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ABSTRACT
In Hliněná et al., Pre-orders and orders generated by uninorms, in 15th International Conference IPMU 2014, Proceedings,
Part III, Montpellier, France, 2014, pp. 307–316 the authors, inspired by Karaçal and Kesicioğlu, A t-partial order obtained
from t-norms, Kybernetika. 47 (2011), 300–314, introduced a pre-order induced by uninorms. This contribution is devoted
to a classification of families of uninorms by means of pre-orders (and orders) they induce. Philosophically, the paper follows
the original idea of Clifford, Naturally totally ordered commutative semigroups, Am. J. Math. 76 (1954), 631–646. The present
paper is an extension of the paper Hliněná and Kalina, A characterization of uninorms by means of a pre-order they induce, in
Conference of the International Fuzzy SystemsAssociation and the European Society for Fuzzy Logic andTechnology (EUSFLAT
2019), Atlantis Press, 2019, pp. 595–601 thatwas presented at EUSFLAT2019.As a by-product, we present a t-norm that possesses
a single discontinuity point.
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1. INTRODUCTION

In this paper we study pre-orders induced by uninorms on bounded
lattices. The main idea is based on that of Karaçal and Kesicioğlu
[1], and follows the original idea of Clifford [2] and Mitsch [3].
The main idea of the authors of this paper is to show a relationship
between families of uninorms and families of pre-orders (partial
orders, in some cases) they induce (see Hliněná et al. [4]). Another
relation induced by uninorms, that is always a partial order (see
Definition 16), was proposed by Ertuğrul et al. [5]. Here, the main
intention of the authors was to get a partial order. This relation
(partial order) does not suit well our purposes. In Preliminaries,
we will explain what can be characterized by particular types of
(pre-)orders.

The present paper is an extension of Hliněná and Kalina [6] that
was presented at the EUSFLAT 2019 conference held in Prague.

2. PRELIMINARIES

We assume that readers are familiar with bounded lattices. For
information on this topic we recommend the monograph by
Birkhoff [7].

*Corresponding author. Email: martin.kalina@stuba.sk; kalina@math.sk

In the whole paper, (L, ⩽L, 𝟎L, 𝟏L)will denote a (not fixed) bounded
lattice, where L is the set of all values of the lattice. If no confu-
sion may occur, by L we will denote also the whole bounded lattice.
For arbitrary x, y ∈ L, if these elements are incomparable, we will
denote the fact by

x ∥L y.

The set of all elements which are incomparable with x, will be
denoted by Ix, i.e.,

Ix = {y ∈ L ∶ y ∥L x}. (1)

In this section we review some well-known types of monotone
commutative monoidal operations on L and provide an overview
of, from the point of view of this contribution, important steps
in introducing orders (and pre-orders) induced by semigroups.
Before starting the review of the well-known monoidal operations
we introduce yet one notation.

For a function F ∶ A → B, where A and B are some non-void sets,
and a setCwith∅ ≠ C ⊂ A, the restriction of F toCwill be denoted
by

F ↾ C.
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2.1. Known Types of Monotone
Commutative Monoidal Operations on
[0, 1] and on L

In this part we give just very brief review of well-known types
of monotone commutative monoidal operations on L. For more
details on monoidal operations on [0, 1] we recommend mono-
graphs Calvo et al. [8] and Klement et al. [9].

Definition 1 (see, [9]) A triangular norm T (t-norm for short) on
[0, 1] is a commutative, associative, monotone binary operation,
fulfilling the boundary condition T(x, 1) = x, for all x ∈ [0, 1].
Definition 2 (see, [9]) A triangular conorm S (t-conorm for short)
on [0, 1] is a commutative, associative, monotone binary operation,
fulfilling the boundary condition S(x, 0) = x, for all x ∈ [0, 1].
Definition 3 Let L be a bounded lattice. A function N ∶ L → L is
a negation if

• N(𝟎L) = 𝟏L, N(𝟏L) = 𝟎L,

• N is monotone (decreasing).

If moreoverN is a bijection,N is said to be strict. IfN(N(x)) = x for
all x ∈ L, N is said to be strong.

Remark 1.

(a) If T is a t-norm, then

S(x, y) = 1 − T(1 − x, 1 − y)

is a t-conorm and vice versa. We obtain a dual pair (T, S) of a
t-norm and a t-conorm.

(b) t-norms and t-conorms on bounded lattices are defined in
the same way as on [0, 1]. Concerning their mutual relation-
ship (duality), if L is a lattice with a strong negation N, for
every t-norm T

S(x, y) = N(T(N(x),N(y)))

is the dual t-conorm, and vice versa.

Example 1. Well-known examples of t-norms and their dual t-
conorms are the following:

• TM(x, y) = min(x, y), SM(x, y) = max(x, y),
• TP(x, y) = x.y, SP(x, y) = x + y − x.y,
• TL(x, y) = max(x + y − 1, 0), SL(x, y) = min(x + y, 1).

Casasnovas and Mayor [10] introduced divisible t-norms.

Definition 4 (see [10]) Let L be a bounded lattice and T ∶ L×L →
L be a t-norm. T is said to be divisible if the following condition is
satisfied for all (x, y) ∈ L2

(x ⩽ y) ⇒ (∃z ∈ L)(T(y, z) = x). (2)

Of course, a t-norm T ∶ [0, 1]2 → [0, 1] is divisible if and only if it
is continuous.

Definition 5 (see, [8]) Let ∗ ∶ L2 → L be a binary commutative
operation. Then

i. element c is said to be idempotent if c ∗ c = c,

ii. element e is said to be neutral if e ∗ x = x for all x ∈ L,

iii. element a is said to be annihilator if a ∗ x = a for all x ∈ L.

Definition 6 (see [11]) A uninorm U is a function U ∶ [0, 1]2 →
[0, 1] that is increasing, commutative, associative and has a neutral
element e ∈ [0, 1].

Karaçal and Mesiar [12] have shown that on every bounded lattice
L possessing at least three elements we can choose an element e ∉
{𝟎L, 𝟏L} and construct a uninorm U ∶ L2 → L with the neutral
element e.

Remark 2. Let L be a bounded lattice. For any uninormUwith neu-
tral element equal to e we denote

A(e) = [𝟎L, e[ × ]e, 𝟏L] ∪ ]e, 𝟏L] × [𝟎L, e[ . (3)

• If e ∉ {𝟎L, 𝟏L} is the neutral element of U, we say that U is a
proper uninorm.

