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Abstract—This article presents a novel total least-squares
based method for errors-in-variables model identification with a
known structure. This method considers the errors of both input
and output variables and thus achieves more accurate estimates
compared to conventional ordinary least-squares based methods.

The introduced method consists of two recursive total least-
squares algorithms connected in a hierarchical structure, which
allows for exploitation of nuisance variables and a priori known
structure of the identified model. The total least-squares (TLS)
method is introduced, and a new “nuisance improved hierarchical
total least-squares” (nHTLS) method is derived. Its properties are
discussed and proved by simulations. Furthermore, the method
is applied in a practical experiment consisting of the state-
space identification of the permanent magnet synchronous motor
(PMSM). The introduced method is compared with TLS and
proven to provide measurably superior dynamical behavior and
smaller estimation error of results.

Index Terms—Total Least-Squares, Errors-in-Variables, Hier-
archical Total Least-Squares, Nuisance Variables, PMSM Iden-
tification

I. INTRODUCTION

Linear model identification is a crucial ingredient for many
applications. Noisy inputs are an extensive issue complicating
the identification of the linear models, leading to errors-in-
variables (EIV) regression problems.

While EIV identification of not only linear systems [1] is
being frequently solved by total least-squares methods, it still
has significant drawbacks. Since the structure of the identified
system is often a part of preliminary information, structured
total least-squares is used in [2], [3]. Although this method ac-
counts for the structure of the problem, real-time applications
often require recursive identification to provide an adaptive
solution to the problem or to minimize memory requirements
for computations. While there are some optimized algorithms
for structured TLS [4] et al., there are no recursive algorithms.
The motivation of this paper is to derive a recursive algorithm
benefiting from the inclusion of the structure of the EIV
problem.
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of this paper was made possible by the grant No. FEKT-S-20-6205 - ”Research
in Automation, Cybernetics and Artificial Intelligence within Industry 4.0”
financially supported by the Internal science fund of Brno University of
Technology.

This paper extends the total least-squares (TLS) algorithm
originated by Golub and Van Loan [5], [6] by exploiting weak
estimation properties of singular value decomposition through
a structure of the given problem. The exploitation benefits
from the hierarchical structure, as used for example in [7],
[8]. Such methods were also practically implemented in [9],
[10] and [11], but they are all based on ordinary least-squares
method, unsuitable for errors-in-variables models.

The introduced method is suitable for EIV models, which
is demonstrated on state-space permanent magnet synchronous
motor (PMSM) identification. Identification of such motor al-
ways relies on measured values of currents and rotor mechan-
ical angular speed, which is always affected by a substantial
amount of noise, and therefore ordinary least-squares methods
should be used only with caution. The identified model can
then be adopted by modern control algorithms, as introduced
in [12] etc.

Throughout the paper we will use boldfaced uppercase
letters for matrices and boldfaced lowercase letters for vectors.
All vectors are a column vectors. Nomenclature ‖•‖F means
Frobenius norm, while ‖•‖2 means `2 norm. In and 0n means
n× n identity matrix and zero matrix respectively. Transpose
is depicted by •T , diagonal matrix by diag(•) and rank of
matrix by rank(•). Determinant is | • | and operator stacking
one columns of a matrix underneath the previous one is vec(•).
Operators Cov[•, •] and E[•] denotes covariance and expected
value respectively.

In this paper, the following accents are used to depict the
basic properties of variables. The meaning of the accents •,
•̃ and •̂ is noiseless variable, noisy variable, and estimate of
the noiseless variable, respectively. Combination of accents ˆ̃•
denotes variable that consists of estimates and noisy variables.

