
TERRAIN RENDERING ALGORITHM PERFORMANCE ANALYSIS

Lukas Polok, Radek Barton, Peter Chudy, Premysl Krsek, Pavel Smrz, Dittrich Petr

Brno University of Technology, Faculty of Information Technology,

IT4Innovations Centre of Excellence, Bozetechova 2, 61266 Brno, Czech Republic

Abstract

Nowadays, the flight guidance equipment

supplies practically all the information, required for

aircraft navigation. Pseudo-realistic terrain

visualization is undoubtedly an important part of this

information. Although modern graphics processors

are able to render realistic terrain at interactive frame

rates, in some applications, it is beneficial to use low-

power graphics hardware, perhaps from weight or

power supply capacity restrictions. These low-power

graphics processors typically manifest much lower

computational power than conventional hardware,

severely limiting the capability of terrain

visualization. A novel method for caching terrain

tiles is presented in this paper, enabling faster and

more detailed terrain rendering, using lighter devices

that consume less power. The main focus was on

memory and time efficiency on common low-power

graphics hardware. The terrain rendering algorithm

being employed in our implementation is derived

from the seamless patches algorithm. Different

aspects of terrain tile swapping were examined in

order to devise a simple hardware metric. An

efficient tile caching approach was developed, based

on this hardware metric, and its performance was

evaluated.

Introduction

Present advances in mass-production low-power

consumption graphics hardware allow us to

build low-cost hardware-software codesign solutions

suitable for small aircraft on-board

instrumentation systems. Our modular 'smart'

autopilot system includes primary flight display with

high-performance instrument indicators and a terrain

visualization rendering framework running on

embedded commodity graphics hardware with

OpenGL ES 2.0 support. This paper will describe

impact of certain aspects and parameters of our

terrain visualization algorithm on overall rendering

performance and visual quality.

Pseudo-realistic terrain visualization is an

important part of flight state information flow coming

to pilot's perception system during instrument-guided

aircraft control. Its implementation require some

optimizations to be able to run on the low-power

hardware. A special care has to be taken to avoid

time domain artifacts which could be introduced by

such optimizations and which can be particularly

disturbing. Such artifacts can be caused by

switching the level of detail of the terrain

surface, yielding characteristic popping effects. A

different kind of artifact is caused by loading terrain

tiles as the observer moves across the terrain.

Because the tiles are usually loaded from an external

storage, the access latencies are high and can

ultimately lead to stuttering.

Figure 1. A screenshot from our terrain

visualization, running on low-power hardware

A common characteristic of the low-power

hardware is its highly optimized graphics

processing unit (GPU). The main limitation of those

GPUs, from the terrain rendering perspective, is the

absence of unified shader architecture. That is

especially advantageous for the GPU manufacturers,

as vertex shaders are usually much simpler than

fragment shaders. Vertex shader units therefore

require smaller area on chip and draw fewer current

than comparable fragment shader units. This

simplification often involves the absence of

interconnect between the texturing hardware and

vertex shader units. Vertex texturing is broadly

supported in commodity GPUs and most of the

common terrain algorithm implementations utilize

this functionality at their core.

Another characteristic of the low-power low-

cost devices is limited size of the main memory.

Detailed large-scale height map datasets required for

the practical function of the primary flight display

will not fit in the main memory and therefore need to

be frequently swapped from an external storage. Due

to the graphic hardware limitations, some common

algorithms such as clip maps are not optimal. A new

algorithm is needed.

A novel method for caching terrain tiles is

presented in this paper. The main focus was on

memory and time efficiency on common low-power

graphics hardware. The terrain rendering algorithm

being employed in our implementation is derived

from the seamless patches algorithm. Different

aspects of terrain tile swapping were examined in

order to devise a simple hardware metric. Several

approaches were developed, based on this hardware

metric, and their performance was compared and

evaluated.

