
 

 

 

 

Recursive identification of the ARARX model 
based on the variational Bayes method 

 
DOKOUPIL, J.; VÁCLAVEK, P. 

 

2023 62nd IEEE Conference on Decision and Control (CDC) 

eISBN: 979-8-3503-0124-3 

DOI: https://doi.org/10.1109/CDC49753.2023.10383518  

 

Accepted manuscript 

 

 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 

©2024 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained 
for all other uses, in any current or future media, including reprinting/republishing this material 
for advertising or promotional purposes, creating new collective works, for resale or 
redistribution to servers or lists, or reuse of any copyrighted component of this work in other 
works. DOKOUPIL, J.; VÁCLAVEK, P. „Recursive identification of the ARARX model based on the 
variational Bayes method“, 2023 62nd IEEE Conference on Decision and Control (CDC). DOI: 
10.1109/CDC49753.2023.10383518. Final version is available at 
https://ieeexplore.ieee.org/document/10383518 

dspace.vut.cz 

https://doi.org/10.1109/CDC49753.2023.10383518
https://ieeexplore.ieee.org/document/10383518


Recursive Identification of the ARARX Model Based on the Variational
Bayes Method

Jakub Dokoupil and Pavel Václavek

Abstract— Bayesian parameter estimation of autoregressive
(AR) with exogenous input (X) systems in the presence of
colored model noise is addressed. The stochastic system under
consideration is driven by colored noise that arises from passing
an initially white noise through an AR filter. Owing to the
additional AR filter, the ARARX schema provides more flexibility
than the ARX one. The gained flexibility is countered by the
fact that the ARARX system is no longer linear-in-parameters
unless the white noise components or the AR noise filter are
available. This paper analyzes the problem of estimating the
unknown coefficients of the ARARX system and the model noise
precision under conditions where the AR noise filter is both
available and unavailable. While the former condition reduces
the estimation problem to standard linear least squares, the
latter one gives rise to an analytically intractable estimation
problem. The intractability is resolved by the distributional
approximation technique based on the variational Bayes (VB)
method.

I. INTRODUCTION

Regression-type models are commonly adopted in describ-
ing unknown system features based on sequentially observed
data. The model parameters rarely have a direct physical
interpretation because they usually represent a purposeful ap-
proximation to more complex real processes. Consequently,
the choice of the model structure is motivated by the intended
use of the model rather than strict adherence to the under-
lying stochastic contexts. However, regression-type models
constitute a reasonable compromise between complexity and
descriptive capabilities for large collections of real systems
[1]. An appealing approach to linear system estimation is to
start by estimating a high-order ARX model, whose statistics
serve as information-bearing for not only determining low-
order ARX models [2] and ARARX models [3] but also
approximating ARMAX (with the moving-average (MA) noise
filter) structures [4]. The estimation of ARARX systems
embodies a difficult problem that is repeatedly addressed
in the literature. The difficulty stems from the redundancy
elimination of the high-order ARX model to obtain unique
ARARX model parameterization, which is the focus of this
paper.

In paper [5], the authors constructed a loss function to
obtain an asymptotically unbiased estimate of an ARARX
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model from high-order ARX model statistics, arguing that a
reduction is computationally more efficient than the solution
given by the direct optimization of the quadratic prediction
error (PE) loss function. Such an indirect PE method was
further theoretically justified and elaborated into algorithmic
details in [6], with the model reduction performed via the
Gauss-Newton (GN) method. The paper also explained and
advocated the motivation for reducing a high-order ARX
model to an ARARX model according to the parsimony
principle. Specifically, some accuracy is lost when a complex
ARX model is used instead of an ARARX one. A noniterative
reduction strategy that results in an inefficient estimator is
considered in [3], [7]. The strategy interprets the reduction
problem as searching for the greatest common divisor of two
discrete polynomials, which can be formulated by means
of least squares. Assuming an unknown AR noise filter
in the system, an asymptotically unbiased estimate of the
ARX part and the corresponding covariance matrix can be
obtained with a two-step ARX estimation procedure [8]. The
essence of the procedure is to filter and simulate the data by
using a high-order noise-free model, which, however, must
be built first; this procedure is therefore inconvenient for
online learning. To determine the AR noise filter coefficients
from the high-order ARX model estimate, the two-step ARX
estimation procedure may be further supplemented with a
zero-pole cancellation approach [9].

As the MA process is approximable by exploiting an AR
filter of a suitably high order, the ARMAX estimation problem
can be mapped into the ARX estimation problem. Hence, the
reduction concept makes it possible to bypass the stability
requirement of the optimal ARMAX predictor, which is a
prerequisite for the successful application of the standard
PE method. The stability restriction on the MA part is inher-
ently relaxed by the rigorous Bayesian problem formulation.
Assuming that the MA part is fixed, the lower-diagonal fac-
torization of the Toeplitz structure correlation matrix acts as
a time-varying, prewhitening data filter [10], [11]. Bayesian
solutions coherently describe parameter uncertainty, proving
vital for both quantifying the risk associated with the data-
informed decision-making and probabilistic control design
[12], [13]. The Bayesian approach utilizes the probability
density function (pdf) to interpret random model parameters,
making issues such as the estimator bias, efficiency, and
credible interval disappear or irrelevant for any identifiable
model. Compared to the PE nonlinear system identification
methods, Bayesian learning is generally less prone to over-
fitting [14]. A certain conceptual advantage of the Bayesian
strategies is that they strive for approximations to fit the
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posteriors rather than models to fit the data. The standard PE
method relies on the GN search direction, exploiting the first-
order Taylor linearization of the system model [15] around
the trusted point.