II. STATEMENT OF THE PROBLEM

Consider functions y(t) and h(t) which are linearly related
in the form

y(t) = h(t)T θ, (1)

however, instead of observing y(t) and h(t), we observe

h̃i(t) = hi(t) + δhi(t), i = 1, 2, 3, . . . , n (2)

ỹ(t) = y(t) + δy = h(t)T θ + δy (3)



where δh and δy are mutually uncorrelated normal distributed
stochastic signals with zero mean and unknown variance
rh, ru,

E[δy] = E[δhi
] = 0 (4)

Cov[δhi
, δhj

] = 0, i 6= j (5)
Cov[δhi

, δy] = 0. (6)

Regressor h(t) has following structure

h(t) = [u(t-n), u(t-n-1), . . . , u(t-1),

-y(t-m), -y(t-m-1), . . . , -y(t-1)]T , (7)

where the accent of h has been omitted, since this structure
is the same for all combinations of them.

The problem under study here is the estimation of the pa-
rameter θ from measurements ũ(t0), ỹ(t0), . . . , ũ(T ), ỹ(T ),
while following assumptions holds true. The dynamic system
is stable and its structure of is known. Number of identified
parameters k and structure of h are therefore unambiguously
declared. Also, all the system modes are observable and
controllable. Finally, the input signal u(t) provides persistent
excitation.

III. TOTAL LEAST-SQUARES

Model from (2)-(3) can be rearranged to

0 ≈
[
h̃(t)T , ỹ(t)

] [
θT , −1

]T
= ϕ̃(t)Tϑ. (8)

System of all equations based on (8) for t ∈< t0, T > can
be then formulated as

0 =
(

Φ̃ + [∆H, ∆y]
)
ϑ, Φ̃ =

[
H̃, ỹ

]
, (9)

where 0 is zero vector or matrix of corresponding size.
Note, that corrections ∆H and ∆y had to be added in
the equation to ensure, that rank

(
Φ̃ + [∆H, ∆y]

)
= m+ n.

Finding optimal corrections and therefore estimate of θ leads
to the following TLS minimization problem.

{θ̂,∆H,∆y} := minimize
θ,∆H,∆y

‖[∆H, ∆y]‖F

subject to 0 =
(

Φ̃ + [∆H, ∆y]
)
ϑ (10)

The existence and uniqueness of the solution of the classical
TLS is given by the following theorem proved in [13]:

Theorem 1. Solution of the total least-squares problem.
Let

m+ n 1[ ]
H̃, ỹ = UΣVT , where Σ = diag (σ1, . . . , σn+m+1)

be a singular value decomposition of Φ̃ and σ1 ≥ · · · ≥
σn+m+1 be the singular values of Φ̃. After defining of the
partitioning

V =

m+ n 1[ ]
V11 v12

v21 v22

, Σ =

m+ n 1[ ]
Σ1 0
0 σn+m+1

,
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Fig. 1: Visualization of the TLS solution ϑ̂, correction
matrix ∆Φ and nuisance variables Φ̂ on given data Φ̃.

a TLS solution exists if and only if v22 is non-zero. In addition,
it is unique if and only if σn+m 6= σn+m+1. In the case when
the TLS solution exists and is unique, it is given by

θ̂ =
−v12

v22
,

the corresponding TLS correction matrix is

[∆H, ∆y] = −U diag (0, σn+m+1) VT

and nuisance variables are

Φ̂ = Φ̃ + [∆H, ∆y] = U diag (Σ1, 0) VT .

The TLS is proved [14] to be an unbiased maximum
likelihood estimator of the parameters θ, which leads to the
conclusion, that for t→∞, θ̂ → θ. The conclusion is proved
in [5].

The Theorem 1 defined nuisance variables Φ̂ =
[
Ĥ, ŷ

]
as

an estimate of the true values
[
H, y

]
in such way, that if

θ̂ → θ, than Φ̂ → Φ. The TLS results can be visualized for
special case, when ϕ̃(t)T = [ũ(t− 1), ỹ(t)]

T . Noisy variable
Φ̃, depicted in the Fig. 1 as black dots, are analyzed and
last principal component is found. It is depicted as blue line
constructed as [u, y]θ̂, where u and y are horizontal and
vertical axis, respectively. This means, that for ϕ ∈ R2,
first principal component is also solution of TLS problem.
Orthogonal projection of measured data ϕ̃ to first principal
component line is thus nuisance variable ϕ̂ (red dots).

