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Recursive Variational Inference for Total Least-Squares

Dominik Friml, and Pavel Vaclavek Senior Member, IEEE

Abstract—This article analyzes methods for deriving credible
intervals to facilitate errors-in-variables identification by expand-
ing on Bayesian total least squares. The credible intervals are
approximated employing Laplace and variational approximations
of the intractable posterior density function. Three recursive
identification algorithms providing an approximation of the cred-
ible intervals for inference with the Bingham and the Gaussian
priors are proposed. The introduced algorithms are evaluated on
numerical experiments, and a practical example of application
on battery cell total capacity estimation compared to the state-
of-the-art algorithms is presented.

Index Terms—Bayes methods, parameter estimation, identifi-
cation, variational methods

[. INTRODUCTION

The identification of unknown coefficients 6 in errors-in-
variables problems has become ubiquitous in applied decision
and control fields. The ordinary linear regression problem is
as follows:

b~ A8, (D

where the 6 € R ! is the vector of unknown parameters, and
the A € RK*"~1 is the design matrix consisting of K noiseless
samples of the independent variable a; € R"~! that are stacked
underneath each other. Similarly, the b € RX is a vector
of K corresponding noisy dependent variables. Compared to
the ordinary linear regression, the errors-in-variables arise
when the design matrix samples ,ai, are noisy. The problem
can be reformulated into

o~x[e”, 1T, )

where the X = [A, b] € RX*" is the vector of samples ,x; € R",
burdened with noise. A common assumption is that the noise
embodies an independent, identically distributed Gaussian
with zero mean G(0, 0,I) and known variance ©,,.

It is proved [1] that in the case of an independent, identically
distributed Gaussian noise, the maximum likelihood solution is
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obtained with total least-squares [2]]. Partially modified total
least-squares [3] are the state-of-the-art in maximum likeli-
hood identification, with readily available recursive algorithms
(4], (51, [6].

Conversely, the statistical analysis is complicated when
it comes to providing credible intervals for the errors-in-
variables. The state-of-the-art methods [7]] approximate the to-
tal least-squares credible intervals by covariance obtained as
the inverse of the Fisher information matrix [8]]. The likelihood
is not Gaussian, as shown in [9]]; thus, the approximation is
flawed.

Further complications arise because the dimension of the in-
ference grows linearly with the number of samples, K. Due
to this fact, no recursive algorithm is currently available [10],
(L1, [12].

This article proposes to remedy both of the above-mentioned
weaknesses by introducing real-time suitable recursive identi-
fication algorithms providing a numerically cheap and optimal
approximation of the credible intervals.

The text is organized as follows: Section II presents
a Bayesian analysis of the total least-squares and justifies
the need of a credible interval approximation; sections III and
IV analyze numerically efficient and optimal ways of posterior
approximation, respectively; sections V and VI derive and
evaluate the recursive identification algorithms, respectively;
section VII discusses the practical use of the algorithm and
compares them with the existing methods; and section VIII
sets out the actual conclusion.

Throughout the article, the probability-density functions are
denoted by p(-). For better readability, the Bingham distribu-
tion notation is abbreviated from the two standard parameters
B(:|M,Z) to B(-|A), where A=MZM?".

II. BAYESIAN TOTAL LEAST-SQUARES

The authors’ previous research [9], under the assumption
of an orthogonal noise, formulates the total least-squares
likelihood function

p(X|0) <exp (-[07 —1]@[ ~1]7 (670 +1)"1), (3)

where ® = XXT/(202).
Using the normalization v(8) = [87 — 1]7(676 +1)~1/2,
the likelihood becomes the Bingham distribution

p(X|v(6)) = exp (~v(8)®v(6)") = B(v(6)|-®@).  (4)

The Bingham prior pg(v(0)) = B(v(0)| — B) is conjugate
and ensures the analytical posterior

ps(v(0)|X) o< B(v(6)| - (®+B)), (5)

where the lower index denotes the Bingham prior.