The present paper aims to identify the ARARX model
by optimally reducing the high-order ARX system. The
reduction is made optimal through approximating the exact
posterior pdf by using the product of conditionally indepen-
dent marginals, in compliance with the VB inference (for a
detailed overview, see [16]). We show how the ARARX model
is embedded in the ARX structure via adopting the functional
form of the dynamic exponential family (DEF) (§6.2.1 in
[16]) as a template for the model parameterization, and we
also stress that the parametric model is separable in param-
eters. Consequently, the established model parameterization
guarantees a lossless recursive estimation and amenability of
the model to the VB method. A similar strategy was recently
introduced in [17], [18], where the Hammerstein system
is identified by eliminating redundancies in an overparam-
eterized model; this approach too falls within the model
reduction issue.

Notation. An n×m zero matrix is symbolized by On,m;
In refers to an n × n identity matrix; ϵni denotes the ith
column of the identity matrix In; ϵ̄ni is the ith row of the
identity matrix In; 1n is an n−dimensional column vector,
all of whose components are one; ⊗ stands for the Kronecker
product; ◦ defines the Hadamard product; x′ symbolizes the
transpose of x; x∗ defines the range of x; x̊ refers to the
number of members in a countable set x∗ or denotes the
dimension of a vector x; and f(x) is reserved for the pdf of
a random variable x, optionally distinguished by its subscript.
Further, ∝ means equality up to a normalizing factor; vec (·)
represents the vectorization operator; ≡ means equality by
definition; the functional derivative of the functional L(f(x))
over f(x) is defined as δL(f(x))

δf(x) ; and the expectation of an
arbitrary function g(x) with respect to the pdf f(x) is labeled
as Ef(x)[g(x)] =

∫
x∗ g(x)f(x) dx.

II. DESIGNING THE ALGORITHMS

We assume that the system posits a relationship between
a noisy output yk and the preceding input-output data
{uk−i, yk−i}ni=1 in the form of the ARARX model (§6.2 in
[1]). We then have{

yk =
∑n

i=1 biuk−i −
∑n

i=1 aiyk−i + vk,

vk = −
∑nd

i=1 divk−i + ek,
(1)

where ek is assumed to be a normally distributed, dis-
crete white noise, f(ek|ek−1, . . . , e1, de) ≡ f(ek|de) ≡
N (ek|0, 1/de), with a zero mean and an unknown preci-
sion de ∈ R>0. The output yk and the noiseless input
uk are both observed on the system at the discrete time
instants k ∈ k∗ ≡ {k0, k0 + 1, . . . , k̊} ⊂ Z to form
the data record Dk

1−n−nd
≡ {ui, yi}ki=1−n−nd

. The lower
bound imposed on the data record, Dk

1−n−nd
, is chosen

to formally secure the indexation of the parametric mod-
els in the likelihood function from time k = 1, that is,

∏k
l=1 f(yl|{ai, bi}ni=1, {di}

nd
i=1, de,D

k
1−n−nd

). The ARARX
model is parameterized by the set of regression coeffi-
cients {ai, bi}ni=1 and {di}nd

i=1 stacked for clarity into the
vectors θ ≡ [b1, . . . , bn, a1, . . . , an]

′ ∈ R2n and θd ≡
[d1, . . . , dnd

]′ ∈ Rnd and also by the model noise precision
de. In the text below, two options with respect to the ac-
cessible parameters are examined, and two posteriors which
differ in their conditioning information set are constructed.
More concretely, we construct f(θ, de|θd,Dk

1−n−nd
) and

f(θ, θd, de|Dk
1−n−nd

) to learn the parameters of interest in
tandem with the data acquisition.

A. Known coefficients of the AR noise filter

Assume for a moment that an AR process modeling
the disturbance is identified by the user. The consistent
Bayesian reasoning supported by this knowledge gives rise
to an optimal, prewhitening filter which decorrelates the
disturbances. The decorrelation then allows for the standard
Bayesian estimation of the unknown ARX part.