Batch TLS solution presented by Theorem 1 is unsuitable
for realtime application. Therefore, a recursive total least-
squares (RTLS) algorithm needs to be provided. To calculate
TLS solution recursively, singular value decomposition is
avoided for its high computational complexity. Theorem 1



states, that for calculation of θ̂ there is only required the eigen-
vector [v12, v22]

T corresponding to the smallest eigenvalue
σn+m+1.

minimize
θ̂

ϑ̂
(

Φ̃T Φ̃
)
ϑ̂T

ϑ̂T ϑ̂
(11)

Optimal solution can therefore be found using algorithm
1, which utilizes inverse iteration of constrained Rayleigh
quotient (11) to find smallest eigenvector [v12, v22]

T . Detailed
derivation can be found in [15] . Note that Algorithm 1

Algorithm 1 Recursive total least-squares (RTLS)

1: for t← t0 to T do
2: input: θ̂(t− 1),P(t− 1), ϕ̃(t)

3: P(t) = P(t− 1)− P(t−1)(ϕ̃(t)T ϕ̃(t))P(t−1)

1+ϕ̃(t)P(t−1)ϕ̃(t)T

4: v(t) = P(t)
[
θ̂(t− 1)T , −1

]T
5: θ̂(t) = −[v1(t), v2(t), ..., vn+m(t)]T

vn+m+1(t)

6: ϕ̂(t) = ϕ̃(t)− ϕ̃(t)T [θ(t)T ,−1]
T

[θ(t)T ,−1][θ(t)T ,−1]T

[
θ(t)T , −1

]T
7: output: θ̂(t),P(t), ϕ̂(t)
8: end for

does not provide required variables for calculation of nuisance
variables corresponding to Theorem 1. As apparent from prop-
erties of SVD, they are therefore calculated as an orthogonal
projection of the measured data φ̃ to the hyperplane defined
by the variable θ̂.

IV. PROPOSED ALGORITHM

The proposed algorithm exploits the unused structure of
the problem and weak estimation property of the calculated
nuisance variables.

Nuisance variables φ̂ and correction matrix ∆φ are a
byproduct of calculation of the θ̂ using singular value decom-
position. In real applications, they are usually discarded or not
computed at all to reduce computational load, especially in the
case of the RTLS. In such cases, Algorithm 1 is simplified by
omitting line 6.

While the nuisance variables are proved by [16] to be weak
estimator of the true values φ, it provides increasingly better
estimates as θ̂ → θ.

As appreciable from the previous chapter, the TLS method
does not account for the structure of the identified system.
While the structured total least-squares method could be
used to solve this issue, there is no recursive equivalent to
the method, and therefore it is not usable for successive
improvement of previous identification results. The fact, that
the regressor ϕ̃(t) mostly consists of delayed data from past

z−1 RTLS (13) RTLS
ϕ̃(t+1) ϕ̃(t) ϕ̂(t) ˆ̃ϕ(t+1) θ̂(t+1)

Fig. 2: Visualization of nHTLS algorithm.

regressor ϕ̃(t-1) (as apparent from (7)) in combination with
the obtained estimate of the past regressor φ̂(t + 1) can be
exploited using hierarchical structure of two RTLS blocks, as
depicted in the Fig. 2.

Proposed nuisance improved hierarchical total least-squares
(nHTLS) algorithm therefore consists of two consequent RTLS
blocks, where the first one provides nuisance variables. An
nuisance improved regressor for next block ˆ̃ϕ(t + 1) is con-
structed as an combination of the noisy regressor ϕ̃(t+ 1) (7)
and last nuisance variables ϕ̂(t) provided by the first RTLS
block.