The v(6) can be denormalized at one’s convenience
via the [0T —1]T = —v(8)/v(0),, where the v(8), denotes
the last element of the v(0). After the normalization, the pos-
terior is written as

pa(6]X). (6)

While this posterior has certain beneficial properties, as
presented in [9], quantifying the O uncertainty is computa-
tionally intensive due to the intractable normalization constant
of the Bingham distribution. Although the literature offers al-
gorithms for estimating the normalization constant [13] or en-
abling the sampling by working around the constant altogether
[14], [15], the implementation in real-time is computationally
intensive.

Expressing prior beliefs using the pg(v(0)) can also be
problematic, as one needs to state the belief about the v(0)
instead of the 8 directly. The most frequent prior is the Gaus-
sian pg(0) = G(0|uy,Z,). However, the resulting posterior is
the unknown probability-density function with an unknown
normalization constant,

pg(01X) o< p(X[6)pg (), @)

where the lower index indicates the Gaussian prior.

In both cases, the uncertainty of the 6 can be obtained
by finding a suitable, preferably optimal, approximation. As
the term (67 6-+1)~! in the likelihood function (3] is the only
difference from the normal distribution, the chapters below
examine ways of finding the Gaussian approximations.

III. LAPLACE POSTERIOR APPROXIMATION

The simplest widely used probability-density function ap-
proximation providing a Gaussian result is the Laplace ap-
proximation [[16]], [17].

The surrogate posterior is obtained by finding the maximum
a posteriori (MAP) estimate, u*, of the original posterior
distribution, p(6]X), computing the Hessian of the log pos-
terior in the mode and then using these values to construct
a Gaussian approximation to the posterior

qL(0|u”) = G(6[u", H(u")), ®

where the H(u*) is the Hessian matrix of the log posterior,
Inp(6|X), evaluated at u*.

The problematic posterior distribution is approximated by
the Laplace surrogate posterior

qL(6|u”) ~ p(6]X). ©)

In the case of the Bingham prior, the MAP u* is obtained
by solving the singular value decomposition or the Rayleigh
quotient iteration [3]]

" —1](@+B) [u" 1]

pru+1 '

In the case of the Gaussian prior, a nonlinear optimization

method is utilized in order to find the modus of the pg(6|X).

The derived Hessians for both the Bingham and
the Gaussian (2I) priors are provided in the Appendix.

(10)

u* :=argmin
u

IV. FIXED-FORM VB POSTERIOR APPROXIMATION

While the Laplace approximation is easy to compute, it
does not provide an optimal surrogate posterior. The optimal
posterior approximation is obtained with variational Bayesian
(VB) methods [18]], [19]. Although the factorizing mean field
variational approximation [16], also referred to as the free-
form VB [20], embodies the most commonly used method, it is
not applicable in this case, as the parameters are not separable
due to the normalization term (676 + 1)~! in the likelihood
p(X|0). The utilization of the fixed-form VB is required.

As outlined in Section II, we decided to fix the functional
form to the Gaussian G(6|u,X). The optimal approximation
qve(0]z) of the posterior

ave(6]u.E) ~ p(8]X) (11
is obtained by minimizing the Kullback-Liebler (KL) di-
vergence, Dk (qvs(0|z)||p(X|0)p(0)), which is equivalently
solved [20]] by maximizing the negative variational free energy
providing a lower bound on the marginal log-likelihood,
frequently also recognized as evidence lower bound (ELBO),

X|0)p(0
L (gvB(0]2)) = Eggyp(0/x) (ln IM) , (12
where the functional form of the gvg(0|X) is fixed to a Gaus-
sian with the mean p and covariance X. This results in z =
[u”, vec(Z)"]”. The prior can only be a Gaussian, pg(8) =
G(0|up,X,), as for the Bingham prior the L(qvg(6|z)) di-
verges.

The univariate analytical solution and a sketch of its deriva-
tion are provided in the Appendix, (23)), as the multivariate
analytical solution is not derived at the current stage of
the research.

The parameters of the optimal posterior Gaussian approxi-
mation are obtained as the solution to the optimization problem

" i=argmin - —L(qvp(6]2))

st. X>0, (13)
constrained by the positive definiteness of the surrogate covari-
ance matrix, X, denoted by the > 0. The ELBO L (gyg(0]z))
is differentiable; therefore, this optimization problem can be
evaluated by any nonlinear optimization method.

