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1. Introduction. Closure operators which are more general than the Kura-
towski ones represent classical structures that have an important role across math-
ematics. In his pioneering paper [3] published as early as in 1937, E. Cech studied
closure operators on a set X that are just the maps u : expX — expX (where
expX stands for the power set of X) which are grounded, extensive, and isotone.
Considered in [3], too, the closure operators that are, moreover, idempotent are
discussed in more detail by W. Sierpinski in [13], one of the first books to deal
with the topic. They were also studied by many other authors — see, e.g., [14].
Idempotent closure operators are closely related to complete lattices, as already
observed by G. Birkhoff in his classic book [2], and occur in many branches of
mathematics. To give some examples, let us mention the transitive closure of a bi-
nary relation in set theory, the linear span of a set of vectors in linear algebra, the
algebraic closure in algebra, the conjugate closure in group theory, and the convex
hull in geometry. But the closure operators have numerous applications in other
disciplines as well such as informatics (data analysis and knowledge representation
— see [7]), formal logic (see [11]), physics (quantum mechanics — see [1] and [12]),
etc. In these applications, the closure operators employed are even non-grounded
in many cases.

The set theoretic closure operators may be generalized by being considered on
partially ordered sets (or posets for short) rather than on the Boolean lattices expX.
The generalized closure operators which are extensive, isotone, and idempotent
are commonly used in lattice theory where, e.g., Galois connections give rise to
them. They play an extremely important role in categorical topology when closure
operators are studied on categories — see [5]. A closure operator on a category X is
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obtained when, for every object X of X', a closure operator is given on the subobject
lattice of X such that the morphisms f: X — Y in A are continuous with respect
to the closure operators on the subobject lattices of X and Y. Thus, to investigate
the behavior of a categorical closure operator means to study the properties of
closure operators on the subobject lattices in the category under consideration —
cf. [5]. Subobject lattices are always assumed to be complete lattices. In this paper,
we study closure operators on general complete lattices so that the results achieved
may be applied to the study of categorical closure operators. In particular, we focus
on open, closed and neighborhood bases with respect to a closure operator on a
complete lattice. We are particularly interested in finding conditions under which
the bases behave analogously to the bases in topological spaces — cf. [6]. Although
the subobject lattices in categories need not be complemented, in many cases, they
are at least pseudocomplemented. Therefore, we will employ pseudocomplements
instead of complements in complete lattices when studying closure operators on
them. In [15], closure operators on certain posets are studied so that the present
paper may be viewed as a continuation of [15].

2. Preliminaries. For the lattice-theoretic concepts used see, e.g., [9]. Recall
that a lattice X = (X, <) with a smallest element (denoted by 0) is said to be
atomistic provided that every element of X is the join of a set of atoms of X.
Clearly, every atomistic lattice is atomic, which means that, for every element
x € X with z # 0, there is an atom a € X such that a < x. The pseudocomplement
of an element x € X is the greatest element y € X with the property z Ay =0
(provided it exists). In other words, y is the pseudocomplement of z, if, for every
z € X, we have z <y < x Az = 0. The pseudocomplement of z will be denoted by
T. An element z € X is said to be pseudocomplementable if T exists and the lattice
X is called pseudocomplemented if every element of X is pseudocomplementable.
Of the properties of a pseudocomplemented lattice X, let us mention the following
ones: For any =,y € X we have

(1) z <7,

(2 z2<y=7y<7,

(3) z=7%

If, in a pseudocomplemented lattice X, every element x € X satisfies x = T, then
X is a Boolean lattice (with complements coinciding with pseudocomplements).
We will also need the fact that, for a pseudocomplemented complete lattice X
and a subset A C X, the equality \/ A = A{Z; = € A} holds (while the equality
ANA = V{Z; z € A} need not be true in general - here, only the inequality >
always holds). Let us also recall that an element z in a complete lattice X is called
\/-prime if, for any subset A C X, x <\/ A implies that there is an element y € A
such that x < y.