ϕ̂(t) = [û(t-n), û(t-n-1), . . . , û(t-1),

-ŷ(t-m), -ŷ(t-m-1), . . . , -ŷ(t-1), -ŷ(t)]T (12)
ˆ̃ϕ(t+1) = [û(t-n-1), û(t-n-2), . . . , ũ(t),

-ŷ(t-m-1), -ŷ(t-m-2), . . . , -ŷ(t), -ỹ(t+1)]T (13)

Notice, that since nuisance variables ϕ̂(t) lies in the princi-
pal subspace of the noisy data ϕ̃(t), as follows from properties
of the singular decomposition, nuisance improved regressor
ˆ̃ϕ(t+1) also lies in the subspace of the noisy data and therefore
existence and unbiasness of the solution θ̂nHTLS directly
follows from the Theorem 1.

Creating a hierarchical structure consisting of two RTLS
algorithms, where one uses regressor ϕ̃(t) and the second one
ϕ̂(t + 1) leads to the superior results for T 6→ ∞ compared
to plain RTLS.

V. SIMULATION RESULTS

For simulations, arbitrary stable 3rd order system from (1)
has been selected, where θ = [−0.9, 0.4, −0.9, −0.7, 1.6]

T

and following structure of the regressor
ϕ(t) = [u(t-3), u(t-2), u(t-1), -y(t-2), -y(t-1), -y(t)]T . Ini-
tial conditions for all simulations are θ̂(0) = [1, 0, 0, 0, 0]

T

and P(0) = I6106. Measurement noise is simulated by adding
δh ≈ N (0, σh) and δy ≈ N (0, σy). Sample of the input

0 500 1000
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(a) Sample of the true u(t) and noisy ũ(t) input data.
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(b) Sample of the true y(t) and noisy ỹ(t) output data.

Fig. 3: Sample of the data, where σh = 0.01 and σy = 0.1.



0 2·104 4·104 6·104 8·104
0

0.5

1

t [s]

∆
θ
(t

)
θ̂TLS(t) θ̂nHTLS(t)

(a) Estimation error for σh = 0.005 and σy = 0.05.

0 2·104 4·104 6·104 8·104
0

10

20

t [s]

∆
θ
(t

)

θ̂TLS(t) θ̂nHTLS(t)

(b) Estimation error for σh = 0.01 and σy = 0.1.

Fig. 4: Estimation error of simulated scenarios.

u(t) and output y(t) data with no noise and with simulated
measurement noise is presented in the figure 3.

Since true values of θ are a priori known, effectivity of
nRTLS can be observed on Euclidean distance of the estimate
from true value in time

∆θ(t) = ‖θ − θ̂(t)‖22. (14)

Simulation with no additional noise δh = 0 and δy = 0
confirms the unbiasedness of the nRTLS, since the estimation
error tends to zero for both methods.

Euclidean distance of the simulations with nonzero noise is
presented in the Fig. 4. Results shows, that θ̂nHTLS provides
better results compared to θ̂TLS irrespective of number of
samples N .

VI. APPLICATION ON IDENTIFICATION OF PMSM

The introduced nHTLS method is, among other models,
usable for the identification of the state-space model of per-
manent magnet synchronous motors (PMSM) in dq reference
frame. State-space model of PMSM

id(t+1) =

(
1−TsRs

Ld

)
id(t) +

TsppLq
Ld

ωm(t)iq(t)+

+
Ts
Ld
ud(t), (15)

iq(t+1) =

(
1−TsRs

Lq

)
iq(t)−

TsppΨPM

Lq
ωm(t)+

+
−TsppLd

Lq
ωm(t)id(t) +

Ts
Lq
uq(t), (16)

ωm(t+1) = ωm(t) +
3TsppΨPM

2J
iq(t)+

+
3Tspp (Ld−Lq)

2J
id(t)iq(t), (17)

is not linear. The only kind of nonlinearity present is the
multiplication of two state variables as presented in (18), (19). id(t+1)
iq(t+1)
ωm(t+1)

 = A

 id(t)iq(t)
ωm(t)

+ F

ωm(t)id(t)
ωm(t)iq(t)
id(t)iq(t)

+ B

[
ud(t)
uq(t)

]
(18)