The ARX part of the model (1) is driven by the colored,
normally distributed, discrete noise vk having a specified
mean and a finite correlation span. More explicitly, the
disturbance is modeled as an AR process excited by ek:

f
(
vk
∣∣{vk−i}nd

i=1,θd, de
)
= N

(
vk

∣∣∣∣− nd∑
i=1

divk−i, 1/de

)
∝ exp

[
− de

2

(
vk +

nd∑
i=1

divk−i

)2]
. (2)

To perform the Bayesian recursion, it is necessary to
specify the parametric model that incorporates the observed
data into the latest posterior. The search for the model
requires the disturbance vk (2) to be transformed to the
system output yk, resulting in

f
(
yk
∣∣θ, θd, de,Dk−1

1−n−nd

)
= N

(
yk

∣∣∣∣− nd∑
i=1

diyk−i +

[
h̄′
k +

nd∑
i=1

dih̄
′
k−i

]
︸ ︷︷ ︸

h′
k

θ, 1/de

)

∝ exp
[
− de

2

(
τk − h′

kθ
)2]

, (3)

where τk ≡ yk +
∑nd

i=1 diyk−i, and h̄k ≡
[uk−1, . . . , uk−n,−yk−1, . . . ,−yk−n]

′ ∈ R2n is an auxiliary
regression vector. Hence, the pdf of the normal ARARX
model can be viewed as a normal parametric model defined
on the filtered data τk and hk. The ARARX introduced to
the ARX model transformation in turn opens the door to
using the Bayesian estimation effectively. The normality of
the parametric model (3) determines the conjugate prior in
the form of the normal-Wishart (NW) pdf (§8.1.3 in [13]).
This leads to a posterior whose particular factors are defined
as

f
(
θ
∣∣Sk, de) = N (θ∣∣θ̂k, Pk/de

)
(4)

∝ exp
[
−
(
θ − θ̂k

)′
P−1
k

(
θ − θ̂k

)
de/2

]
,



f
(
de
∣∣Sk) =W(de∣∣Σk, νk

)
(5)

∝ d(νk−2)/2
e exp

[
− Σkde/2

]
,

where EN (θ|Sk,de)[θ] = θ̂k and EN (θ|Sk,de)[(θ − θ̂k)(θ −
θ̂k)

′] = Pk/de represent the particular moments of the
multivariate normal distribution (4). The scalars Σk > 0 and
νk > 2 denote the least squares reminder and the number
of degrees of freedom, respectively. It follows from the
definition of the Wishart distribution that EW(de|Σk,νk)[de] =
νk/Σk. The set Sk ≡ {sk, νk} comprises the sufficient
statistics for {θ, de}, with

sk ≡ vec

([
P−1
k −P−1

k θ̂k
−θ̂′kP

−1
k Σk + θ̂′kP

−1
k θ̂k

])
. (6)

To initiate the learning procedure, the externally supplied
pdf is chosen as

f
(
θ, de

∣∣θ̂k−1,Ξ,Σ0, ν0
)
= N

(
θ
∣∣θ̂k−1,Ξ

−1/de
)

(7)

×W
(
de
∣∣Σ0, ν0

)
,

where Ξ is a positive definite matrix of an appropriate
dimension. Considering (7), the Bayesian update will then
smooth the parameter estimate by penalizing the parameter
variations from their latest available value rather than from
their initial guess [15]. The functional recursion organized
with respect to Bayes’ rule is as follows:

f
(
θ, de

∣∣Sk) ∝ N(yk∣∣∣∣− nd∑
i=1

diyk−i + h′
kθ, 1/de

)
(8)

×
N
(
θ
∣∣θ̂k−1,Ξ

−1/de
)

N
(
θ
∣∣θ̂k−2,Ξ−1/de

)
×N

(
θ
∣∣θ̂k−1, Pk−1/de

)
W
(
de
∣∣Σk−1, νk−1

)
.

The assignments θ̂0 ≡ θ̂−1 and P0 ≡ Ξ−1 made at time
k = 1 designate pdf (7) to formally initiate the learning
procedure. Given the conjugacy of all the pdfs on the right-
hand side of (8), the functional recursion is reduced to the
least squares-like recursion

εk−1 ≡ θ̂k−1 − θ̂k−2, (9)

θ̂c;k−1 ≡ θ̂k−1 + Pk−1Ξεk−1, (10)

Σc;k−1 ≡ Σk−1 − ε′k−1

(
Iθ̊ + ΞPk−1

)
Ξεk−1, (11)

Kk ≡ Pk−1hk/
(
1 + h′

kPk−1hk

)
, (12)

êc;k ≡ τk − h′
kθ̂c;k−1, (13)

θ̂k = θ̂c;k−1 +Kkêc;k, (14)

Pk =
(
Iθ̊ −Kkh

′
k

)
Pk−1

(
Iθ̊ −Kkh

′
k

)′
+KkK

′
k, (15)

Vk ≡ P−1
k = Vk−1 + hkh

′
k, (16)

Σk = Σc;k−1 + ê2c;k/
(
1 + h′

kPk−1hk

)
, (17)

νk = νk−1 + 1. (18)

The recursive solution can be further expanded to operate
in a nonstationary environment by means of a data-informed
forgetting mechanism, as suggested in [19] or [20], [21].
Having the prespecified precision de, one can also consider
adopting the adaptive scheme, as designed in [22], [23]. A

Algorithm 1 The Bayesian parameter estimation procedure
for an ARARX model with a known AR noise filter (θd).