Previous Work

Recent algorithms rely on batched rendering of a

geometry precomputed to vertex buffers. This

minimizes a CPU-to-GPU data transfer bottleneck

but also lowers an adaptivity of a generated shape. A

main question it must be dealt with is how to

optimally organize geometry clusters and the

algorithms mostly differ in an used shape of the

clusters and in a way how they are stitched together.

A first representative of tiled methods is

Geometrical Mip-Mapping by de Boer [1]. The

whole terrain is split into regular grid tiles of a same

geometric size and a certain number of downsampled

versions is made for each of them. A quad-tree of

bounding boxes is constructed to perform a fast view-

frustum culling during run-time. Leafs of the tree

correspond to the tiles and point to them. A mesh

continuity is achieved by rendering an interior of the

tile first and then by stitching borders using triangle

strips.

The Chunked LOD this algorithm [2] uses a

quad-tree of tiles (chunks) too but in a different way

than Geometrical Mip-Mapping [1]. A root of this

tree contains a square tile with an arbitrary terrain

shape simplified to some error value. Its children are

four square tiles each covering a quarter of the terrain

simplified with a half of the error value of the parent

and so on. The tree is traversed from a top to a

bottom and each time a projected error of the tile

satisfies a pixel error threshold, the descending stops

and the tile is rendered.

Pouderoux et al. [3] published an elaboration of

a Geometrical Mip-Mapping technique [1], called

Strip Masks, that more deeply explains a caching

strategy for a tile streaming at different levels of

detail. Another contribution is that they propose to

visually mend gaps between tiles with textured planes

placed under a terrain's surface projected using a

view parameters.

Batched Dynamic Adaptive Meshes (BDAM)

[4, 5, 6, 7] are an approach employing a triangular

tile topology. A main idea exploits a property of

RTINs that a triangle can be connected to another

triangle from a same level, or a one level higher

triangle through its hypotenuse or a one level lower

triangle through one of its catheti. A terrain

triangulation can be then represented as a set of

triangular tiles from a binary tree hierarchy simplified

to some error measure which is shared between

possibly neighboring triangles from adjacent tree

levels at tile borders and which is smoothly grading

inside the tile.

An algorithm called Seamless Patches for GPU-

Based Terrain Rendering [8] is a hybrid solution that

integrate benefits of triangular tiles, which is a better

local adaptivity and easier ways to avoid cracks at

borders, and rectangular tiles that are more suitable

for hardware optimizations. A rectangular patch is

split by its diagonals into four triangular tiles. A

hierarchy of this patches similar to one as in a

Chunked LoD [2] algorithm is constructed but a

branching factor is determined by a number of

possible discrete level of details of each triangular

tile to ensure a seamless connectivity. The tree is

traversed from a root where an error metric is

evaluated. If it is not detailed enough, procedure

descends to its children and so on. If, on the other

hand, the patch as a whole has a suitable resolution

according to view parameters, an exact resolution for

each of its border edges is determined and an

appropriate levels of detail of the triangular tiles are

selected. A proper continuity is guaranteed by

diagonal strips that fill holes between the triangular

tiles. All, the tile and a strip geometry, is

preprocessed into vertex buffers without heights

which are then added using a vertex shader during

rendering. This algorithm was chosen as a basis for

our terrain visualization implementation.

Hardware Metrics

In order to focus the optimization of any

hardware accelerated algorithm, it is necessary to

devise some kind of hardware metric that could be

used to highlight the bottlenecks and compare results.

In the current low-power hardware, there is

mostly no option to read height data from a texture in

vertex shader, the way the modern terrain rendering

algorithms do. Broadcoms graphics chip on the

Raspberry PI computer is a notable exception to that,

but unfortunately, no samples of that hardware were

available at the time of writing this paper. Therefore,

all the data for terrain rendering needs to be available

in vertex buffer(s) prior to actual rendering.