V. RECURSIVE IDENTIFICATION ALGORITHMS

This section presents recursive algorithms, as many ap-
plications benefit from sequentially incorporating newly ac-
quired data. The algorithms are designed for real-time appli-

cations that demand an insight into the uncertainty of the 6.
The MAP for the Bingham prior is recursively obtained

via the inverse iteration-based recursive total least-squares
algorithm specified in [S]. Extending this algorithm results
in the algorithm below, which provides a Gaussian surrogate
posterior using the Laplace approximation:



Algorithm 1 Inverse Iteration Recursive Laplace TLS
I < Mo

2: H + Hp(lo)

3: P+ B! > Initialize
4: for k< 1to K do

5: P+ f(xx) > Incorporate sample
6: V<« Pu-1T"

7: W Vip_1/v, > Obtain mean
8: H + Hp(u) > Obtain covariance
9: end for

For the Gaussian prior, we decided to exploit gradual con-
vergence of the joint probability p(8,X) = p(X|60)p(0) and
gradual convergence of the optimization algorithm, similarly
to Algorithm resulting in two algorithms that provide
the Laplace and the VB surrogate posteriors, respectively:

Algorithm 2 Recursive Laplace TLS

I U< U

2: H < Hg(lo)

3 A 7L()

4 P+0 > Initialize
5: for k<1 to K do

6 P+ D+ (202) Lyl &> Incorporate sample
7: for i < 1 to ipax do

8: J——p(X|0)G(u|pp,2,) > Evaluate joint at u
9: b—pu— (H‘1 —&—11)71 8u > Update estimate
10: if —p(X[0)G(f1|up,X,)>J then o If fi invalid
11 A min(A1, Amax) > Enlarge A
12: else > If fi valid
13: A < max(A/t, Anin) > Shrink A4
14: u<+fi > Accept mean estimate
15: H <+ Hg(u) > Update covariance
16: end if
17: end for

18: end for

Algorithm 3 Recursive VB TLS

1z [ud, vee(Zo) )T

2: A 7(()

3: @0

4: for k< 1to K do

5 D« &+ (207) !

6 for i < 1 to ipax do
7: L+ 7L(qVB(9|Z))
8
9

> Initialize
> Incorporate sample

> Evaluate ELBO (23)
> Update estimate

: if —L(gvg(0]2)) >L or £(£) <0 then » £ invalid
10: A < min(A1, Amax)

27— (HL+AD) g

> Enlarge A
11: else > Z valid
12: A+ max(A/t, Amin) > Shrink A
13: 7472 > Accept estimate
14: end if
15: end for
16: end for

In Algorithm ] the v, denotes the last element of the vector
V= [VIT:,H 1 va]T; the covariance is calculated using the Hessian

Hp(u) provided in the Appendix, (20), and the sample is
incorporated using

ﬁP(xka)P

o) =P— —5——=——.
1+ 557 (x{ Pxe)

14

We determined experimentally that performing one step,
imax = 1, of the optimization algorithm in each sample is
sufficient for the convergence. We propose algorithms inspired
by Levenberg-Marquardt [21]], [22]], [23] for both the Laplace
and the VB approximation. A variable learning rate using
the damping factor, A4, in connection with rejecting undesirable
estimates ensures a steady decrease of the optimization goal
and a positive definite surrogate covariance matrix, X > 0.

In Algorithm [2| the surrogate covariance. Hg(ut). is pro-
vided in the Appendix, (Z2I); the learning gradient and learning
Hessian are

su =35 (P(X10)p5(6)) (15)

Hy = — 55 (p(X10)pg (0)),

respectively. Although the derivation is straightforward, the re-
sulting form is too space-intensive to be included in this article.