1: Initialization phase:
2: Gather the data set D1

1−n−nd
to fill the initial filtered

regressor vector h1 = h̄1+
∑nd

i=1 dih̄1−i, and τ1 = y1+∑nd

i=1 diy1−i, all entering (3).
3: Initialize the statistics {θ̂0,Ξ,Σ0 > 0, ν0 > 2} and

execute the assignments {θ̂−1 ≡ θ̂0, V0 ≡ P−1
0 ≡ Ξ}

to obtain, for k = 1, the starting point {θ̂c;0,Σc;0} (9)–
(11) needed to initiate the data update (12)–(18).

4: Learning phase:
5: for k ← 1, k̊ do

6: Input:
{

τk, hk,Ξ,Σk−1, νk−1,

θ̂k−1, θ̂k−2, Vk−1, Pk−1

7: Update: θ̂k−1 → θ̂k, Pk−1 → Pk, Vk−1 → Vk,
Σk−1 → Σk, and νk−1 → νk ▷ (9)–(18)

8: Output: θ̂k, Pk, Vk, Σk, νk
9: end for

summary of the estimation procedure for the known noise
filter is given by Algorithm 1. Note that the matrix Vk does
not have to be propagated to parameterize the posterior (8).

B. Unknown coefficients of the AR noise filter

Regrettably, in practice we rarely meet the assumption
that the AR process modeling the disturbance is known.
Conceptually, Bayesian model comparison can be involved to
mitigate the impact of the absence of an explicit noise model
[10]. This requires us to evaluate the posterior probabilities
on the hypotheses that a specific noise model is the best
representative from a finite set of candidates [24]. Although a
more refined approach has been designed in this respect [11],
it still employs a finite, prespecified mixture of stochastic
models with a common ARX part. In the sequel, we expand
the range of the ARARX model’s practical applications by
estimating all its parameters.

The problem is faced by the indirect estimation approach,
as no closed-form expression is available to directly prop-
agate the moments of the regression coefficients {θ, θd}
coupled within the ARARX model (1). To facilitate the sub-
sequent designing of the inference algorithm, we will show
that the parametric model (3) is a member of the dynamic
exponential family with separable parameters (DEFS) (§6.3.1
in [16]). To this end, the term in the exponent of (3) is
rewritten using the identity vec(ACB) = (B′ ⊗ A) vec(C)
[25], as indicated below:

τk − h′
kθ = vec


 h̄′

k −yk
...

...
h̄′
k−nd

−yk−nd




′([
θ
1

]
⊗
[
1
θd

])

=

[
φk

−yk

]′
T ′
([

θ
1

]
⊗
(
J

[
θd
1

]))
︸ ︷︷ ︸[

ϑ′ 1
]′

, (19)



where φk ≡ [uk−1, . . . , uk−n−nd
,−yk−1, . . . ,−yk−n−nd

]′ ∈
R2(n+nd) is a high-order ARX model regressor,
J ≡

[
O1,nd

1

Ind
O′

1,nd

]
, and the transformation matrix T

possesses the form

T ≡
[
T11 T12

T21 0

]
, (20)

T12 = ϵ
(nd+1)(2n+1)−1
(nd+1)2n+1 , T21 = ϵ̄

2(n+nd)
2nd+n , (21)

T11 =



[
Ind+1 Ond+1,2n+nd−1

]︸ ︷︷ ︸
E

S0

...
ESn−1

ESnd+n

...
ESnd+2n−1

O1,2(n+nd)[
Ind−1 Ond−1,2n+nd+1

]
Snd+n


. (22)

The matrix S ≡
[
O2(n+nd)−1,1 I2(n+nd)−1

0 O′
2(n+nd)−1,1

]
embodies a

shifting matrix (§3.7 in [26]), provided we take S0 =
I2(n+nd) (Sn is the nth power of S). When a given matrix is
postmultiplied by S, the columns of that matrix are shifted
to the right, invariably by one position, and the first column
of the matrix is replaced with a null vector. The form of
the corresponding coefficient vector ϑ, which determines the
ARARX model dynamics, follows from

ϑ ≡
[

T11

ϵ̄
2(n+nd)
2nd+n

]′([
θ
1

]
⊗
(
J

[
θd
1

]))
∈ R2(n+nd). (23)

Although the posterior is intractable, the chosen parameteri-
zation allows its sufficient statistics to be recursively updated
without any information loss. In this scenario, the pdf of the
normal ARARX model equals the normal pdf describing the
high-order ARX model

f
(
yk
∣∣θ, θd, de,Dk−1

1−n−nd

)
= N

(
yk
∣∣φ′

kϑ, 1/de
)
. (24)

Now, we can proceed to the formal model classification.
Remark 1: The normal ARARX model belongs to the

DEFS

f
(
yk
∣∣θ, θd, de,Dk−1

1−n−nd

)
≡ exp

[
q
(
ϑ, de

)′
γ
(
yk, φk

)
− ιyk

(
ϑ, de

)]
, (25)

under the assignments

q
(
ϑ, de

)
= −de

2
vec
(
[ϑ′ 1 ]′[ϑ′ 1 ]

)
, (26)

γ
(
yk, φk

)
= vec

(
[φ′

k −yk ]′[φ′
k −yk ]