To render a terrain, one typically stores the

necessary data in a few vertex buffers. One of the

vertex buffers would hold vertices for all possible tile

resolutions or configurations. There would be also a

second buffer, containing indices to render the vertex

data as a triangle strip or just bare triangles. And at

last, there would need to be a buffer with height data

per every vertex. Note that this buffer needs to

contain unique data per every tile being displayed,

unlike the afore-mentioned two buffers, which can be

used to display practically any terrain tile. Keeping

this buffer separate is a logical choice, as one only

needs to update the height coordinate, and the CPU-

GPU traffic is therefore reduced, compared to

updating full 3D coordinates of tile vertices.

There are several aspects of terrain rendering on

low-power GPU, under above mentioned conditions.

These include rendering from more than one vertex

buffer, rendering from more than one index buffer,

updating shader uniform parameters for individual

tile transformation, setting constant vertex attribute

for individual tile transformation, setting a different

vertex attribute pointer to source data from arbitrary

portion of vertex buffer, and last but not least, the

size of the batch in which the tiles are updated. All

these are described in subsequent paragraphs.

Rendering from more than one vertex buffer

may come in handy when having multiple sets of

vertex data. The scenarios may include having

separate vertex buffers for different tile resolution or

topology, or having a tile allocation scheme,

requiring the use of separate buffers. Also, one might

want to consider sourcing data from multiple vertex

buffers to reduce the number of index buffers

required (the index buffers for tiles can be typically

shared among the tiles of the same resolution, and

since the indices cover the same range of vertices,

typically starting with zero).

Rendering from more than one index buffer is

typically not a strong requirement, as the rendering

API functions enable simple selection of range of

data in the buffer, being used as indices in order to

render some geometry. In particular, the

glDrawElements() functions enables selection of byte

offset in the buffer, and of the number of indices

being read. On the other hand, it might be an

architectural requirement of the terrain rendering

subsystem to keep the buffers separate.

Because of sharing position data (except the

height) among the tiles (or at least among the tiles of

the same resolution), the tile transformation needs to

be somehow passed to the GPU. This may include

tile position, rotation and possibly scale. One of the

ways to pass this information is to employ uniform

shader parameters, that would be read and interpreted

by the vertex shader.

The other way of accomplishing the same goal

might be to use constant vertex attributes. Vertex

attributes are usually sourced from arrays, stored in

vertex buffer objects. On the other hand, it is possible

to set the value of any vertex attribute to constant

value for the use in the next draw calls. The only

difference between constant vertex attribute and

uniform shader parameter is that the vertex attribute

is a global property and uniform is a property

associated with a program object.

In order to reuse index data, it might be

necessary to change the physical address from where

the vertex data are sourced, inside a vertex buffer

object. This is done by a call to the

glVertexAttribPointer() function, entering a format of

the vertex attribute, and offset in the buffer. This is a

complementary method to using multiple vertex

buffers.

Finally, due to severe limitations of available

memory, so typical for low-power devices (such

devices can share e.g. 256 MB of memory between

GPU, the application and indeed the operating

system), there needs to be an efficient caching

scheme for replacing the tiles in memory as they are

needed. Since the GPU and the CPU needs to

communicate the data, be it using a bus and direct

memory access in high end systems, or possibly a

plain memory copy in low-power systems, there is

always some latency overhead before the transfer is

initiated. Therefore, it might be a good strategy to

transfer tile data in bigger batches, rather than

transferring individual tiles separately.

To obtain the above mentioned hardware

metrics, a simple benchmark was devised. Since most

of the times can be expected to be of the magnitude

of tenths of milliseconds, it is not possible to use a

direct approach of measuring the time. Instead, a

minimalist real-world terrain rendering loop was

devised, initially rendering the terrain by a single

draw call, all the tiles being stored in one long vertex

buffer and all the indices in one long index buffer.