A =

1−TsRs

Ld
0 0

0 1−TsRs

Lq
−TsppΨPM

Lq

0
3TsppΨPM

2J 1


F =

 0
TsppLq

Ld
0

−TsppLd

Lq
0 0

0 0
3Tspp(Ld−Lq)

2J

 , B =

 Ts

Ld
0

0 Ts

Lq

0 0

 ,
(19)

where id and iq are stator voltage components in dq frame
respectively and ωm is rotor mechanical angular speed. Pa-
rameters Rs, Ld, Lq , ΨPM and J are stator winding resis-
tance, rotor inductance component of d axis, rotor inductance
component of q axis, permanent magnet flux and moment of
inertia respectively and constants pp and Ts are number of
pole pairs and sample period of measured data.

For the purposes of the identification, the problem can be
linearized by replacing the vector of multiplied state variables
[ωm(t)id(t) ωm(t)iq(t) id(t)iq(t)]

T by fabricated exoge-
nous signal vector calculated by (20). Parameters for such
fabricated signals are presented in model 18 as F. This results
in linear model with no approximations and therefore there is
no drawback in using such linearized model.ωmid(t)ωmiq(t)

idiq(t)

 =

ωm(t)
ωm(t)
id(t)

id(t)iq(t)
iq(t)

 (20)

Each of the three state equation of the linear model is first
order system difference equation with multiple inputs similar
to the one in (1). Since the structure is also known, equation
can be simplified such that

θ1 = [a11, b11, f12]
T
,

θ2 = [a22, a23, b22, f21]
T
,

θ3 = [a33, a32, f33]
T
, (21)

ϕ1(t) = [id(t-1), ud(t-1), ωmiq(t-1), id(t)]
T
,

ϕ2(t) = [iq(t-1), ωm(t-1), uq(t-1), ωmid(t-1), iq(t)]
T
,

ϕ3(t) = [ωm(t-1), iq(t-1), idiq(t-1), ω(t)]
T
. (22)

The RTLS algorithm provides nuisance variables ϕ̂1(t), ϕ̂2(t)
and ϕ̂3(t), from which can be constructed nuisance improved
regressors

ˆ̃ϕ1(t) =
[̂
id(t-1), ũd(t-1), ω̂mîq(t-1), ĩd(t)

]T
,

ˆ̃ϕ2(t) =
[̂
iq(t-1), ω̂m(t-1), ũq(t-1), ω̂mîd(t-1), ĩq(t)

]T
,

ˆ̃ϕ3(t) =
[
ω̂m(t-1), îq(t-1), îdîq(t-1), ω̃m(t)

]T
. (23)



Nuisance improved regressors are inputs to the hierarchical
RTLS resulting in a similar structure as presented in Fig. 2
with the only difference that the three algorithms are mutually
connected with (23).

VII. RESULTS OF APPLICATION ON PMSM

Identification data are measured on TG Drives TGT3 (see
Fig. 5) low voltage PMSM motor with sampling period
62.5 µs. Stator currents and voltages in abc frame were mea-
sured and transformed to dq frame. Rotor position is sensed
by the incremental encoder with 4096 edges per mechanical
revolution, and ωm is reconstructed using an EEMF observer.
Data are normalized to ±1. Details can be studied in [17].

Obtained data are separated into identification and verifica-
tion sections, each 33 s long.

Input signals ud and uq are independent and identically dis-
tributed pseudorandom binary sequences providing persistent
excitation. Its sample can be observed in Fig. 6.

Initial conditions for all identifications are

θ̂1(0) = [0, 1, 1]
T
, θ̂2(0) = [0, 1, 1, 1]

T
, θ̂3(0) = [0, 1, 1]

T
,

P1(0) = I4106, P2(0) = I5106, P3(0) = I4106. (24)

Regressor noise is yielded by measurement and preprocessing
of the data. Simulated noise δh = δy ≈ N (0, 0.01) is added
after normalization for second test.

Since parameters of the model are assumed to be unknown,
application of Euclidean distance is not usable in this case.
Instead, models defined by θ̂(t) are compared to the measured
data and Akaike information criteria are calculated.