)
, (27)[

ιyk

(
ϑ, de

)]
= ln

(∫ ∞

−∞
exp

[
q
(
ϑ, de

)′
γ
(
yk, φk

)]
dyk

)
= ln

(√
2π/de

)
, (28)

where exp[ιyk
(ϑ, de)] =

√
2π/de stands for the normalizing

factor of the parametric model (25). Making use of the
identities vec(ACB) = (B′⊗A) vec(C) and (A◦C)⊗(B◦D) =

(A⊗ B) ◦ (C⊗D) [25] on
[
θ′ 1

]′ ⊗ (J
[
θ′d 1

]′
) entering

(19) yields[
θ′ 1

]′ ⊗ (J [θ′d 1
]′)

(29)

=

((
I2n+1 ⊗ 1nd+1

) [θ
1

])
︸ ︷︷ ︸

ϕ

◦
((

12n+1 ⊗ Ind+1

)
J

[
θd
1

])
︸ ︷︷ ︸

ϕd

.

Bearing in mind the previous result (29) and the identity
vec(xx′) = x ⊗ x [25], we can easily prove from (26) that
the model (25) is separable in parameters, satisfying

q
(
ϑ, de

)
=
(
T ′ ⊗ T ′) (qarx(θ) ◦ qar(θd) ◦ qe(de)) , (30)

with{
qarx

(
θ
)
= vec

(
ϕϕ′), qar(θd) = vec

(
ϕdϕ

′
d

)
,

qe
(
de
)
= −de/2.

(31)

Thus, we conclude Remark 1 on the ARARX model classifi-
cation.

Bayesian learning with the high-order ARX model (24) can
be approached in the same way as it has been derived for the
ARX model defined on the filtered data (3). By introducing
the externally supplied pdf

f
(
ϑ, de

∣∣ϑ̂k−1, Ξ̄, Σ̄0, ν0
)
= N

(
ϑ
∣∣ϑ̂k−1, Ξ̄

−1/de
)

(32)

×W
(
de
∣∣Σ̄0, ν0

)
,

which effectively regularizes the data update, the already
presented least squares routine (9)-(18) is adopted to perform
the algebraic recursion. The only formal difference from the
implementation (9)-(18) lies in the use of the substitutions
{ϑ̂k ≡ θ̂k, φk ≡ hk, yk ≡ τk, P̄k ≡ Pk, V̄k ≡ Vk, Σ̄k ≡
Σk, Ξ̄ ≡ Ξ}. An immediate consequence of this treatment
is the propagation of the posterior f(ϑ, de

∣∣S̄k) through its
sufficient statistics S̄k ≡ {s̄k, νk}, where

s̄k ≡ vec

([
V̄k −V̄kϑ̂k

−ϑ̂′
kV̄k Σ̄k + ϑ̂′

kV̄kϑ̂k

])
. (33)

The posterior f(ϑ, de
∣∣S̄k) for the nonparsimonious ARARX

model representation is constructed at each step to agree
with the sequential data retrieval. The second step within
the recursive learning is to recover f(θ, θd, de

∣∣S̄k), namely,
the parsimonious ARARX model nested inside the ARX
structure. The recovery of the posterior f(θ, θd, de

∣∣S̄k) is
performed using the iterative VB (IVB) algorithm with N
consecutive iterations per least squares update. In general, the
VB method restores the tractability of the inference problem
through approximating the explicit pdf by the product of
the marginals, which are forced to be independent of each
other. Considering the separation of the natural parameters
available for the pdf of the ARARX model (31), the tractable
posterior f̆(θ, θd, de

∣∣S̄k) is restricted to the product

f̆
(
θ, θd, de

∣∣S̄k) ≡ f̆
(
θ
∣∣S̄k)f̆(θd∣∣S̄k)f(de∣∣S̄k), (34)

where the factor f(de|S̄k) is recognized to be the exact
marginal f(de|S̄k) = W(de|Σ̄k, νk

)
. The proposed fac-

torization (34) stimulated by (31) is in conformity with



the coefficient partitioning, which ensures the conditional
conjugacy (§2.1.2 in [27]). This conjugacy stems from the
fact that the ARARX model is built by combining the ARX and
the AR parts. To optimally infer the two remaining marginals,
(f̆(θ|S̄k) and f̆(θd|S̄k)), a loss functional is constructed to
quantify the information loss incurred when the tractable
posterior f̆(θ, θd, de

∣∣S̄k) is used to approximate the explicit
posterior f(θ, θd, de

∣∣S̄k). Let us define the ordered set of
parameters Θ ≡ {θ, θd, de} for the sake of brevity and
introduce the functional

L
(
f̆
(
Θ
∣∣S̄k)) ≡ D(f̆(Θ∣∣S̄k)∥∥f(Θ∣∣S̄k))

+ ηθ

(∫
θ∗
f̆
(
θ
∣∣S̄k)dθ − 1

)
+ ηθd

(∫
θ∗
d

f̆
(
θd
∣∣S̄k)dθd − 1

)
;

(35)

here, D(f̆(Θ|S̄k)∥f(Θ|S̄k)) stands for the Kullback-Leibler
divergence (KLD) [28],