The parameters iy and ¥ are the initial estimates of the sur-
rogate mean and covariance, and A > 0 is the Levenberg-
Marquardt damping factor, adjusted in each optimization step.
The scaling parameter 1 > 1 controls the magnitude of the scal-
ing parameter adjustment. The damping factor is bounded by
the damping factor limits, A, and Ay, Which can be tailored
to the data type used in the implementation.

In Algorithm |3| the learning gradient and learning Hessian
are

(16)

gui= — 2 (L(gva(6]2)).
Hy, = —%(L (CIVB<9|Z)))7

where the L(gvg(0]z)) is provided in the Appendix, (23).
Similarly to [I5] and [16] the derivation is straightforward, but
the result is too long to be incorporated herein.

a7)

(18)

VI. NUMERICAL RESULTS

The derived recursive approximation methods are evalu-
ated on numerical simulations using MATLAB. Although
the conclusions drawn in this chapter apply to a wide range
of simulation settings, the parameters used are provided in
the Appendix. This evaluation aims to show that the proposed
algorithms converge to results calculated by numerically in-
tensive but precise optimization algorithms. The experiment
is repeated 1,000 times. The mean and variance of the con-
vergence are presented, along with the outcome of a single
run.

The synthetic errors-in-variables dataset X of K = 500
samples is generated by sampling from

X = lag 0ar)” +G(n]0,0,1), (19)

where the a; is sampled from the G(a;|0,1) and 6 = 1.8.
The algorithms for both the Bingham and the Gaussian
priors are evaluated. Each prior is analyzed separately.



In the case of the Bingham prior, only the Laplace approx-
imation method can be utilized, and an optimal surrogate can
not be derived.

The KL divergence, Dgr.(qr(0|p*)||qL(6|u)), is employed
to quantify the distance from the Laplace estimate g (0|z*),
with the pu* obtained via singular decomposition to the surro-
gate g1 (0|u) calculated using Algorithm

As is shown in Fig. [I] Algorithm [I] converges rapidly, and
the estimate gp (6|u) is numerically close to the g (0|u*).

= Die(6lgr (1)l (0]1)) |

Dx1.
—100dB —50dB

—150dB

I | | | J
0 100 200 300 400 500

k

Fig. 1. The Kullback-Liebler divergence from the true MAP-centered Laplace
estimate to the estimate calculated by Algorithm |I| The mean and variance
over 1,000 runs are represented with the bold line and transparent area,
respectively, and the Dk of a single run is denoted by the thin line.

For the case of the Gaussian prior, Algorithms 2] and [3] are
proposed; both of them are compared to the optimal estimate
qve(6|z*), with the z* acquired by numerically solving (T3).

m |
8 ru le! H wip) "‘M
X W“w i WC]
| “W”IW' ™
Il
- — Dxu(qvB(01z")[|gvB10(8]2))
g 3 — Dk1.(qvB(0(2")||qve(8]2))
- *
- } = Dx1(qvB(0|2")[|qL(0|1))
|
I MM r!m-
" H i ‘lL‘I}llml"i!""“m et mifmi'fi’?‘wijii*'iﬁi‘irfuu:il :]uu:
= mu LA ALK ALK B LA
2 l‘ ‘ & Awi N ‘
|
| | | | |
0 100 200 300 400 500

k

Fig. 2. The Kullback-Liebler divergence from the optimal posterior estimate
qvB(0]z*) to the various estimation methods. The mean and variance over
1,000 runs are represented with the bold line and transparent area, respectively;
the Dk, of a single run is denoted by the thin line.

The numerical closeness of all the estimation methods is
displayed in Fig. 2] The Laplace estimation is computationally
cheaper, but the g1 (0|1t) converges to the sub-optimal Laplace
estimate gr.(6|u*) # qve(0|z*). The VB approximation ex-
hibits convergence to the optimal approximation gyg(0|z*) for
multiple iterations, imax = 10 per sample gvpi0(6]z), and for
a single iteration, imax = 1 per sample gvg(0]z).

The visual comparison of the surrogate posteriors depicted
in Fig. [3] shows the closeness of the Laplace and VB-based
surrogate posteriors. It is clear that while the Laplace estimate
entails the MAP and the curvature of the peak, the VB
surrogate optimally entails the whole posterior by shifting
the mean to explain the skewness.