• Every uninorm U has a distinguished element a called
annihilator, for which the following holds
U(a, x) = U(𝟎L, 𝟏L) = a. A uninorm U is said to be conjunctive
if U(x, 𝟎L) = 𝟎L, and U is said to be disjunctive if U(𝟏L, x) = 𝟏L,
for all x ∈ [𝟎L, 𝟏L].

Lemma1 (see [13]) LetU be a uninormwith the neutral element e.
Then, for (x, y) ∈ [0, 1]2 the following holds:

i. T(x, y) = U(ex,ey)
e

is a t-norm,

ii. S(x, y) = U((1−e)x+e,(1−e)y+e)−e
1−e

is a t-conorm.

For all (x, y) ∈ A(e) we have

min(x, y) ⩽ U(x, y) ⩽ max(x, y).

The notion of locally internal operations on [0, 1]was introduced by
Martín et al. [14]. This notion was generalized to operations (uni-
norms) on bounded lattices by Çayli et al. [15].

Definition 7 (see [14, 15]) Let U be a uninorm. We say that U is
locally internal if U(x, y) ∈ {x, y} for all (x, y) ∈ [0, 1]2.
A uninormU is locally internal on a set G ⊂ [0, 1]2 ifU(x, y) ∈ {x, y}
for all (x, y) ∈ G.

Let L be a bounded lattice. We say that a uninorm U ∶ L2 → L is
locally internal if

U(x, y) ∈ {x, y, x ∧ y, x ∨ y}.

Among locally internal uninorms, we will be interested mainly in
those which are locally internal on a set G.

Remark 3.

(a) Particularly, a uninorm U (on [0, 1]) is locally internal on the
boundary if U(x, 0) ∈ {x, 0} and U(x, 1) ∈ {x, 1} holds for all
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x ∈ [0, 1]. Some examples of uninorms which are not locally
internal on the boundary can be found, e.g., in Hliněná et al.
[16,17,4], see also Figure 1.

(b) An important family of uninorms is that of locally internal
ones. Results of Drewniak and Drygaś [18] imply that, on
the unit interval, the family of all locally internal uninorms
is identical with that of idempotent uninorms. Some further
study of locally internal uninorms can be found, e.g., in Dry-
gaś [19] and in literature referenced therein.

Example 2. Now, we present the construction of the uninorm
U1 sketched in Figure 1. This construction has been published
in Hliněná et al. [4]. We will analyze this uninorm in the last
subsection. We choose function f(z) = z

2 −
1
8 that will represent

values U1( 18 , z) for z ∈ [ 14 ,
3
4 ]. Using this function and a repre-

sentable uninorm Ur we compute all other values in the rectangle
]0, 14 [×]

1
4 ,

3
4 [, and by commutativity we get also the values in the

rectangle ] 14 ,
3
4 [×]0,

1
4 [ . In general, f ∶ [ 14 ,

3
4 ] → [0, 14 ] is a func-

tion that is continuous, strictly increasing and fulfilling f( 14 ) = 0,
f( 12 ) =

1
8 and f( 34 ) =

1
4 . These properties (and the way of the con-

struction) guarantee that for arbitrary x ∈]0, 14 [ and z ∈ ]0, 14 [
there exists a unique y ∈ ] 14 ,

3
4 [ such that U1(x, y) = z.

Let us now construct the values of U1 in the rectangle A =
]0, 14 [×]

1
4 ,

3
4 [. Using function f, for arbitrary x ∈ ]0,

1
4 [ there exists

unique ̄y ∈ ] 14 ,
3
4 [ such that x = U( 18 , ̄y). Namely, ̄y = f−1(x) =

2x+ 1
4 . For arbitrary (x, y) ∈ A we get

U1(x, y) = U1
(
U1

(1
8 , ̄y

)
, y
)
= U1

(1
8 ,U1( ̄y, y)

)
, (4)

and U1( ̄y, y) = Ur( ̄y, y). Since U1( 18 , z) = f(z) for z ∈ [ 14 ,
3
4 ], this

implies U1(x, y) = U1
( 1
8 ,Ur( ̄y, y)

)
= f(Ur( ̄y, y)). Finally, using the

definition of f and the formula for ̄y, we have that

U1(x, y) =
Ur(2x + 1

4 , y)
2 − 1

8 . (5)

Figure 1 Uninorm U1, example of a
uninorm not locally internal on the
boundary.

For (x, y) ∉ ]0, 14 [×]
1
4 ,

3
4 [∪]

1
4 ,

3
4 [×]0,

1
4 [, we define

U1(x, y) =

⎧
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎩

0, if min{x, y} = 0,

or if max{x, y} ⩽ 1
4 ,

1, if min{x, y} ⩾ 3
4 ,

1
4 , if 0 < min{x, y} ⩽ 1

4

and max{x, y} ⩾ 3
4 ,

or if min{x, y} = 1
4

and max{x, y} > 1
4 ,

Ur(x, y), if (x, y) ∈ ]14 ,
3
4 [

2,

max{x, y}, if 14 < min{x, y} < 3
4

and max{x, y} ⩾ 3
4 .

(6)

In Figure 1 we have sketched-level functions of U1 for levels
1
16 ,

1
8 ,

3
16 in the rectangles ]0, 14 [×]

1
4 ,

3
4 [ and ] 14 ,

3
4 [×]0,

1
4 [ .

Concerning other types of uninorm on the unit interval we provide
the following results by Drewniak and Drygaś [18], Martín et al.
[14] and by Ruiz-Aguilera et al. [20].

Lemma 2 Let U be a uninorm. U is idempotent if and only if U is
locally internal.

Proposition 3 (see, [21]) Let f ∶ [−∞,∞] → [0, 1] be an increas-
ing bijection. Then

U(x, y) = f−1
(
f(x) + f(y)

)
(7)

is a uninorm that is continuous everywhere except at points (0, 1) and
(1, 0), and is strictly increasing on ]0, 1[2. U is conjunctive if we adopt
the convention −∞ + ∞ = −∞, and U is disjunctive adopting the
convention −∞+∞ = ∞.

Definition 8 (see, [21]) The uninorm U fulfilling formula (7) for
an increasing bijection f ∶ [−∞,∞] → [0, 1] adopting either of the
conventions, −∞ + ∞ = −∞ or −∞ + ∞ = ∞, is said to be a
representable uninorm.

Remark 4. Representable uninorms, under the name aggregative
operators were studied already by Dombi [22].

Uninorms on bounded lattices with similar properties like the rep-
resentable ones, have been constructed by Bodjanova and Kalina
[23]. These uninorms utilize the notion of a commutative ℓ-group.
Another important class of uninorms is that of continuous ones on
]0, 1[2. These uninorms were characterized by Hu and Li [24], and
further studied by Drygaś [25]. From results in Hu and Li [24] we
have the following characterization.