ExXAMPLE 2.1. Since pseudocomplements generalize the usual complements in lat-
tices, every complemented lattice (particularly, every Boolean lattice) is pseudo-
complemented. Pseudocomplemented lattices which are not complemented may
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often be found among lattices of subalgebras of a given algebra. A simple exam-
ple of such a lattice is the lattice of subalgebras of the idempotent mono-unary
algebra (X, f) with X = {0,1}, f(0) = 1 and f(1) = 1. The three-element chain
{0,{1},{0,1}} is evidently a pseudocomplemented but not complemented complete
lattice.

Note that every atom p € X has the property p < z or p < T whenever z € X
is a pseudocomplementable element (because p £ x = pAx=0=p <T).

We will also need the concept of adjoint maps, also known as an isotone Galois
connection, between posets. If X, Y are posetsand f: X =Y andg:Y — X
maps such that, for every z € X and every y € Y, the equivalence f(z) <y < x <
g(y) holds, then f is called a left adjoint and g is called a right adjoint. The left
and right adjoints f and g, respectively, between posets X and Y are isotone and
determine each other because we have:

(1) g(y) = max{z; f(z) <y} for every y € Y and

(2) f(x) = min{y; g(y) > «} for every z € X.

If f: X =Y is a left adjoint between posets X and Y, we denote by f+:Y — X
the corresponding right adjoint. Note that we have f(f+(y)) <y for every y € Y
and z < fL(f(x)) for every z € X. We will also work with the obvious facts
that f(0) = 0, f(VA) = V{f(z); = € A} whenever A C X, and f+(AB) =
AN f+(z); € B} whenever BCY.

DEFINITION 2.2. Let X = (X, <) be a poset. A closure operator on X is a map
u : X — X which fulfills the following three axioms:

(i) for all x € X, < u(x) (extensiveness),

(ii) for all z,y € X, z < y = u(x) < u(y) (isotonicity),

(iii) for all z € X, u(u(x)) = u(z) (idempotency).

If v us a closure operator on a poset X, then an element x € X is said to be
closed (with respect to u) if u(z) = .

ExXAMPLE 2.3. A classical example of closure operators on posets is obtained by
composing a pair of antitone mappings that constitute an (antitone) Galois connec-
tion between a pair of posets. A number of further examples may be found in [5]
where closure operators are considered on subobject lattices in various categories
(to obtain closure operators on the categories).

In the sequel, we restrict our considerations to closure operators on complete
lattices.

If w is a closure operator on a complete lattice X, then the pair (X, u) is called
a closure system.

REMARK 2.4. We distinguish between closure systems and closure spaces: by a
closure space we understand, as usual, a pair (X, u) where X is a (generally non-
ordered) set and wu is a closure operator on X in the usual sense, i.e., a closure
operator on the Boolean lattice expX = (expX, C) in accordance with Definition
2.2.
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A closure operator u on a complete lattice X and the closure system (X, u) are
called

(iv) grounded if u(0) = 0,

(v) additive if u(z Vy) = u(z) Vu(y) for all z,y € X.

The well-known concept of a continuous map is transferred from the classical
closure operators to our more general setting as follows:

DEFINITION 2.5. Let (X, u) and (Y, v) be closure systems. A left adjoint f: X —
Y is said to be a continuous map from (X, u) into (Y,v) if f(u(x)) < v(f(x)) for
every x € X.

PROPOSITION 2.6. Let (X,u) and (Y,v) be closure systems and f : X — Y be
a left adjoint. Then, f is a continuous map of (X,u) into (Y,v) if and only if

u(fH () < F(0(y)) for every y € V.

Proof.  Let f be continuous. Then, for every y € Y, we have f(u(f*(y)))
o(F(FL () < v(y), hence u(f(y)) < f(oly)). Comversely, let u(f*(y))
fH(v(y)) for every y € Y. Then, for every x € X, we have u(z) < u(f+(f(z)))
fr(v(fz)), hence f(u(z)) < v(f(z)). Therefore, f is continuous.