D
(
f̆
(
Θ
∣∣S̄k)∥∥f(Θ∣∣S̄k)) ≡ ∫

Θ∗
f̆
(
Θ
∣∣S̄k) ln( f̆

(
Θ
∣∣S̄k)

f
(
Θ
∣∣S̄k)

)
dΘ,

(36)

which is nonnegative, D(f̆(Θ|S̄k)∥f(Θ|S̄k)) ≥ 0, with an
equality if and only if the two pdfs coincide with each
other. The functional (35) is optimized within the calculus of
variations approach to yield the two minimizers f̂(θ|S̄k) and
f̂(θd|S̄k). The terms in (35) scaled by the Lagrange multipli-
ers ηθ and ηθd rigorously guarantee that each minimizer is a
normalized pdf integrating to one. To accomplish the search
for the minimizers, the necessary optimality conditions are
captured by the lemma below.

Lemma 1: Let f̆(θ, θd, de
∣∣S̄k) be an approximate

posterior restricted to the factorization constraint
f̆(θ, θd, de|S̄k) = f̆(θ|S̄k)f̆(θd

∣∣S̄k)f(de|S̄k), with the
marginal f(de|S̄k) = W(de|Σ̄k, νk

)
having the fixed

functional form. Then, minimizing the functional (35) over
the independent marginals f̆(θ|S̄k) and f̆(θd

∣∣S̄k) yields

f̂
(
θ
∣∣S̄k) ∝ exp

[
Ef̆(θd|S̄k)W(de|Σ̄k,νk)

[
ln
(
f
(
Θ, S̄k

)) ]]
,

(37)

f̂
(
θd
∣∣S̄k) ∝ exp

[
Ef̆(θ|S̄k)W(de|Σ̄k,νk)

[
ln
(
f
(
Θ, S̄k

)) ]]
.

(38)
Proof: Since the optimization problem can be solved

analogously for each factor separately, we will discuss the
proof with respect to f̂(θ|S̄k) only. It has proved to be
convenient to rewrite the KLD entering (35) as a sum of
two parts:

D
(
f̆
(
Θ
∣∣S̄k)∥∥f(Θ∣∣S̄k)) = min

f̆(θ|S̄k)
L
(
f̆
(
Θ
∣∣S̄k))

+D
(
f̆
(
θ
∣∣S̄k)∥∥f̂(θ∣∣S̄k)), (39)

where the part independent of the optimized f̆(θ|S̄k),

ln

(∫
Θ∗
f
(
Θ, S̄

)
dΘ

)

+

∫
θ∗
d

∫
d∗
e

f̆
(
θd, de

∣∣S̄) ln (
f̆(θd|S̄k)W(de|Σ̄k,νk)︷ ︸︸ ︷

f̆
(
θd, de

∣∣S̄) )
dθd dde

− ln

(∫
θ∗
d

∫
d∗
e

exp
[
Ef̆(θd,de|S̄)

[
ln
(
f
(
Θ, S̄k

)) ]]
dθd dde

)
,

absorbs the attained minimum value. Then, direct application
of the optimality conditions to (35), the conditions being
stipulated by δL

δf̆(θ|S̄k)
=
[
ln(f̆(θ|S̄k)/f̂(θ|S̄k))+ηθ+1

]
= 0

and ∂L
∂ηθ

= 0, identifies the form of the minimizer (37).
The conditional conjugacy is the consequence of the

normality of each posterior factor f(θ|θd, de,Dk
1−n−nd

) and
f(θd|θ, de,Dk

1−n−nd
), and we thus obtain hints to choose the

initializer form that starts the iterative optimization at itera-
tion 0 as N [0](θd). Consequently, the stationary conditions
(37) and (38) constitute tractable VB-learning as the moments
of each VB-marginal are available. With the vectors ϕ and ϕd

introduced in (29), the iterative updating of the VB-marginals,
for i = 1, . . . , N , shows as

N [i]
(
θ
)
∝ exp

[
EN [i−1](θd)W(de)

[
− de

2
vec
(
ϕϕ′)′ (40)

× vec
(
Φ ◦

(
ϕdϕ

′
d

))]]
,

N [i]
(
θd
)
∝ exp

[
EN [i](θ)W(de)

[
− de

2
vec
(
ϕdϕ

′
d

)′
(41)

× vec
(
Φ ◦

(
ϕϕ′))]],

where Φ refers to the sufficient statistics (33) of the high-
order ARX model via

Φ ≡ T

[
V̄k −V̄kϑ̂k

−ϑ̂′
kV̄k Σ̄k + ϑ̂′

kV̄kϑ̂k

]
T ′. (42)

To acquire the IVB solution, the induced expectations in
(40) and (41) are evaluated, and the final forms of the
VB-marginals are found upon the completion of squares
technique. For these purposes, the matrix Φ is partitioned
into blocks

Φ ≡
[
Φ11 Φ′

21

Φ21 Φ22

]
, (43)

where

Φ11 = T11V̄kT
′
11 − T12ϑ̂

′
kV̄kT

′
11 − T11V̄kϑ̂kT

′
12 (44)