Proposition 4 A uninorm U with neutral element e ∈ ]0, 1[ is con-
tinuous on ]0, 1[2 if and only if one of the following conditions is
satisfied:



D. Hliněná and M. Kalina / International Journal of Computational Intelligence Systems 14(1) 148–158 151

i. U is representable,

ii. there exists an element a with 0 < a < e, a continuous t-normT
and representable uninorm Ur and an increasing bijection 𝜑 ∶
[a, 1] → [0, 1] such that
U(x, y) = 𝜑−1

(
Ur(𝜑(x), 𝜑(y))

)
for (x, y) ∈ [a, 1]2,

U(x, y) = aT( x
a
, y
a
) for (x, y) ∈ [0, a]2,

U(x, y) = min{x, y} for (x, y) ∈ [0, a[ ∩ ]a, 1[ ∪ ]a, 1[ ∩ [0, a[,
and U is locally internal on the boundary,

iii. or there exists an element b with e < b < 1 a continuous t-
conorm S and a representable uninorm Ur and an increasing
bijection 𝜑 ∶ [0, b] → [0, 1] such that
U(x, y) = 𝜑−1

(
Ur(𝜑(x), 𝜑(y))

)
for (x, y) ∈ [0, b]2,

U(x, y) = b + (1 − b)S( x−b
1−b

, y−b
1−b

) for (x, y) ∈ [b, 1]2,
U(x, y) = max{x, y} for (x, y) ∈ ]b, 1] ∩ [0.b[ ∪ [0, b[ ∩ ]b, 1],
and U is locally internal on the boundary.

Some other important classes of uninorms were studied, e.g., in
[26,27]. Now, we provide an overview of some families of uni-
norms on bounded lattices. Bodjanova andKalina [23] have defined
uninorms based on commutative lattice-ordered groups. Lattice-
ordered groups were defined by Birkhoff [7].

Definition 9 (see [7]) Let (L̃, ⩽L̃) be a lattice and (L̃, ∗) be a group
such that for all x1, x2, y1, y2 fulfilling x1 ⩽L̃ x2 and y1 ⩽L̃ y2 the
following holds

x1 ∗ y1 ⩽L̃ x2 ∗ y2.

Then (L̃, ⩽L̃, ∗) is said to be a lattice ordered group, ℓ-groups for
brevity.

Proposition 5 (see [23]) Let (L̃, ⩽L̃, ∗) be a commutative ℓ-group.
Set L = L̃ ∪ {𝟎L, 𝟏L} and organize (L, ⩽L, 𝟎L, 𝟏L) into a bounded
lattice with the bottom element 𝟎L and the top element 𝟏L that is an
extension of (L̃, ⩽L̃). The function Uc ∶ L × L → L defined by

Uc(x, y) =
⎧⎪
⎨⎪
⎩

x ∗ y for (x, y) ∈ L̃2,
𝟎L if x = 𝟎L or y = 𝟎L,
𝟏L if x = 𝟏L and y ≠ 𝟎L

or if y = 𝟏L and x ≠ 𝟎L,

(8)

is a conjunctive uninorm. The function Ud ∶ L × L → L defined by

Ud(x, y) =
⎧⎪
⎨⎪
⎩

x ∗ y for (x, y) ∈ L̃2,
𝟏L if x = 𝟏L or y = 𝟏L,
𝟎L if x = 𝟎L and y ≠ 𝟏L

or if y = 𝟎L and x ≠ 𝟏L,

(9)

is a disjunctive uninorm.

As Bodjanova and Kalina [23] noted, if L is a 𝜎-complete lattice, we
can define a limit

lim
n→∞

an = {
∞
∨

n=1
an for increasing sequences,

∞
∧

n=1
an for decreasing sequences.

Using the just defined limit the following assertion holds.

Lemma 6 (see [23]) Let L be a bounded lattice from Proposition
5 that is moreover 𝜎-complete, and Uc be the conjunctive uninorm
on L defined by (8). Then

lim
i→∞

Uc(ai, b) = Uc

(
lim
i→∞

ai, b
)
,

where (ai)∞i=1 is a monotone sequence.

Remark 5.

1. An assertion similar to Lemma 6 could be formulated also the
uninorm Ud from Proposition 5.

2. Lemma 6 shows that we have a kind of continuity for the uni-
norms Uc and Ud everywhere except of points (𝟎L, 𝟏L) and
(𝟏L, 𝟎L). Thismeans, these uninorms have properties similar to
representable uninorms on [0, 1].

Definition 10 The uninorms Uc and Ud defined in Proposition 5,
will be called ℓ-group-based uninorms.

Birkhoff [7] introduced the notion of ordinal sum of bounded lat-
tices. Let us have bounded lattices (L1, ⩽L1 , 𝟎L1 , 𝟏L1 ) and (L2, ⩽L2
, 𝟎L2 , 𝟏L2 ). We construct a new bounded lattice (L, ⩽L, 𝟎L1 , 𝟏L2 ) in
such a way that we “paste” the two lattices at elements 𝟏L1 and 𝟎L2 .
This means, we consider these two elements to be equal and the lat-
tice order ⩽L is given by

x ⩽L y ⇔
⎧
⎨
⎩

x ∈ L1 y ∈ L2,
x ⩽L1 y for (x, y) ∈ L21,
x ⩽L2 y for (x, y) ∈ L22.

Of course, we could also paste the lattices L1 and L2 by pasting them
at 𝟏L2 and 𝟎L1 . To distinguish these two possible ordinal sums, we
will denote the former one by (L1 ∪ L2, 𝟎L1 , 𝟏L2 ) and the latter one
by (L1 ∪ L2, 𝟎L2 , 𝟏L1 ).
For properties of ordinal sums of bounded lattices and the technic
of pasting we recommend the paper by Riečanová [28].