1
m— g (0]X)
0.8 — qL(0|u")
0.6 — qvp(0]z")

1.8

2.2
0

1 1.4 2.6 3

Fig. 3. The visual comparison of the posterior pg(6|X), the Laplace surrogate
posterior g (6|u*), and VB surrogate posterior gyg (0|z*) for K = 50 samples,
all normalized such that their maxima are equal to one.

VII. APPLICATION EXAMPLE

The numerical example demonstrates such a practical ap-
plication of the proposed algorithms for estimating battery
cell total capacity where information about the estimate’s
uncertainty can be crucial for safety. An alternative approach
to allow the comparison and detailed subject analysis is
provided in [7]. For a survey of other applications, see [2].

The battery cell total capacity, 6, measured in ampere-
hours arises in the linear structure, ¢ = Az8. The linearly
dependent variables are the accumulated ampere hour mea-

surement, g = ;12 géoo dt, and the state of charge difference,
Az = M The z(¢) is the percentage of the battery cell

state of charge at time ¢, 11 denotes the unitless efficiency
factor, and i(z) represents the battery cell current measured in
amperes at time 7. For a full explanation of the parameters,
refer to [[7].

Both the ¢ and the Az embody measured variables and are
therefore burdened with noise. Under the common assumption,
the noise components are an independent and identically
distributed Gaussian noise with zero mean and the proportional
variances o, and o, respectively. Due to the proportionality,
the measurement scaling makes the total least-squares the op-
timal estimator of the 6.

The simulated errors-in-variables data are generated with
the true battery cell total capacity 6 = 10 and o,=0,=0.5.
The proposed algorithm settings are identical to those in
the previous section and can be studied in the Appendix.



For comparison, the recursive least-squares (LS) and re-
cursive total least-squares (TLS) algorithms from [7] are
displayed. The LS algorithm assumes no error in the Az.
Both of the comparison algorithms (LS and TLS) approximate
the posterior credible intervals by the inverse of the Fisher
information matrix. This approximation is too simplistic be-
cause the likelihood and posterior densities are not Gaussian.
The algorithms are initialized with a synthetic true value
measurement, Az=1, g = 0.

The results of the recursive estimation can be observed in
Fig. {4l It is apparent that the mean of the surrogates gvg(6|z)
and ¢ (0|u) provided by Algorithms [2] and [3| respectively,
coincides with the mean of the TLS algorithm, which is
the maximum-likelihood solution. While the mean value of
the algorithms converges to the true value, 0, the mean of
the LS algorithm provides biased results; this is due to Az
noise negligence of the LS algorithm.

\ﬁ\ —LS

b — TLS
— gqvB(0[2)
—qr(0|u)

| | | | |
0 100 200 300 400 500

k

Fig. 4. The battery cell total capacity estimation results for the different
algorithms. The mean and 30 interval approximations are represented by
the bold line and transparent area, respectively.

The closest credible interval approximation is expected for
the gvg(6]z), as the surrogate posterior is an optimal approxi-
mation of the true posterior. While the g1 (0|ut) exhibits results
similar to those of the gyp(0|z), the TLS and LS algorithm
intervals are underestimated; this is due to the oversimplified
approach using the Fisher information matrix.

VIII. CONCLUSION

Applying analytical Bayesian inference in solving problems
with errors-in-variables has numerous disadvantages that com-
plicate further derivations. The disadvantages include the in-
tractable normalization constant of the posterior distribution,
absence of computationally efficient algorithms allowing for
implementation in real-time applications, and unknown credi-
ble intervals for the posterior distribution.

Several procedures to solve the drawbacks are proposed in
this article. The intractable posterior complicating the deriva-
tion of the credible intervals is solved by a Gaussian approxi-
mation of the posterior density function for the Bingham and

the Gaussian priors. The proposed surrogate posteriors are
recovered as a Laplace approximation and a variational Bayes
approximation with the functional form fixed to a Gaussian,
as the factorizing free-form VB would not entail covariance
and the unknown parameters are not factorizable.