+ T12

(
Σ̄k + ϑ̂′

kV̄kϑ̂k

)
T ′
12,

Φ21 = T21V̄kT
′
11 − T21V̄kϑ̂kT

′
12, (45)

Φ22 = T21V̄kT
′
21. (46)

Further, introduce the substitutions Υ ≡ I2n+1 ⊗ 1nd+1 and
Υd ≡ (12n+1 ⊗ Ind+1)J . Let the matrix Υ be partitioned
according to

Υ ≡
[
Υ11 Υ12

O1,2n 1

]
, (47)

with

Υ11 =

[
I2n ⊗ 1nd+1

Ond,2n

]
, Υ12 =

[
O2n(nd+1),1

1nd

]
, (48)



and the matrix Υd as shown below

Υd ≡
[
Υd11 Υd12

ϵ̄nd
nd

0

]
, (49)

where

Υd11 =

12n ⊗
[

Ind

O1,nd

]
Ind

[ O1,nd[
Ind−1 Ond−1,1

]] (50)

+

[
12n ⊗ ϵnd+1

nd+1

Ond,1

]
ϵ̄nd
nd
,

Υd12 =

12n ⊗
[

Ind

O1,nd

]
Ind

 ϵnd
1 . (51)

In light of the substitutions covered above, (43), (47), and
(49), the schema in (40) and (41) is reduced into itera-
tive updating of the statistics of N (θ|θ̂k, Pθ;kΣ̄k/νk) and
N (θd|θ̂d;k, Pθd;kΣ̄k/νk), for i = 1, . . . , N , in compliance
with

X i
12 ≡ Φ′

21 ◦
[
Υd11

(
θ̂i−1
d;k

(
θ̂i−1
d;k

)′
+ P i−1

θd;k

Σ̄k

νk

)
ϵnd
nd

(52)

+Υd12

(
θ̂i−1
d;k )′ϵnd

nd

]
,

X i
11 ≡ Φ11 ◦

[
Υd11

(
θ̂i−1
d;k

(
θ̂i−1
d;k

)′
+ P i−1

θd;k

Σ̄k

νk

)
Υ′

d11 (53)

+Υd12

(
θ̂i−1
d;k

)′
Υ′

d11 +Υd11θ̂
i−1
d;k Υ′

d12 +Υd12Υ
′
d12

]
,

P i
θ;k =

(
Υ′

11X i
11Υ11

)−1
, (54)

θ̂ik = P i
θ;k

(
−Υ′

11X i
11Υ12 −Υ′

11X i
12

)
, (55)

Yi
21 ≡ Φ21 ◦

[(
θ̂ik
)′
Υ′

11 +Υ′
12

]
, (56)

Yi
11 ≡ Φ11 ◦

[
Υ11

(
θ̂ik
(
θ̂ik
)′
+ P i

θ;k

Σ̄k

νk

)
Υ′

11 (57)

+Υ12

(
θ̂ik
)′
Υ′

11 +Υ11θ̂
i
kΥ

′
12 +Υ12Υ

′
12

]
,

P i
θd;k

=
(
Υ′

d11Yi
11Υd11 + ϵnd

nd
Yi
21Υd11 (58)

+Υ′
d11

(
Yi
21

)′
ϵ̄nd
nd

+ ϵnd
nd
Φ22ϵ̄

nd
nd

)−1
,

θ̂id;k = P i
θd;k

(
−Υ′

d11Yi
11Υd12 − ϵnd

nd
Yi
21Υd12

)
, (59)

where θ̂0d;k ≡ θ̂d;k−1 and P 0
θd;k
≡ Pθd;k−1. The recursive

cycles of the ordered set of equations above execute the ARX
model reduction to yield an optimal approximation of the
ARARX model {θ̂k ≡ θ̂Nk , Pθ;k ≡ PN

θ;k, θ̂d;k ≡ θ̂Nd;k, Pθd;k ≡
PN
θd;k
}. The computation procedures to implement the devel-

oped method are reported in Algorithm 2.

III. ILLUSTRATIVE EXPERIMENTS

This section presents a numerical example to provide
empirical evidence of the performance of the algorithm.
To show its effectiveness, we compare the developed IVB
procedure for estimating an ARARX system with the recursive
instrumental variable (RIV) method (§9.4 in [1]). The RIV
method is in operation with instruments that consist only
of delayed inputs. A Bayesian estimation of an ARARX
system with a known AR part is included to deliver a
reference solution for the ARX part. We simulate the second-
order system (1) with a second-order AR noise filter. The

Algorithm 2 The IVB inference-based parameter estimation
procedure for an ARARX model.

1: Initialization phase:
2: Gather the data set D1

1−n−nd
to fill the initial regressor

φ1 entering (24).
3: Recall that, for the purpose of a high-order ARX model

estimation, we implement the least squares method (9)–
(18), the sole difference being that we formally rela-
bel the variables. Initialize the statistics {ϑ̂0, Ξ̄, Σ̄0 >
0, ν0 > 2}. Use the assignments {ϑ̂−1 ≡ ϑ̂0, V̄0 ≡
P̄−1
0 ≡ Ξ̄} to obtain, for k = 1, the starting point
{ϑ̂c;0, Σ̄c;0} (9)–(11) needed to initiate the data update
(12)–(18).