Proposition 7 Let (L̃, ⩽L̃, ∗) be a commutative ℓ-group, 𝟎L and
𝟏L two distinguished elements and (L̂, ⩽L̂, 𝟎L̂, 𝟏L̂) a bounded lattice.
Denote L = L̃ ∪ {𝟎L, 𝟏L}and let (L, ⩽L, 𝟎L, 𝟏L) be the bounded lattice
that extends (L̃, ⩽L̃) in the way as in Proposition 5. Further, denote
L1 = (L ∪ L̂, 𝟎L̂, 𝟏L) and L2 = (L ∪ L̂, 𝟎L, 𝟏L̂) the two possible ordi-
nal sums of the lattices L and L̂. Choose an ℓ-group-based uninorm
Uℓ ∶ L × L → L, a divisible t-norm T ∶ L̂ × L̂ → L̂ and a divisi-
ble t-conorm S ∶ L̂ × L̂ → L̂. Functions U1 ∶ L1 × L1 → L1 and
U2 ∶ L2 × L2 → L2 fulfilling respectively

U1(x, y) =

⎧⎪⎪
⎨
⎪⎪
⎩

Uℓ(x, y) for (x.y) ∈ L2,
T(x, y) for (x, y) ∈ L̂2,
min(x, y) if max(x, y) ∈ L̃

and min(x, y) < 𝟏L̂,
∈ {x, y} if x = 𝟏L or y = 𝟏L,

(10)
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U2(x, y) =

⎧⎪⎪
⎨
⎪⎪
⎩

Uℓ(x, y) for (x.y) ∈ L2,
S(x, y) for (x, y) ∈ L̂2,
max(x, y) if max(x, y) > 𝟎L̂

and min(x, y) ∈ L̃,
∈ {x, y} if x = 𝟎L or y = 𝟎L,

(11)

are uninorms if and only if the partial functions U1(𝟏L, ⋅) = U1(⋅, 𝟏L)
and U2(𝟎L, ⋅) = U2(⋅, 𝟎L) are monotone and there exists and idem-
potent element x1 of T and x2 of S such that

U1(y, 𝟏L) = {𝟏L for y > x1,
y for y < x1,

U2(y, 𝟎L) = {𝟎L for y < x2,
y for y > x2.

Proof. The construction of the uninorms is in fact an ordinal sum
of a uninorm and a t-norm or a t-conorm, respectively. Hence we
skip a detailed proof that the functions U1 and U2 are uninorms.

Definition 11 The uninormU1 constructed in Proposition 7 is said
to be an ordinal sum of a divisible t-norm and an ℓ-group-based
uninorm. The uninorm U2 constructed in Proposition 7 is said to
be an ordinal sum of an ℓ-group-based uninorm and a divisible t-
conorm.

In Remark 3 we have pointed out the equality of the family of idem-
potent uninorms and that of locally internal uninorms on the unit
interval. On bounded lattices the situation is different. It is straight-
forward that if a uninorm on a bounded lattice L is locally internal
then it is idempotent. The next example shows that the converse
implication is not true (more such examples can be found in Kalina
[29]).

Example 3. Denote L = [0, 1]2 with the usual coordinate-wise
ordering. Denote x = (x1, x2) and y = (y1, y2) and define

U(x, y) =
(
max(x1, y1),min(x2, y2)

)
.

Then

U(𝟎L, 𝟏L) = (1, 0) ∉ {𝟎L, 𝟏L, 𝟎L ∧ 𝟏L, 𝟎L ∨ 𝟏L},

hence U is idempotent but not locally internal.

2.2. An Overview of Pre-Orders Induced by
a Semigroup

The study of orders (pre-orders) induced by a semigroup operation
had started by Clifford [2]. Later, Hartwig [30] and independently
also Nambooripad [31], defined a partial order on regular semi-
groups. Their definition is the following.

Definition 12 (see [30, 31]) Let (S,⊕) be a semigroup and ES the
set of its idempotent elements. Then

a ⩽⊕ b ⇔ (∃e, f ∈ ES)(a = b⊕ e = f⊕ b).

If the relation ⩽⊕ is a partial order on S, it is called natural.

Definition 12 was generalized by Mitch [3].

Definition 13 (see [3]) Let (S,⊕) be an arbitrary semigroup. By
≲⊕ we denote the following relation

a ≲⊕ b ⇔ a = b⊕ z1 = z2 ⊕ b, a⊕ z1 = a

for some z1, z2 ∈ ES1 , where

S1 =
⎧
⎨
⎩

S if S has a neutral element,
S ∪ {e} otherwise, where e plays

the role of the neutral element,

and ES1 is the set of all idempotents of S1.

Lemma 8 (see [3]) Let (S,⊕) be an arbitrary semigroup. The rela-
tion ≲⊕ is reflexive and anti-symmetric on S.

Proposition 9 (see [3]) Let (S,⊕) be an arbitrary semigroup. The
relation

a ≲⊕ b ⇔ a = x⊕ b = b⊕ y, a = x⊕ a (12)

for some x, y ∈ S1, is a partial order on S.

Fromnowon, we restrict our attention to commutative semigroups.
Lemma 8 and Proposition 9 immediately imply the following.

Lemma 10 Let (S,⊕) be a commutative semigroup. By a≲⊕ we
denote the set

a≲⊕ = {z ∈ S ∶ z ≲⊕ a},

where a ∈ S. Then for all a, b ∈ S it holds that a ≲⊕ b if and only if
a≲⊕ ⊆ b≲⊕ .

Directly by Definition 13 we get the following assertion.

Proposition 11 Let (S,⊕) be a commutative semigroup. Then the set
a≲⊕ is an ideal in (S,⊕).

Lemma 12 Let (S,⊕) be a commutative semigroup. Let IS be an
ideal of (S,⊕). Then (IS,⊕IS ) is a sub-semigrup of (S,⊕), where
⊕IS = ⊕ ↾ I2S .

Karaçal and Kesicioğlu [1] defined a partial order on bounded lat-
tices L by means of t-norms.

Definition 14 (see [1]) Let L be a bounded lattice and T ∶ L×L →
L a t-norm. We write x ⪯T y for arbitrary x, y ∈ L, if there exists
z ∈ L such that x = T(y, z).
Proposition 13 (see [1]) Let L be a bounded lattice and T ∶ L×L →
L a t-norm. Then the relation ⪯T is a partial order on L.

Remark 6. For arbitrary t-norm T, the partial order ⪯T from Def-
inition 14 extends the partial order ≲T from Definition 13 in the
following sense: let L be an arbitrary bounded lattice and T a com-
mutative semigroup operation on Lwith a neutral element such that
(L, ⪯T) is a partially ordered set. Then

a ≲T b ⇒ a ⪯T b

for all a, b ∈ L.

Important properties of the relation ⪯T by Karaçal and Kesicioğlu
[1] are the following.
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Proposition 14 (see [1]) Let T ∶ L × L → L be a t-norm. Then

(a) ⪯T ⊂ ⩽L,

(b) T is divisible if and only if ⪯T = ⩽L.