This gives baseline frame time, which is averaged

over many frames. In the actual benchmark, the

rendering loop ran for 10 seconds while counting the

frames, and as the time budget was exceeded, the

resulting frame time is simply a ratio of time elapsed

to number of rendered times. It is important to make

sure that the frame time is limited by the vertical sync

to 1/60th of a second, by issuing sufficient workload

to keep the GPU busy for longer time. The results

were also validated as not being rasterizer-bound by

setting the viewport from its original size (800 x 600)

to 2 x 2 pixels, and comparing the results. Then, to

measure any of the above-mentioned metrics, the

rendering loop is modified so as to incorporate a

method of implementing an operation, associated

with such metric, and the resulting average frame

time is subtracted from the baseline frame time. For

example, to measure time required to set shader

uniform parameter, one would modify the loop to

only use the first tile vertex data, and set translation

parameter prior to rendering each tile. As the

differences are quite small, it is also important to

establish a significance level to make sure that the

measurement is actually not only noise, caused by

frame rate fluctuation. To do that, the baseline

benchmark is ran many times, and the standard

deviation is used as a level below the measurements

are considered insignificant. This scheme is very

simple to implement, gives results that are easy to

interpret in a real-world situation, and is also quite

robust. The results, obtained for the NVIDIA Tegra 2

GPU, running on a module with ARM4I CPU with

256 MB of memory, can be seen in table 1. The

terrain for the benchmark consisted of 1024 tiles,

arranged in a 32 x 32 matrix, each tile having 64 x 64

vertices.

Table 1. Hardware metrics benchmark results

Operation Time [mS]

Vertex buffer swap 3.52

Index buffer swap 4.01

Shader reconfig 2.90

Vertex attrib reconfig 7.54

Vertex attrib pointer reconfig 23.38

Tile upload (batch size)

1 185.78

2 152.96

4 138.12

8 159.77

16 167.38

32 167.63

64 156.29

128 155.50

256 154.46

512 153.44

1024 150.62

Standard deviation 0.314375

As can be seen, all the operations are well above

the noise level, given by standard deviation, and can

be considered valid. Also note that the results are per

rendering 1024 batches (tiles), and are therefore

scaled thousand times (and should be in nS instead of

mS). But in this context, the relative magnitudes are

important, rather than absolute values.

The first striking fact is that the tile upload is by

far the most expensive operation (25% of tiles were

updated each frame, in batches of size given in the

middle column in table 1). Also, the upload can be

made faster by batching data for more tiles in a single

transfer. This shall be the first priority in the

proposed algorithm.

Also very interesting is that setting shader

uniform parameter is actually faster than setting the

value of constant vertex attribute. This is very easy to

incorporate in any algorithm, without the need for

greater changes.

Another fact is that the rendering pipeline is

stalled by changing the source of vertex attribute

data, and it is much faster to swap index buffer

instead, in case there is one with indices pointing to

the right place in the vertex buffer. It would seem it

might be faster to keep the data in multiple vertex

buffer as time for vertex buffer swap is much smaller,

but after swapping the vertex buffer, vertex attribute

pointers need to be reconfigured as well (the time for

that is not included), making it even slower. Also, it

is impossible to load batches of data to multiple

vertex buffers at once.

System architecture

The results from the benchmarks led to a simple

decision about the optimal solution to the tile caching

problem. The rendering system was written in the

C++ language and comprises of several layers. The

bottom-most retrieval layer takes care about reading

the tiles from the ASTER GDEM dataset [9], stored

on a flash drive. Above that, there is the cache layer.

The caching algorithm is plugged as a template

parameter, and can be easily exchanged for a

different one. The cache layer can interpolate and

crop the height data to produce any rectangle of any

level-of-detail for uploading to the GPU and display.

If the tiles were uploaded individually, the

performance wouldn't be optimal. That's why there is

one more layer between the cache and the GPU. It is

called the contiguous buffer allocator, and it is a

simple memory allocation policy, priorizing

contiguous allocation of in-frame data in order to be

able to transfer it in one piece to the GPU. The

allocation of the data works in a single linear memory

space, and can be actually easily mirrored to the GPU

buffers as well (the relative address allocated in CPU

memory space is used in GPU memory space as

well).