OININIA

Let X and Y be lattices and f: X — Y, g:Y — X maps. We say that f and
g satisfy the Frobenius reciprocity law if, whenever x € X and y € Y,

flxAgly) = flz)Ay.

As usual, given posets X and Y with least elements, a map f: X — Y is said
to reflect 0 if, for every z € X, f(z) =0 < a = 0. Clearly, if f is a left adjoint,
then it reflects 0 if and only if f+(0) = 0.

We will need the following observation:

LEMMA 2.7. Let (X,u), (Y,v) be closure systems and let f : (X,u) — (Y,v) be a
continuous map reflecting 0 such that f and f* satisfy the Frobenius reciprocity
law. Then, for every pseudocomplementable element y € Y, f*(y) is pseudocom-
plementable too with f1(y) = f+(7).

Proof. Let y € Y be an element. Then, we have fX(7) A fX(y) = fFr@Ay) =
fH(0) = 0. Let z € X be an element with z A f+(y) = 0. Then, f(z) Ay
f(z A fX(y)) = 0. Hence, f(x) < ¥ and, consequently, z < f*(f(z)) < f*(
Therefore, f+(7) = f+(y).

Y

o~ 1

EXAMPLE 2.8. (1) In the case of a pair of closure spaces (see Remark 2.4), contin-
uous maps between them are understood to be the maps between their underlying
sets such that their liftings to the power sets are continuous maps between the
corresponding closure systems. Of course, such liftings f are left adjoints between
the power sets (with f+ = f~1) reflecting 0 (i.e., empty set) and satisfying the
Frobenius reciprocity law.
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(2) A closure operator on a category X is always considered with respect to a
given (&€, M)-factorization structure for morphisms in X. In a category with a clo-
sure operator, for every morphism f : A — B, a map between the subobject lattice
of A and that of B is defined by assigning to a subobject m of A the M-part of the
(€, M)-factorization of f om. These maps and their inverses (given by pullbacks)
satisfy the Frobenius reciprocity law if (and only if), in the (&, M)-factorization
structure for morphisms, £ is stable under pullbacks along M-morphisms (cf. [4]).

We will extend some basic topological concepts (see, e.g., [6]) to closure systems
and such extended concepts will be studied.

3. Closed, open, and neighborhood bases.

DEFINITION 3.1. (Cf. [10], Definition 5.3(3)) Let (X,u) be a closure system. A
pseudocomplementable element z € X is said to be open if T is closed, i.e., if
T = u(Z).

REMARK 3.2. Let (X, u) be a closure system and « € X a pseudocomplementable
element. Then, we clearly have:

(1) If T = «, then z is closed if and only if T is open;

(2) z is open if and only if z < u(T) (because T = u(Z) = =z < T = u(T) and,

conversely, < u(Z) = T > u(T) > u(T)).

PROPOSITION 3.3. Let (X, u), (Y,v) be closure systems and let f : (X,u) — (Y,v)
be a continuous map reflecting 0 such that f and f' satisfy the Frobenius reci-
procity law. If y € Y is an open element, then f*(y) is open, too.

Proof. Lety € Y be an open element. Then, 7 is closed and, therefore, u(f* (%)) <
(@) = f+(@) by Proposition 2.6. Thus, f*(7) is closed and, since f*(y) =
f*(y) by Lemma 2.7, fL(y) is closed, too. Thus, f*(y) is open. O

DEFINITION 3.4. Let u be a closure operator on a complete lattice X. A subset
A C X is called a closed base (open base) of u if every element of A is closed (open)
and, for every closed (open) element = € X, there is a subset B C A such that

w(@) = A\B (u(z) =V B).

ExXAMPLE 3.5. 1) Given a complete lattice X, every subset A C X is a closed base
of a closure operator on X, namely the closure operator u given by u(z) = A{y €
A; x <y} for every x € X.