Remark 7. Concerning a correspondence between properties of a
binary aggregation function A ∶ L2 → L and the relation ⪯A
(changing a t-norm T for A in Definition 14), the following can be
said:

• if A has a neutral element, or A is idempotent, then ⪯A is
reflexive,

• if A is associative, then ⪯A is transitive,

• the anti-symmetry of ⪯A fails if there exist elements x ≠ z and
y1, y2 such that z = A(x, y1) and x = A(z, y2). Hence, if one of
the following holds

(∀(x, z) ∈ L2) x ⪯A z ⇒ x ⩽L z,
(∀(x, z) ∈ L2) x ⪯A z ⇒ z ⩽L x,

then ⪯A is anti-symmetric. However, these two conditions are
just sufficient as we may observe later in Example 5.

Hliněná et al. [4] introduced the following relation ⪯U.

Definition 15 (see [4]) Let U ∶ [0, 1]2 → [0, 1] be an arbitrary
uninorm. By ⪯U we denote the following relation

x ⪯U y if there exists ℓ ∈ [0, 1] such that U(y, ℓ) = x.

Immediately by Definition 15 we get the next lemma.

Lemma 15 Let U be an arbitrary uninorm. Then ⪯U is transitive
and reflexive. If a and e are the annihilator and the neutral elements
of U, respectively, then

a ⪯U x ⪯U e

holds for all x ∈ [0, 1].

Remark 8. In Definition 15 we have used the same notation ⪯U for
the pre-order defined from a uninormU, as in Definition 14 for the
corresponding partial order⪯T defined from a t-normT. These two
relations really coincide ifU = T, i.e., the notation should not cause
any problems.

The pre-order ⪯U extends the partial order ≲U from Proposition 9
in the following sense.

Proposition 16 Let U be an arbitrary uninorm. Then

x ≲U y ⇒ x ⪯U y (13)

for all (x, y) ∈ [0, 1]2.

A different type of partial order induced by uninorms has been
defined by Ertuğrul et al. [5].

Definition 16 (see [5]) Let U be a uninorm and e ∈ ]0, 1[ its neu-
tral element. For (x, y) ∈ [0, 1]2 denote x ⊴U y if one of the follow-
ing properties is satisfied:

1. there exists ℓ ∈ [0, e] such that x = U(y, ℓ) and (x, y) ∈ [0, e]2,
2. there exists ℓ ∈ [e, 1] such that y = U(x, ℓ) and (x, y) ∈ [e, 1]2,
3. 0 ⩽ x ⩽ e ⩽ y ⩽ 1.
Proposition 17 (see [5]) For an arbitrary uninorm U, the relation
⊴U from Definition 16 is a partial order.

Example 4. Consider the following uninorm U

U(x, y) = {
min(x, y) if (x, y) ∈ [0, 12 ]

2,

max(x, y) otherwise.

Then ⊴U coincides with the usual order of [0, 1], while x ≲U y (see
Proposition 9) if one of the following possibilities is satisfied

• y ⩽ x for x > 0.5,
• x ⩽ y for (x, y) ∈ [0, 0.5[2,
• y = 0.5.

Remark 9. Let U be a uninorm. To compare the relation ⪯U from
Definition 15 with ⊴U from Definition 16, the following should be
remarked.

i. The relation ⪯U, given in Definition 15 is a pre-order, but not
necessarily a partial order. Unlike this, the relation ⊴U defined
by Definition 16, is always a partial order.

ii. As illustrated by Example 4, the partial order ⊴U does not
necessarily extends the partial order ≲U on the semigroup
([0, 1],U), i.e.,

x ≲U y ⇒⊴U y.

As shown by Proposition 16, the pre-order ⪯U always extends
the partial order ≲U on ([0, 1],U), see formula (13).

Remark 10. Our intention is to characterize some families of uni-
norms by means of a (pre-)order they induce. As we have seen
in this overview, we have at least three possibilities for the choice
of an appropriate (pre-)order, namely that one by Mitsch [3] ≲U
(Proposition 9), by Ertuğrul et al. citeEKK-16 ⊴U (Definition 16)
and by Hliněná et al. [4] ⪯U (Definition 15). As we have pointed
out in Proposition 16, the pre-order⪯U extends≲U, this means the
pre-order ⪯U has less incomparable pairs of elements of L then it is
the case when using ≲U and thus, ⪯U can better characterize fami-
lies of uninorms then ≲U.

Concerning the partial order⊴U, it can well be used to characterize
the underlying t-norm and t-conorm of a family of uninorms, how-
ever, it does not distinguish uninorms outside of [𝟎L, e]2 ∪ [e, 𝟏L]2.
The above reasoning leads us to the choice of the pre-order ⪯U
(Definition 15) to distinguish families of uninorms.

Definition 17 Let U be an arbitrary uninorm.

i. For (x, y) ∈ [0, 1]2 we denote x ∼U y if x ⪯U y and y ⪯U x.

ii. For (x, y) ∈ [0, 1]2 we denote x ∥U y if neither x ⪯U y nor
y ⪯U x holds, and x ∦U y if x ⪯U y or y ⪯U x.

iii. For arbitrary x ∈ [0, 1] we denote x∼U = {z ∈ [0, 1] : z ∼U x}.
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3. SOME DISTINGUISHED FAMILIES OF
UNINORMS AND PROPERTIES OF THE
CORRESPONDING PREORDERS

We are going to study a relationship between some distinguished
families  of uninorms on bounded lattices on the one hand and
properties of the corresponding pre-orders ⪯U for U ∈  on
the other hand. When not otherwise stated, we will work with a
bounded lattice (L, ⩽L, 𝟎L, 𝟏L) (whose properties may be specified
if necessary) and uninorms U ∶ L × L → L.

As Deschrijver [32] has shown, except of conjunctive and disjunc-
tive uninorms there exist also uninorms of the third type, namely
those which are neither conjunctive nor disjunctive.

A direct consequence to Lemma 15 is the following.

Corollary 18 LetU be a uninorm. The following holds for all x ∈ L:

i. 𝟎L ⪯U x if and only if U is conjunctive,

ii. 𝟏L ⪯U x if and only if U is disjunctive,

iii. a ⪯U x where a ∉ {𝟎L, 𝟏L} if and only if U is of the third type.

3.1. Locally Internal Uninorms

In this part we distinguish three types of locally internal uninorms:

1. on the boundary,

2. on A(e),

3. on [0, e]2 ∪ [e, 1]2.
Proposition 19 Let U be a uninorm. It is locally internal on the
boundary if and only if for every element x ∈ L

𝟎L ∦U x and 𝟏L ∦U x.