The allocating algorithm works in two passes.

The allocator keeps a list of geometry generators,

each of which gives a description of how much data

in what format it needs to transfer to the GPU. It also

keeps track of allocated blocks, and their assignment

to the generators. In the first pass, these geometry

generators are polled to see how much memory needs

to be allocated. Then, the associated blocks (if any)

are deallocated, and the process of looking for

sufficiently long contiguous space begins. All the

blocks are sorted by format (so as to avoid changing

vertex attribute pointers, if possible), and are

allocated as a single contiguous block of memory, at

the lowest address where it doesn't collide with other

blocks that remain allocated. The block can also be

broken to several smaller blocks if it exceeds

sufficient size, beyond which the benefit of

transferring the block in a single memory transaction

diminishes. Once the addresses of the blocks are

resolved, the second pass begins, where the geometry

generators obtain the addresses of blocks in memory

and start filling it with data. At the end, the block is

copied to the GPU.

Results

The described allocation policy is best described

by the algorithmic complexities involved. The

allocation table of blocks is represented by a tree,

where the address of the first byte of the block is used

as the key of the tree node. The unused space is also

being represented by blocks, which are flagged as

unused.

When the blocks are reallocated which were

allocated already, they need to be first deleted,

merging the free space in unused blocks. This

operation takes linear time in the number of blocks,

because the blocks are arranged in the tree by their

address, and it only takes O(1) lookup to the neighbor

residing at lower address to merge the unused blocks

incrementally. After that, the allocated blocks need to

be sorted by vertex format. That takes O(n log n)

time, but in some systems where all the vertices have

the same format, this step can be omitted. Finally, a

contiguous free space, large enough to hold the

blocks need to be found. This takes worst-case linear

time in number of blocks, allocated and unused, and

O(log n) at average, since the search stops at the first

usable block, rarely reaching the end of the list.

Therefore, the complexity of allocation of N blocks

with M blocks already allocated is:

O(N) + [O(N log N)] + O(log M) (1)

The second logarithmic term can be further

diminished by hierarchic representation of the used

blocks, since these are typically allocated many in

one block, and can be represented as such. This

would highly reduce M, leading to nearly linear

allocation time in number of blocks (or constant

allocation time if seen from the perspective of

allocating a single block), which is a very good

result.

The other aspect of the proposed allocator is the

amount of wasted space it allows. To be able to

formally prove it, let's assume, without the loss of

generality, that the blocks being allocated are all of

equal size. It is easy to see that the most memory-

thrashing pattern is to allocate all the blocks, and then

reallocate all but the one before the last one. That

then serves as a pivot that holds the free space left

from it. The next allocation again loses one block,

making the blocks small enough to fit left from the

pivot. This process can continue recurrently until all

the blocks are deposited. It is easy to see that the

worst-case space needed to hold k blocks of size S is:

(2k - 2)S (2)

Although this is not a very good result, it is paid

for by the allocator speed. In practice, the results are

typically much better. To calculate average space

needed, a benchmark was devised where 1000 blocks

were allocated at random, for many steps, until the

average results converged. The results are in table 2.

Table 2. Allocator workspace

Block size distribution Space (average)

Constant (S) 1542.31 S

Gaussian with center at S 1866.08 S

Uniform between 0 and S 825.73 S

The ideal result for storing 1000 blocks of size S

would be 1000 S. Due to the inevitable memory

fragmentation, that is unfortunately not possible. The

gaussian results are somewhat worse than constant

size blocks, most likely because constant size blocks

tend to align nicely even when reallocated, causing

less fragmentation.

Note that although the last result seems to be

incorrect (since 1000 blocks is stored and average

space is smaller than that), it is caused by the

distribution of the block sizes, where the majority of

blocks have smaller size than S, due to the uniform

distribution.

