated 

with such metric, and the resulting average frame 

time is subtracted from the baseline frame time. For 

example, to measure time required to set shader 

uniform parameter, one would modify the loop to 

only use the first tile vertex data, and set translation 

parameter prior to rendering each tile. As the 

differences are quite small, it is also important to 

establish a significance level to make sure that the 

measurement is actually not only noise, caused by 

frame rate fluctuation. To do that, the baseline 

benchmark is ran many times, and the standard 

deviation is used as a level below the measurements 

are considered insignificant. This scheme is very 

simple to implement, gives results that are easy to 

interpret in a real-world situation, and is also quite 

robust. The results, obtained for the NVIDIA Tegra 2 

GPU, running on a module with ARM4I CPU with 

256 MB of memory, can be seen in table 1. The 

terrain for the benchmark consisted of 1024 tiles, 

arranged in a 32 x 32 matrix, each tile having 64 x 64 

vertices. 

Table 1. Hardware metrics benchmark results 

Operation Time [mS] 

Vertex buffer swap 3.52 

Index buffer swap 4.01 

Shader reconfig 2.90 

Vertex attrib reconfig 7.54 

Vertex attrib pointer reconfig 23.38 

Tile upload (batch size) 

1 185.78 

2 152.96 

4 138.12 

8 159.77 

16 167.38 

32 167.63 

64 156.29 

128 155.50 

256 154.46 

512 153.44 

1024 150.62 

Standard deviation 0.314375 

  

As can be seen, all the operations are well above 

the noise level, given by standard deviation, and can 

be considered valid. Also note that the results are per 

rendering 1024 batches (tiles), and are therefore 

scaled thousand times (and should be in nS instead of 

mS). But in this context, the relative magnitudes are 

important, rather than absolute values. 

The first striking fact is that the tile upload is by 

far the most expensive operation (25% of tiles were 

updated each frame, in batches of size given in the 

middle column in table 1). Also, the upload can be 

made faster by batching data for more tiles in a single 

transfer. This shall be the first priority in the 

proposed algorithm. 

Also very interesting is that setting shader 

uniform parameter is actually faster than setting the 



value of constant vertex attribute. This is very easy to 

incorporate in any algorithm, without the need for 

greater changes. 

Another fact is that the rendering pipeline is 

stalled by changing the source of vertex attribute 

data, and it is much faster to swap index buffer 

instead, in case there is one with indices pointing to 

the right place in the vertex buffer. It would seem it 

might be faster to keep the data in multiple vertex 

buffer as time for vertex buffer swap is much smaller, 

but after swapping the vertex buffer, vertex attribute 

pointers need to be reconfigured as well (the time for 

that is not included), making it even slower. Also, it 

is impossible to load batches of data to multiple 

vertex buffers at once. 

System architecture 

The results from the benchmarks led to a simple 

decision about the optimal solution to the tile caching 

problem. The rendering system was written in the 

C++ language and comprises of several layers. The 

bottom-most retrieval layer takes care about reading 

the tiles from the ASTER GDEM dataset [9], stored 

on a flash drive. Above that, there is the cache layer. 

The caching algorithm is plugged as a template 

parameter, and can be easily exchanged for a 

different one. The cache layer can interpolate and 

crop the height data to produce any rectangle of any 

level-of-detail for uploading to the GPU and display. 

If the tiles were uploaded individually, the 

performance wouldn't be optimal. That's why there is 

one more layer between the cache and the GPU. It is 

called the contiguous buffer allocator, and it is a 

simple memory allocation policy, priorizing 

contiguous allocation of in-frame data in order to be 

able to transfer it in one piece to the GPU. The 

allocation of the data works in a single linear memory 

space, and can be actually easily mirrored to the GPU 

buffers as well (the relative address allocated in CPU 

memory space is used in GPU memory space as 

well). 

The allocating algorithm works in two passes. 