Proposition20 LetU be a uninormwith a neutral element e. Assume
Ie = ∅. It is locally internal on A(e) if and only if⪯U is a partial order
with the following properties:(

∀(x, y) ∈ [𝟎L, e]2
)

(x ⪯U y ⇒ x ⩽L y), (14)

(
∀(x, y) ∈ [e, 𝟏L]2

)
(x ⪯U y ⇒ y ⩽L x), (15)

and x ∦U y for every (x, y) ∈ A(e).

Proof. (⇒) If U is locally internal on A(e) then U(x, y) ∈ {x, y} for
(x, y) ∈ A(e). This and the fact that Ie = ∅ imply directly that ⪯U
is a partial order with the required properties.

(⇐) Let (x, y) ∈ A(e) and U(x, y) = z ∉ {x, y}. Without loss of
generality we may assume z < e. Then z ⪯U x and at the same
time x ⩽L z, which contradicts the constraint (14). This finishes the
proof of the assertion.

Remark 11. For an arbitrary uninorm U and for a pair (x, y) ∈ L2,
we have

U(x, y) = x ⇒ x ⪯U y,
U(x, y) = y ⇒ y ⪯U x.

Results by Drygaś [19] imply that if a uninorm U is locally internal
on A(e), there are three possibilities:

(a) U(x, y) = min{x, y} for all (x, y) ∈ A(e),

(b) U(x, y) = max{x, y} for all (x, y) ∈ A(e),

(c) there exists a (not necessarily strictly) decreasing function
f ∶ [0, e[ → ]e, 1] such that, for (x, y) ∈ [0, e[ × ]e, 1], we have

U(x, y)
⎧
⎨
⎩

= x if y < f(x),
= y if y > f(x),
∈ {x, y} if y = f(x).

The next examples show what may happen if one of the constraints,
(14) or (15), is not fulfilled, or if Ie ≠ ∅, respectively.

Example 5. (See [33]) We present a uninormUp ∶ [0, 1]2 → [0, 1]
with the neutral element e = 1

2 constructed by “paving” (see Bod-
janova and Kalina [33], Kalina and Král’ [34] and Zhong et al. [35]
for the construction technic). We have I0 = ]0, 12 [, I1 = ] 12 , 1[.
𝜑1 ∶ ]0, 12 [ → ] 12 , 1[ is an increasing bijection, we can choose
𝜑1(z) = z− 1

2 . Further we set T(x, y) = 2xy for (x, y) ∈ [0, 12 ]
2,

𝜑0 ]0, 12 [→ ]0, 12 [ to be the identity and 𝜑2 ∶ ]0,
1
2 [ → {1}. Then

Up(x, y) = 𝜑i+j
(
T(𝜑−1i (x), 𝜑−1j (j)

)
for x ∈ Ii and y ∈ Ij. Otherwise,

Up(x, y) =

⎧⎪⎪⎪
⎨
⎪⎪⎪
⎩

0 if min(x, y) = 0,
1 if max(x, y) = 1, min(x, y) ≠ 0,

x if y = 1
2 ,

y if x = 1
2 .

In this case we get x ⪯Up
y if one of the following conditions is

fulfilled:

x = 0
x = 1 and y ≠ 0

y = 1
2

x ⩽ y for (x, y) ∈
(
[0, 1] ⧵ {0, 1, 12 }

)2
.

The uninormUp, see Figure 2, is not locally internal onA(e), though
⪯Up

is a linear order. Constrain (15) is violated.

Example 6. Now, we present a uninorm U with Ie ≠ ∅ that is
locally internal on A(e) but ⪯U is not an order. Let (L̃, ⩽L̃, ∗) be
a commutative ℓ-group and L1 = {𝟎L, a, b, e, 𝟏L}. Organize L =
L1 ∪ L̃ into a lattice which is ordered in the following way:

• 𝟎L ⩽L a ⩽L e ⩽L b ⩽L 𝟏L,
• a ⩽L x ⩽L b for all x ∈ L̃,

• for (x, y) ∈ L̃2, x ⩽L̃ y ⇒ x ⩽L y.
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Figure 2 The layout of the uninorm from
Example 5.

On L we define the following uninorm:

U(x, y) =

⎧
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎩

x ∗ y for (x, y) ∈ L̃2,
x ∧L y if x ⩽L aor y ⩽L a,
x ∨L y for (x, y) ∈ {e, b, 𝟏L}2,
x if y = e

or if y ∈ L̃, x ⩾L b,
y if x = e

or if x ∈ L̃, y ⩾L b.

U is a uninorm with Ie = L̃ that is locally internal on A(e) and ⪯U
is not an order since x ∼U y for all (x, y) ∈ L̃2.

Proposition 21 LetU be a uninormwith Ie = ∅. U is locally internal
on [𝟎L, e]2 ∪ [e, 𝟏L]2 if and only if it is locally internal. In that case
⪯U is a linear order if and only if L is a chain.

Proof. If a uninorm is locally internal on [𝟎L, e]2∪[e, 𝟏L]2 and with
Ie = ∅, then it is idempotent. Hence, for x ∈ [𝟎L, e] and y ∈ [e, 𝟏L]

U(x, y) = U(U(x, x), y) = U(x,U(y, y)).

If U(x, y) ∈ [𝟎L, e] then

x ⩽L U(x, y) = U(x,U(x, y)) ⩽L x

and similarly for U(x, y) ∈ [e, 𝟏L] we could prove U(x, y) = y. This
implies that U is locally internal. Of course, local internality of U
implies local internality on [𝟎L, e]2 ∪ [e, 𝟏L]2. Assume that L is a
chain. Then {x, y, x∧L y, x∨L y} = {x, y}. This means thatU is locally
internal and hence x ∦U y for all (x, y) ∈ L2. Thus, ⪯U is also a
chain. On the other hand, assume there exist x, y such that x ∥L y.
Let (x, y) ∈ [𝟎L, e]. Then U(x, y) = x ∧L y ∉ {x, y} and thus, x ∥U y.

By the next example we illustrate what may happen if Ie ≠ ∅.

Example 7. Assume L = {𝟎L, 𝟏L, a, e} is a bounded lattice with
a ∥L b. The lattice L is a so-called diamond. The next tables define
two uninorms on L with the neutral element e. Both uninorms are
locally internal on [𝟎L, e]2 ∪ [e, 𝟏L]2.
The uninorm U1, see Table 1, generates the linear order ⪯U1

𝟎L ⪯U1 𝟏L ⪯U1 a ⪯U1 e.