Conclusions, future work

A novel memory allocation technique was

proposed in this paper, enabling fast contiguous

allocation of data to be transferred to the GPU (or

any other target, separated by a bus with latency).

The algorithm is well suited for efficient terrain tile

caching. It was implemented in a primary flight

display system for fast realistic terrain rendering on

low-power hardware.

The technique need not be limited to the

rendering of terrain, but can be extended for

rendering of all the graphical primitives in the said

primary flight display, including the indicators and

other user interface elements. It would be interesting

to connect the technique with statistic prediction of

block reallocation in order to stabilize the frequently

allocated blocks at one place in the storage, and to be

able to minimize memory fragmentation in general

and further increase performance.

References

[1] de Boer, W. H., "Fast Terrain Rendering Using

Geometrical Mipmapping", Unpublished paper,

available at http://www.flipcode.com/articles/

article_geomipmaps.pdf, 2000, pp. 1-7

[2] Ulrich, T., "Rendering Massive Terrains Using

Chunked Level of Detail Control", SIGGRAPH

Course Notes 3, 5, 2002

[3] Pouderoux J. and Marvie J., "Adaptive Streaming

and Rendering of Large Terrains Using Strip Masks",

Proceedings of the 3rd international conference on

Computer graphics and interactive techniques in

Australasia and South East Asia, 2005, pp. 306

[4] Cignoni P., Ganovelli F., Gobbetti E., Marton F.,

Ponchio F., and Scopigno R., "BDAM - Batched

Dynamic Adaptive Meshes for High Performance

Terrain Visualization", Computer Graphics Forum

22, 3, 2003, pp. 505-514

[5] Montani C., Cignoni P., Rocchini C., and

Scopigno R., "External Memory Management and

Simplification of Huge Meshes", IEEE Transactions

on Visualization and Computer Graphics 9, 4, 2003,

pp. 525-537

[6] Gobbetti E., Cignoni P., Ganovelli F., Marton F.,

Ponchio F., and Scopigno R, "Interactive Out-of-Core

Visualisation of Very Large Landscapes on

http://www.flipcode.com/articles/
http://www.flipcode.com/articles/

Commodity Graphics Platform", Lecture notes in

computer science, 2003, pp. 21-29

[7] Gobbetti E., Marton F., Cignoni P., Di Benedetto

M. and Ganovelli F., "C-BDAM - Compressed

Batched Dynamic Adaptive Meshes for Terrain

Rendering", Computer Graphics Forum 25, 3, 2006,

pp. 333-342

[8] Livny Y., Kogan Z. and El-Sana J., "Seamless

Patches for GPU-based Terrain Rendering", The

Visual Computer 25, 3, 2008, pp. 197-208

[9] NASA Land Processes Distributed Active

Archive Center, "ASTER Global Digital Elevation

Model", available online at

http://www.gdem.aster.ersdac.or.jp/.

Acknowledgements

This work was supported by the European

Regional Development Fund in the IT4Innovations

Centre of Excellence project (CZ.1.05/1.1.00/

02.0070), by Technology Agency of the Czech

Republic research project “Smart Autopilot” (TACR

TA01010678) and by the Advanced Recognition and

Presentation of Multimedia Data project (FIT-S-11-

2).

Email Addresses

The addresses of the authors are the following:

{ipolok, ibarton, chudyp, krsek, smrz,

idittrich}@fit.vutbr.cz.

31st Digital Avionics Systems Conference

October 14-18, 2012

http://www.gdem.aster.ersdac.or.jp/
mailto:ipolok@fit.vutbr.cz
mailto:ibarton@fit.vutbr.cz
mailto:chudyp@fit.vutbr.cz
mailto:krsek@fit.vutbr.cz
mailto:smrz@fit.vutbr.cz
mailto:idittrich@fit.vutbr.cz