2) Given a closure operator u on a complete lattice X, the set of all closed
elements is a (largest) closed base of .

3) Of course, for Kuratowski closure operators (i.e., topologies), the defined
concepts of closed and open bases coincide with the usual ones.
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The following proposition gives a necessary and sufficient condition for a given
subset of a complete lattice to be a closed base of a given closure operator on the
lattice.

PROPOSITION 3.6. Let (X,u) be a closure system and let A C X be a subset.
Then, A is a closed base of u if and only if, for every pair of elements z,y € X,
there holds y < u(x) ©Vze A: x<z=y <z

Proof. Let A be a closed base of u and let x,y € X be elements. Suppose that
y < u(x) and let z € A be an element with < z. Then, u(z) < z because z is
closed. Hence, y < z. Conversely, let © < z = y < z for every z € A. Since u(z)
is closed, there exists a subset B C A such that u(x) = A B. Consequently, <
N\ B <t for every t € B. Thus, y <t for every t € B. Therefore, y < \ B = u(x).
We have proved the equivalence y < u(z) ©Vze A: z<z=y <z

For every pair of elements z,y € X, let us have y < u(z) ©Vze A: z<z=
y < z. Let v be a closure operator on X such that A is a closed base of v and let
x € X be a closed element with respect to v. Then, there is a subset B C A such
that © = A B. Since u(x) < u(z) and = < y for every y € B, we have u(z) <y
for every y € B. Therefore, u(x) < A\ B = x. We have shown that z is closed with
respect to u. Conversely, let € X be an element closed with respect to u. Since
v(z) = Ny € 4; = < y}, we have z < y = v(x) < y for every y € A. Thus,
v(x) < u(z) = x and we have shown that x is closed with respect to u. Hence, closed
sets with respect to u coincide with those with respect to v. Therefore, u = v. O

REMARK 3.7. For a closure system (X,u), put p, = {(7,y) € X?; # <u(y)}. It
is shown in [15] that the assignment u — p,, is a bijection between the set of all
closure operators on X and the set of all preorders p on X satisfying the following
two conditions:

(1) For all z,y € X, z <y = xpy.

(2) If x; € X for every i € I (I # () a set) and x € X, then \/{x;; i € [}px
whenever x;px for every i € I.

Thus, in Proposition 3.6, we may write yp, 2 instead of y < u(x).

PROPOSITION 3.8. Let (X, u) be a closure system such that X is pseudocomple-
mented and y = ¥ is valid for every closed element y € X. If A C X is an open
base of u, then {T; = € A} is a closed base of u.

Proof. Since A is an open base of u, T is closed for every x € A. Let y € X be
a closed element, i.e., let y = u(y). Then, ¥ = u(y), so that ¥ is open. Therefore,
there is a subset B C A such that y =\/ B. Hence, y=7=\/B = N\{T; z € B}
Since {T; x € B} C{7; = € A}, {Z; = € A} is a closed base of u.

REMARK 3.9. Unfortunately, Proposition 3.8 is not valid when interchanging
“closed” and “open”. But, of course, if (X,u) is a closure system such that X
is a Boolean lattice and A C X is a closed base of u, then {T; x € A} is an open
base of w.
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In the following definition, the usual concept of neighborhoods of a subset of a
topological space is extended to closure operators on complete lattices.

DEFINITION 3.10. (Cf. [8], Definition 3.1.) Let (X, u) be a closure system and « €
X an element. A pseudocomplementable element y € X is called a neighborhood of
z if zAu(y) = 0. We denote by N, (z) (or briefly N'(z)) the set of all neighborhoods
of xz. A subset B C N, (z) is called a neighborhood base at x if, for every y € N, (),
there is z € B such that z < y.