The uninorm U2, see Table 2, generates the partial order ⪯U2

a ⪯U2 𝟎L ⪯U2 e, a ⪯U2 𝟏L ⪯U2 e

and 𝟎L ∥U2 𝟏L. Thus, when Ie ≠ ∅, the local internality of a uni-
norm U on [𝟎L, e]2 ∪ [e, 𝟏L]2 is no guarantee that all elements of
[𝟎L, e] are comparablewith respect to⪯U with all elements of [e, 𝟏L].

3.2. Uninorms with Divisible Underlying
T-Norm and T-Conorm

Results by Karaçal and Kesicioğlu [1] imply the following.

Proposition 22 Let U be a proper uninorm with a neutral element
e. Then U has divisible underlying t-norm and t-conorm if and only
if the following holds:

x ⩽ y ⇒ x ⪯U y for (x, y) ∈ [𝟎L, e]2,
y ⩽ x ⇒ x ⪯U y for (x, y) ∈ [e, 𝟏L]2.

The proof of Proposition 22 is omitted since it is a direct con-
sequence of divisibility of t-norms and t-conorms. Recall that a
special example of uninorms with divisible underlying t-norm and
t-conorm are commutative ℓ-group-based uninorms where we
have x ∼U y for all (x, y) ∈ (L ⧵ {𝟎L, 𝟏L)2.
Propositions 20 and 22 have the following corollary.

Corollary 23 Let U be a proper uninorm with Ie = ∅. Then U is
locally internal on A(e) and with divisible underlying t-norm and
t-conorm if and only if x ∦U y if and only if x ∦L y.

Applying Proposition 7 to the pre-order ⪯U we get the following
characterization of commutative ℓ-group-based uninorms.

Proposition 24 A uninorm U is commutative ℓ-group-based if and
only if for all (x, y) ∈ (L ⧵ {𝟎L, 𝟏L})2 we have x ∼U y.

Proposition 7 implies the following characterization of the ordinal
sum of a divisible t-norm or a divisible t-conorm and an ℓ-group-
based uninorm (seeDefinition 11). The characterization is split into
two propositions.

Table 1 Uninorm U1.

U1 𝟎L a e 𝟏L
𝟎L 𝟎L 𝟎L 𝟎L 𝟎L
a 𝟎L a a 𝟏L
e 𝟎L a e 𝟏L
𝟏L 𝟎L 𝟏L 𝟏L 𝟏L

Table 2 Uninorm U2.

U2 𝟎L a e 𝟏L
𝟎L 𝟎L a 𝟎L a
a a a a a
e 𝟎L a e 𝟏L
𝟏L a a 𝟏L 𝟏L
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Proposition 25 Let U be a proper uninorm with neutral element e.
Then it is an ordinal sum of a divisible t-norm and an ℓ-group-based
uninorm if and only if there exists 𝟎L < a < e such that

1. x ∼U y for all (x, y) ∈ ]a, 𝟏L[2,
2. x ⪯U y ⇔ x ⩽ y for all (x, ) ∈ [𝟎L, a]2,
3. Ia = ∅.

Proof. The fact that the ordinal sum of a divisible t-norm and
an ℓ-group-based uninorm induces a pre-order described in
Proposition 25 is straightforward by Definition 11 and
Proposition 7. We are going to prove the fact that if a pre-order
fulfils the constraints of Proposition 25, it is induced by the ordinal
sum of a divisible t-norm and an ℓ-group-based uninorm.

By Proposition 24 we have that U ↾ ]a, 𝟏L[2 is a commutative ℓ-
group operation.

Let U(x, y) = z for x ∈ [𝟎L, a] and y ∈ ]a, 𝟏L[. Because of mono-
tonicity ofUwe have z ⩽L a. Of course, sinceU ↾ ]a, 𝟏L[2 is a com-
mutative ℓ-group operation, there exists y−1 such that U(y, y−1) =
e. We have three possibilities.

1. z <L x. In this case U(z, y−1) = x and we have x ⪯U z which
contradicts assumption 2 of the assertion in question.

2. z >L x. This implies z ⪯U x and we have a contradiction with
assumption 2. The above reasoning implies that only the third
possibility, namely z = x is not contradictory. Then we get by
Proposition 14 thatU ↾ [𝟎L, a]2 is a divisible t-norm. This fin-
ishes the proof.

Proposition 26 Let U be a proper uninorm with neutral element e.
Then it is an ordinal sum of an ℓ-group-based uninorm and a divis-
ible t-conorm if and only if there exists e < b < 𝟏L such that

1. x ∼U y for all (x, y) ∈ ]𝟎L, b[2,
2. x ⪯U y ⇔ x ⩾ y for all (x, y) ∈ [b, 𝟏L]2,
3. Ib = ∅.

We skip the proof of Proposition 26 since it follows the same idea
as that of Proposition 25.

As a corollary to Propositions 25 and 26 we get the following.

Corollary 27 Let U ∶ [0, 1]2 → [0, 1] be a proper uninorm with a
neutral element e and different from a representable uninorm. Then
U is continuous on ]0, 1[2 if and only if one of the following holds:

I. there exists a < e such that
1. x ∼U y for all (x, y) ∈ ]a, 1[2,
2. x ⪯U y ⇔ x ⩽ y for all (x, y) ∈ [0, a]2,

II. there exists b > e such that
1. x ∼U y for all (x, y) ∈ ]0, b[2,
2. x ⪯U y ⇔ x ⩾ y for all (x, y) ∈ [b, 1]2.

3.3. Some Other Classes of Uninorms on L
and on [0, 1]

First, we analyze the uninorm U1 from Example 2. Looking at the
layout of U1 (Figure 1) we get pre-order that is induced by U1. Par-
ticularly, the following holds:

Lemma 28 Let U1 be the uninorm from Example 2. Then

• x ∼U1 y for all (x,y)∈ ]0,
1
4 [

2
,

• x ∼U1 y for all (x,y)∈ ]
1
4 ,

3
4 [

2
,

• 0 ⪯U1
1
4 ⪯U1 x for all x ∈ ]0, 1],

• x ⪯U1 y for all x ∈ [0, 14 ] ∪ [
3
4 , 1] and y∈ ] 14 ,

3
4 [,

• 1 ⪯U1 x for all x ∈ ] 14 , 1],

• x ∥U1 y for all x ∈ [ 34 , 1] and y∈ ]0,
1
4 [, and for (x, y) ∈ [ 34 , 1[

2
.