4: Initialize the statistics {θ̂d;0, Pθd;0} for the VB-marginal
modeling the AR noise filter.

5: Assemble the matrices Υ (47) and Υd (49).
6: Set the desired number of iterations N .
7: Learning phase:
8: for k ← 1, k̊ do

9: Input:
{

yk, φk, Ξ̄, Σ̄k−1, νk−1, ϑ̂k−1, ϑ̂k−2,

V̄k−1, P̄k−1, θ̂d;k−1, Pθd;k−1,Υ,Υd

10: Update: ϑ̂k−1 → ϑ̂k, P̄k−1 → P̄k, V̄k−1 → V̄k,
Σ̄k−1 → Σ̄k, and νk−1 → νk ▷ (9)–(18)

11: Assemble the matrix Φ ▷ (43)
12: for i← 1, N do
13: Update: {P i−1

θd;k
, θ̂i−1

d;k } → {P i
θ;k, θ̂

i
k, P

i
θd;k

, θid;k}
▷ (52)–(59)

14: end for
15: Output: ϑ̂k, P̄k, V̄k, Σ̄k, νk, θ̂k, Pθ;k, θ̂d;k, Pθd;k

16: end for

coefficients {ai, bi}2i=1 relate to the discrete transfer function
G(z) = kG(z − exp[Ts])/((z − exp[Tsp1])(z − exp[Tsp2])),
and {di}2i=1 correspond to the discrete polynomial P(z) =
(z − exp[−Ts0.1])(z − exp[−Ts0.2]). The sampling period
Ts is chosen as Ts = 1 s; the poles p1,2 = −0.4± i0.8; and
the gain kG = (1−exp[Tsp1])(1−exp[Tsp2])/(1−exp[Ts]).
The input sequence to the system is produced by uk =
0.9uk−1+wk, using the discrete white noise wk ∼ N (0, 1).
The disturbing white noise sequence {ek} is generated at
de = 10. The simulation is monitored within the time range
of 0− 500 s. All the initial posterior parameter estimates are
set to zero vectors. Further, regarding the user-defined input
arguments to Algorithms 1 and 2, the learning processes
start from ν0 = 10, Ξ = I4, Σ̄0 = Σ0 = 1

10 , Ξ̄ = I8,
Pθd;0 = 106I2, and the number of iterations is N = 2.

The result obtained from comparing the method is shown
in Fig. 1. As we can observe, the IVB method (Fig. 1(c))
exhibits a comparable estimation quality for the ARX part
of the model with the reference analytical Bayesian solution
(Fig. 1(b)) and, in addition, the method provides a successful
estimate of the AR noise filter (Fig. 1(d)). In this experiment
setup with a limited range of observations, the developed IVB
method delivers a high disturbance immunity when compared
to the RIV method (Fig. 1(a)).



0 100 200 300 400 500

−1

−0.5

0

0.5

1

t(s)

θ̂ k
(a)

b̂1 b̂2 â1 â2
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Fig. 1. The trajectories of the ARX model part estimates optimized
using (a) the RIV method, (b) the analytical Bayesian solution
for the known AR noise filter, and (c) the IVB method. (d) The
trajectories of the AR noise filter estimates provided by the IVB
method. The true values of the ARARX model coefficients are
taken as {b1 ≈ −0.3, b2 ≈ 0.82, a1 ≈ −0.93, a2 ≈ 0.45, d1 ≈
−1.72, d2 ≈ 0.74}.

IV. CONCLUSION

The problem of recovering the ARARX model embedded
in the high-order ARX model estimate is considered and
set into a rigorous probabilistic framework. Respecting the
knowledge of the AR noise filter, two algorithm variants are
discussed and elaborated on in detail. The ARARX system
is classified within the DEFS in Remark 1, offering the con-
struction of an exact posterior and derivation of a systematic
procedure for the posterior approximation. The approxima-
tion is designed to reduce the model at each step ex-post,
after the least squares update of the sufficient statistics has
been completed. Lemma 1 converts the reduction problem
of the least squares estimate of a high-order ARX model
into an optimization problem, tailoring the IVB method to
identify the ARARX system. A further theoretical justification
concerning the KLD-identifiability [29] of the ARARX model
is within the scope of future research.

REFERENCES
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[13] M. Kárný, J. Böhm, T. V. Guy, L. Jirsa, I. Nagy, and P. Nedoma, Op-
timized Bayesian Dynamic Advising: Theory and Algorithms. London,
U.K.: Springer, 2006.

[14] T. P. Minka, “A family of algorithms for approximate Bayesian
inference,“ Ph.D. dissertation, Dept. Elect. Eng. Comput. Sci., Mas-
sachusetts Inst. Technol., Cambridge, MA, USA, 2001.

[15] J. Dokoupil, A. Voda, and P. Václavek, “Regularized extended esti-
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[19] J. Dokoupil and P. Václavek, “Regularized estimation with variable
exponential forgetting,“ in Proc. 59th IEEE Conf. Decision Control,
2020, pp. 312–318.
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