Thus, for any pair of elements z,y € X such that y and u(y) are pseudocom-
plementable, we have y € N, (z) if and only if z < u(y). Some basic properties of
neighborhoods are listed below:

PROPOSITION 3.11. Let (X, u) be a closure system and x,y € X elements. Then

1) 1 € N(x) if u is grounded (here, 1 denotes the greatest element of X ),

(1)

(2) N(0) ={y € X; y pseudocomplementable},

(3) ifz >0, then y > 0 for every y € N (z),

(4) y € N(x) implies x < y provided that (a) z is an atom or (b) § =y and u(y)
is pseudocomplementable,

(5) ify € N(z) and z € X is pseudocomplementable element with z > y, then
z € N(z),

(6) 2 <y=N(y) CN(z),
(7) ifz >0 and y1,y2, ...,y € N(z) (k € N), then z Ay; Aya A ... Ayg >0,

(8) if y1,y2 € N(x), then y1 A ys € N(z) provided that u is additive and X is a
Boolean lattice,

(9) x € N(z) if and only if x is open,
(10) if y is open and x <y, then y € N (x).

Proof. To prove (4), let y € NM(z). (a) Suppose that z is an atom. Then,
x Au(g) = 0, which yields x € u(y). Therefore, = £ 7, so that « < y. (b) If
y and u(y) is pseudocomplementable, then 2 A u(y) = 0 and 7 < u(y) imply

<u(y) <y=vy.

To prove (7), let * > 0, y € N(z), and suppose that # Ay = 0. Then,
zAu(@) =0and x <7 < u(y ) Thus, we have z = z A u(y) = 0, which is a contra-
diction. Hence, (7) is valid for k = 1. Suppose that it is valid for some k € N. Let
x >0 and y1,92, .., Yk, Yrtr1 € N(z). Then, x Ay; Ays A ... Ayg > 0 and, by (6),
Y1 EN(@Ay1 Aya Ao Ayg), thus 2 Ayp Aya Ao Ay A yrr1 > 0 (because (7)
is valid for £ = 1). This proves (7). The remaining assertions are obvious. O

8] <
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PROPOSITION 3.12. Let (X, u) and (Y, v) be closure systems and let f : (X, u) —
(Y,v) be a continuous map. Then, for allz € X andy €Y,y € N(f(z)) implies

) e N(z).

Proof. Let x € X, y € N(f(z)), and assume that f+(y) ¢ N(z). Since
f*(y) is pseudocomplementable (with f+(y ) = f+(y) by Lemma 2.7), we have
xAu(fJ-(y)) > 0. Therefore, f(z) A f(u(f+®))) > f(z Au(fL(y))) > 0. Since
f(f+@) <v(f(f+®))) < v(¥), we have f(x) Av(y) > 0. This is a contradic-
tion. a

PROPOSITION 3.13. Let (X,u) be a closure system, let x,z € X be elements,
x>0, and let B C N'(z) be a neighborhood base at x. If v < u(z), theny Az >0
for every y € B. The converse is true if X is pseudocomplementable, x is an atom
of X,and Z = z.

Proof. Let x < u(z) and let y € B be an element with y A z = 0. Then, z <7,
hence u(z) < u(y). Thus, since x A u(y) = 0, we have z A u(z) = 0. But this is a
contradiction with 0 < z < u(z).

Conversely, let y A z > 0 for every y € B. Of course, then y A z > 0 for every
y € N(z). Let X be pseudocomplemented and let z be an atom of X, and let
Z = 2. Suppose that 2 £ u(z). Then, = < u(z) = u(Z), thus z A u(Z) = 0. There-
fore, z € N'(x). Consequently, there exists ¢ € B, t < z and, since Z A z = 0, we
have t A z = 0. This is a contradiction. Therefore, z < u(z). O

COROLLARY 3.14. Let (X,u) be a closure system with X pseudocomplemented
and let z € X be an element with Z = z. If u(z) equals the join of atoms of
X and B, C N(z) is a neighborhood base at x for every atom x € X, then
u(z) = V{z € X; =z is an atom of X and y A z > 0 for all y € B, }.