Inverse iteration and Levenberg-Marquardt inspired algo-
rithms are proposed; they are suitable for the implementation
and practical real-time use. All the three algorithms allow
batch and recursive identification and facilitate credible in-
terval approximation.

The most numerically efficient option is Algorithm [T} it
provides a suboptimal Laplace approximation to the surrogate
posterior for the case of the Bingham prior. Expressing prior
beliefs via the Bingham distribution can be more challenging
than with the Gaussian prior.

A suboptimal Laplace posterior approximation for the Gaus-
sian prior is enabled by Algorithm [2} however, the computa-
tional cost is higher than in Algorithm [I]

The numerically least efficient algorithm is Algorithm [3]
which delivers an optimal Gaussian posterior approximation
for the Gaussian prior. The Faddeeva function appearing in
the Hessian evaluated at each step of Algorithm [3] together
with the complicated optimization problem, embodies the lead-
ing cause of the increased computational cost.

The proposed approximation methods and the correspond-
ing algorithms are numerically evaluated for both of the ana-
lyzed prior alternatives (Bingham and Gaussian). The evalua-
tion shows convergence and numerical stability.

The practical use of the proposed algorithms and the com-
parison with the existing methods are presented on a simulated
estimation of battery cell total capacity. The results expose that
the maximum a posteriori estimates of the proposed algorithms
are compatible with the state-of-the-art maximum-likelihood
outcomes of the recursive total least-squares algorithm. Addi-
tionally, the proposed algorithms provide an approximation of
the credible intervals and, compared to the inverse of the Fisher
information matrix, do not underestimate the variance.

While the proposed algorithms are suitable for practi-
cal applications, further optimizations and enhancements are
possible, such as minimizing the computational complexity
and memory requirements or implementing forgetting factors;
the last of these modifications then allows for identifying
the time-variant parameters, similarly to [24)], [25], [26].
Providing a tractable posterior density function also facilitates
deriving novel methods for estimation, smoothing, filtering,
decision, and control problems with the errors-in-variables.

APPENDIX

The Hessian of the p(X|0)p(0) in the case of the Bingham
prior is derived as

11Ty ToZEg — =T
HB([J) :47,;_2 2 ‘LL i +
fo f
EoTo—E,ul Iy E
_2692n.u 721_’_76, (20)
tO to 0



where the 1o = u"u+1, 1 = [u" —1]E2[u" — 17, Ty = pu’;
Zp € R &, € R™! are the submatrices of & = 5? :Z} and
E=p. o
In the case of the Gaussian prior,
Hg(u) = Hs(1) +%,", @1

where the E = @ and X, is the Gaussian prior covariance
matrix.

The univariate analytical variational free energy (ELBO) for
the joint p(X|0)pg(0) in the case of the Gaussian prior can
be evaluated as

L{gva(6]2)) = [ _a(6l2)Inp(@l6)do-+

+ /j; q(0]z)Inp(6)d6 — _/:51(9|Z) Ing(6]2)d0.  (22)

While the evaluation of the latter two terms is trivial, the first
term is solved as a convolution problem similar to the Voight
profile [27], resulting in

/:?(9\1) Inp(®|6)d6 = _% Gzﬂg};“”)z—ln("z:fe%
il in) i ]

where the u and o are the surrogate posterior mean and
variance, respectively, and the u, and o, are the Gaussian
prior mean and variance, respectively. The a, b, and ¢ are
clements of the @ = [¢%]. The V(a,B) and L(a,B) are
the real and the imaginary parts of the Faddeeva function w(y)
[28] respectively, which can be estimated efficiently [29] or
with a guaranteed accuracy [30]. The derivation of the ELBO
gradient gy, and the Hessian Hy, is straightforward, as

D2 iy
All the derivatives are implemented with precision instead
of covariance to improve the numerical stability.
For the numerical tests, the following constants were used:
Mp =5, Xp = Gﬁ =100, lo = Wp, 20 = [Hp, ZP]T’ B =
diag([10,10]), Amin = 10719, Apar = 1019, Ao = Appin, 1 = 2.

(24)
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