Now, we restrict our attention to T1 = U1 ↾ [0, 12 ]
2, this means, we

restrict our attention to the underlying t-norm T1. Considering the
partial order ⪯T1 we get

Lemma 29 Set T1 = U1 ↾ [0, 12 ]
2. Then

• x ⪯T1 y if and only if x ⩽ y for all (x,y)∈ [0, 14 [
2
,

• x ⪯T1 y if and only if x ⩽ y for all x ∈ [0, 12 ] and y∈ ] 14 ,
1
2 ],

• x ∥T1
1
4 for all x∈ [0, 14 [,

and this implies that
(
1
4 ,

1
4

)
is the only discontinuity point of T1.

Proof. Due to the construction of the uninorm U1 in Example 2,
for all x ∈ ]0, 14 [ and all y ∈ [0, x] there exists z ∈ [ 14 , 1] such
that U1(x, z) = T1(x, z) = y. This implies that T1 is continuous
on [0, 14 [ × [0,1] ∪ [0,1] × [0,

1
4 [. Further, for all x ∈ ] 14 ,

1
2 ] and all

y ∈ [0, 12 ] there exists z ∈ [0, 12 ] such that T1(x, z) = y. Hence, T1
is continuous also on ] 14 ,

1
2 ] × [0,1] ∪ [0,1] × ]

1
4 ,

1
2 ]. Since

1
4 ∥T1 x

for all x ∈ ]0, 14 [, we conclude that (
1
4 ,

1
4 ) is the only discontinuity

point of T1.

Next, we provide some results on uninorms with an area of con-
stantness in [0, e]2 or [e, 1]2.
Proposition 30 (See [16]) Let U ∶ [0, 1]2 → [0, 1] be a proper
uninorm having e as neutral element. Let y > e be an idempotent
element of U. If there exists x < e such that U(x, y) = x̃ ∈ ]x, e[ then

U(z, y) = x̃ and U(z, x) = U(x̃, x) for all z ∈ [x, x̃].

Proposition 30 can be directly generalized for uninorm on bounded
lattices into the following form:
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Proposition 31 Let U ∶ L × L → L be a proper uninorm and
y ∉∥e be an idempotent element. Assume there exists x ∉∥e such that
U(x, y) = x̃ ∉ {x, y}. Then we have that

1. if x <L x̃ <L e <L y then U(z, y) = x̃ and U(z, x̃) = U(z, x) for
all z ∈ [x.x̃],

2. if x >L x̃ >L e >L y then U(z, y) = x̃ and U(z, x̃) = U(z, x) for
all z ∈ [x̃, x].

Thus we get the following corollary.

Corollary 32 Let U ∶ L × L → L be a proper uninorm having e as
neutral element.

i. Assume y < e is an idempotent element ofU. Then either x ∦U
y for all x ∈ [e, 1] or there exists an interval ]a, b] ⊂ [e, 1] such
that y ∥U z for all z ∈ ]a, b].

ii. Assume y > e is an idempotent element ofU. Then either x ∦U
y for all x ∈ [0, e] or there exists an interval [a, b[ ⊂ [0, e] such
that y ∥U z for all z ∈ [a, b[.

Kalina and Král’ [34] introduced uninorms which are strictly
increasing on ]0, 1[2, but not continuous. The constructionmethod
was further studied by Bodjanova and Kalina [33] and by Zong
et al. [35]. Since we are not able to distinguish among continuous
t-norms T (t-conorms S) by means of the relation ⪯T (⪯S), we are
not able to characterize unambiguously uninormswhich are strictly
increasing on ]0, 1[2. We present the main idea of the construction
method, paving, in case the basic “brick” is the product t-norm T𝜋:

(a) we split the interval ]0, 1[ into infinitely countably many dis-
joint right-closed subintervals {Ij; j ∈  }, where is an index
set and ( , ∗⚬, j0) is a commutative increasing monoid and j0
is its neutral element,

(b) 𝜗j ∶ Ij → ]0, 1] is an increasing bijection.

The resulting uninorm is defined by

Up(x, y) = 𝜗−1i∗⚬j
(
T𝜋(𝜗i(x), 𝜗j(y))

)
for x ∈ Ji, y ∈ Jj,

0 if min{x, y} = 0, 1 otherwise.

(16)

Concerning the properties of ⪯Up
there are two possibilities

depending whether ( , ∗⚬, j0) is a group or not.
Proposition 33 Let Up be a uninorm defined by (16), ( , ∗⚬, j0) be a
commutative group and {Ij; j ∈  } be a system of disjoint right-closed
intervals whose union is ]0, 1[. Then

i. for every j ∈  and all (x, y) ∈ I2j we have

x ⪯Up
y ⇔ x ⩽ y,

ii. for all i, j ∈  , i ≠ j, all x ∈ Ji and y ∈ Jj we have

x ∼Up
y ⇔ 𝜗j(y) = 𝜗i(x),

x ⪯ lUp
y ⇔ 𝜗i(x) ⩽ 𝜗j(y).

Proposition 34 Let Up be a uninorm defined by (16), ( , ∗⚬, j0) be a
commutative monoid without inverse elements, with the neutral ele-
ment j0 and {Ij; j ∈  } be a system of disjoint right-closed intervals
whose union is ]0, 1[. Then

i. for every j ∈  and all (x, y) ∈ I2j we have

x ⪯Up
y ⇔ x ⩽ y,

ii. for all i, j ∈  , i ≠ j, all x ∈ Ji and y ∈ Jj we have x ⪯Up

y ⇔ 𝜗i(x) ⩽ 𝜗j(y) and (∃k ∈  )(j∗⚬k = i), x ∥Up
y if and

only if one of the following holds (∄k ∈  )(j∗⚬k = i ∨ i∗⚬k = j),
(∃k ∈  )(j∗⚬k = i) and 𝜗i(x) > 𝜗j(y), (∃k ∈  )(i∗⚬k = j) and
𝜗i(x) < 𝜗j(y).

We could formulate dual theorems to Propositions 33 and 34 for the
case when the basic “brick” is the probabilistic sum t-conorm.

4. CONCLUSIONS

In the paper we have reviewed known types of (pre-) orders induced
by semigroups. Our main goal was to characterize some families
of uninorms on the unit interval as well as on bounded lattices.
We have chosen the pre-order introduced by Hliněná et al. [4] as
the most appropriate for our intention. We have characterized uni-
norms which are locally internal on the boundary, on A(e) and on
([𝟎L, e] ∪ [e, 𝟏L])2, uninorms with divisible uderlying operations,
and some other types of uninorms. As a by-product, we have pre-
sented a t-norm with a single discontinuity point.
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