COROLLARY 3.15. Let X be an atomistic Boolean lattice and u,v be closure op-
erators on X. If, for every atom x € X, there are neighborhood bases By C N, (z)
and By C N, (x) at x such that By C By, then u < v.

THEOREM 3.16. Let (X, u) be a closure system with X atomistic and B C X be
a set of open elements. If the set B, = {x € B; a < z} is a neighborhood base at
a for every atom a € X, then B is an open base of u.

Proof. Let B, be a neighborhood base at a for every atom a € X and let y € X be
an open element. Let T' be the set of all atoms of X and put Ty, = {a € T; a < y}.
Then, for every a € T, we have y € N(a) (see Proposition 3.11(10)). Therefore,
there is an element z, E B, with 2, < y. Then, {z,; a € Ty} € Uyer Ba = B
(the last equality follows from the fact that X is atomlc) and \/{xa, acT } <uy.
Since X is atomistic, we also have y = \/ T,. Further, z, € B, implies z, € N(a),
hence a < z, for every a € T, by Proposition 3.11(4). Consequently, y = \/ T, <
V{za; a € T, }. Therefore, y = \/{zq; a € T, }. This completes the proof. O
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LEMMA 3.17. Let (X,u) be a closure system and z,y € X be elements such that

y =y and w(y) = uw(y). Then, y € N(x) if and only if there is an open element
z € N(z) such that z < y.

Proof. Let y € N(x) and put z = u(g). Then, z < y (because 7 < < u(y) implies

y=7> @ = z) and, since z A u(y) = 0 and u(y) = u(u(y)) = w(u(y)), we have

2 Au(u(g)) = 0. Thus, = € N'(z) and u(u(y)) = u(f) < ug), so that = is open.
Conversely, if there is an open element z € A (z) such that z < y, then clearly
y € N(z) (see Proposition 3.11(5)). O

THEOREM 3.18. Let (X, u) be a closure system and x € X be a \/-prime element

such that t = t and u(f) = u(f) for every t € N'(z). If A C X is an open base on
u, then the set B ={y € A; x <y} is a neighborhood base at x.

Proof. Let A C X be an open base of u. Clearly, every y € B is a neighborhood
of z because z Au(y) < yAu(y) =yAy=0. Let t € N(z). By Lemma 3.17, there
is an open element z € N (z) such that z < ¢. Since z is open, there is a subset
C C A such that z = \/ C. Then z < z and, since z is \/-prime, there exists y € C
such that x <y. Then y < z, hence y < t, and y € B. The proof is complete. O

COROLLARY 3.19. Let (X,u) be a closure system with X a Boolean lattice and
A C X be an open base of u. Then the set B = {y € A; x <y} is a neighborhood
base at x for every \/-prime element x € X.

4. Conclusion. In this note, several well known results on bases in topological
spaces are generalized to closure systems. Namely, atomistic Boolean complete
lattices are, up to isomorphisms, power sets ordered by set inclusion (cf. [9]).
Therefore, for closure spaces, i.e., closure systems of the form (expX, u) where X is
a set, the hypotheses of each of the assertions presented in the paper are satisfied.
In the particular case of u being a Kuratowski closure operator, we receive well
known facts on the behavior of bases in topological spaces.

In the literature, many topological concepts and results can be found extended
to a categorical level, i.e., to categories with closure operators - see, e.g., [5]. While
neighborhoods and neighborhood bases with respect to a categorical closure op-
erator were introduced and studied in [8], the concepts of closed and open bases
have not yet been considered for such an operator. These concepts, which are in-
troduced and studied for closure operators on complete lattices in this paper, may
naturally be transferred to closure operators on a category X because such closure
operators are simply families (uy)xex where, for every object X € X, ux is a
closure operator on the subobject lattice of X. Of course, all the above results
proved for closed, open, and neighborhood bases of closure operators on complete
lattices will hold for categorical closure operators as well (though, in that case, the
lattices may be large, becoming classes).
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