The allocator keeps a list of geometry generators, 

each of which gives a description of how much data 

in what format it needs to transfer to the GPU. It also 

keeps track of allocated blocks, and their assignment 

to the generators. In the first pass, these geometry 

generators are polled to see how much memory needs 

to be allocated. Then, the associated blocks (if any) 

are deallocated, and the process of looking for 

sufficiently long contiguous space begins. All the 

blocks are sorted by format (so as to avoid changing 

vertex attribute pointers, if possible), and are 

allocated as a single contiguous block of memory, at 

the lowest address where it doesn't collide with other 

blocks that remain allocated. The block can also be 

broken to several smaller blocks if it exceeds 

sufficient size, beyond which the benefit of 

transferring the block in a single memory transaction 

diminishes. Once the addresses of the blocks are 

resolved, the second pass begins, where the geometry 

generators obtain the addresses of blocks in memory 

and start filling it with data. At the end, the block is 

copied to the GPU. 

Results 

The described allocation policy is best described 

by the algorithmic complexities involved. The 

allocation table of blocks is represented by a tree, 

where the address of the first byte of the block is used 

as the key of the tree node. The unused space is also 

being represented by blocks, which are flagged as 

unused. 

When the blocks are reallocated which were 

allocated already, they need to be first deleted, 

merging the free space in unused blocks. This 

operation takes linear time in the number of blocks, 

because the blocks are arranged in the tree by their 

address, and it only takes O(1) lookup to the neighbor 

residing at lower address to merge the unused blocks 

incrementally. After that, the allocated blocks need to 

be sorted by vertex format. That takes O(n log n) 

time, but in some systems where all the vertices have 

the same format, this step can be omitted. Finally, a 

contiguous free space, large enough to hold the 

blocks need to be found. This takes worst-case linear 

time in number of blocks, allocated and unused, and 

O(log n) at average, since the search stops at the first 

usable block, rarely reaching the end of the list. 

Therefore, the complexity of allocation of N blocks 

with M blocks already allocated is: 

O(N) + [O(N log N)] + O(log M) (1) 

The second logarithmic term can be further 

diminished by hierarchic representation of the used 

blocks, since these are typically allocated many in 

one block, and can be represented as such. This 



would highly reduce M, leading to nearly linear 

allocation time in number of blocks (or constant 

allocation time if seen from the perspective of 

allocating a single block), which is a very good 

result. 

The other aspect of the proposed allocator is the 

amount of wasted space it allows. To be able to 

formally prove it, let's assume, without the loss of 

generality, that the blocks being allocated are all of 

equal size. It is easy to see that the most memory-

thrashing pattern is to allocate all the blocks, and then 

reallocate all but the one before the last one. That 

then serves as a pivot that holds the free space left 

from it. The next allocation again loses one block, 

making the blocks small enough to fit left from the 

pivot. This process can continue recurrently until all 

the blocks are deposited. It is easy to see that the 

worst-case space needed to hold k blocks of size S is: 

(2k - 2)S (2) 

Although this is not a very good result, it is paid 

for by the allocator speed. In practice, the results are 

typically much better. To calculate average space 

needed, a benchmark was devised where 1000 blocks 

were allocated at random, for many steps, until the 

average results converged. The results are in table 2. 

Table 2. Allocator workspace 

Block size distribution Space (average) 

Constant (S) 1542.31 S 

Gaussian with center at S 1866.08 S 

Uniform between 0 and S 825.73 S 

 

The ideal result for storing 1000 blocks of size S 

would be 1000 S. Due to the inevitable memory 

fragmentation, that is unfortunately not possible. The 

gaussian results are somewhat worse than constant 

size blocks, most likely because constant size blocks 

tend to align nicely even when reallocated, causing 

less fragmentation. 

Note that although the last result seems to be 

incorrect (since 1000 blocks is stored and average 

space is smaller than that), it is caused by the 

distribution of the block sizes, where the majority of 

blocks have smaller size than S, due to the uniform 

distribution. 

Conclusions, future work 

A novel memory allocation technique was 

proposed in this paper, enabling fast contiguous 

allocation of data to be transferred to the GPU (or 

any other target, separated by a bus with latency). 

The algorithm is well suited for efficient terrain tile 

caching. It was implemented in a primary flight 

display system for fast realistic terrain rendering on 

low-power hardware. 

The technique need not be limited to the 

rendering of terrain, but can be extended for 

rendering of all the graphical primitives in the said 

primary flight display, including the indicators and 

other user interface elements. It would be interesting 

to connect the technique with statistic prediction of 

block reallocation in order to stabilize the frequently 

allocated blocks at one place in the storage, and to be 

able to minimize memory fragmentation in general 

and further increase performance. 
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