AIC= 2k − 2 lnL (25)

Equation (25) defines Akaike information criteria (AIC),
where k is the number of estimated parameters and lnL is
the likelihood of the compared model.

Fig. 5: Laboratory setup for data acquisition.
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) ĩq1(t)
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Fig. 6: Sample of measured data and measured data with
additional noise denoted by 1 and 2 respectively.

For this likelihood to be defined, the following substitutions
have to be stated

x(t) =

 id(t)iq(t)
ωm(t)

 , f(t) =

ωm(t)id(t)
ωm(t)iq(t)
id(t)iq(t)

 , u(t) =

[
ud(t)
uq(t)

]
,

ã(t) =


x̃(t)

f̃(t)
ũ(t)

x̃(t+ 1)

 , â(t) =


x̂(t)

f̂(t)
u(t)[

Â, F̂, B̂
] [

x̂(t), f̂(t), u(t)
]T
 ,

A =

a(t0)T

...
a(T )T

 , d = vec
(
Ã
)
− vec

(
Â
)
, (26)

where Â, F̂ and B̂ originate from substituting identified
parameters θ̂1(τ), θ̂2(τ) and θ̂3(τ) to (19) using (21), where τ
is identification step. Extended regressor ã is constructed from
measured data, while extended regressor â is constructed from
simulation data of identified model.

Using substitutions (26), log-likelihood function can be
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Fig. 7: Akaike information criteria for both experiments.

defined as

lnL= −1

2
dTPd− 11

2
ln 2π − 1

2
ln |P−1|, (27)

where P is corresponding precision matrix. For derivation de-
tails refer to [18]. Since noise variances rh, ru are not known
as stated in chapter II, precision matrix can not be determined.
Since it is the same for both compared identification results,
it can be chosen arbitrarily without prioritization of any of the
models. Therefore, it is defined as P = I11106 for comparison
purposes. The resulting information criteria can be observed
in the Fig. 7. The lower the criteria, the higher probability of
the model to be true. As apparent, nHTLS provides a better
model compared to RTLS for any number of samples, which
corresponds to the simulation results.

VIII. CONCLUSION

To improve the dynamic identification properties of recur-
sive total least-squares (RTLS) algorithm, a novel recursive
identification method is proposed. This method exploits the
known structure of the identified system and uses nuisance
variables through a hierarchical structure of RTLS blocks. This
nuisance improved hierarchical total least-squares (nHTLS)
algorithm leads to superior dynamical properties compared to
RTLS while retaining unbiased estimate for given conditions,
meaning that nHTLS achieves a more probable estimate for
the limited number of samples and the same estimate for a
theoretically infinite number of samples compared to RTLS.

Proposed algorithm properties are proved by thorough sim-
ulations presented in chapter V. Successful application on
PMSM state-space identification proved the practical useful-
ness of the presented algorithm.

While nHTLS is applicable, further algorithm optimizations
and enhancements are possible. E.g., minimizing computa-
tional complexity, memory requirements, or implementing
forgetting capability to allow for adaptability of the algorithm.
Such enhancements are the objective of future investigation.

APPENDIX A
NHTLS ALGORITHM

Algorithm 2 nHTLS

1: for t← t0 to T do
2: input: θ̂(t-1), θ̂1(t-2),P1(t-2),P2(t-1), ϕ̃(t-1), ỹ(t)

3: θ̂1(t-1),P1(t-1), ϕ̂(t-1)=RTLS
(
θ̂1(t-2),P1(t-2), ϕ̃(t-1)

)
4: ˆ̃ϕ(t) = [û(t-n-2), û(t-n-3), . . . , ũ(t-1),

-ŷ(t-m-2), -ŷ(t-m-3), . . . , -ŷ(t-1), -ỹ(t)]
T

5: θ̂(t),P2(t)=RTLS
(
θ̂(t-1),P2(t-1), ˆ̃ϕ(t)

)
6: output: θ̂(t),P2(t), θ̂1(t-1),P1(t-1)
7: end for
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