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Abstract

Polygenetic Risk Scores are used to evaluate an individual’s vulnerability to developing specific diseases or conditions based on their
genetic composition, by taking into account numerous genetic variations. This article provides an overview of the concept of Polygenic
Risk Scores (PRS). We elucidate the historical advancements of PRS, their advantages and shortcomings in comparison with other
predictive methods, and discuss their conceptual limitations in light of the complexity of biological systems. Furthermore, we provide
a survey of published tools for computing PRS and associated resources. The various tools and software packages are categorized based
on their technical utility for users or prospective developers. Understanding the array of available tools and their limitations is crucial
for accurately assessing and predicting disease risks, facilitating early interventions, and guiding personalized healthcare decisions.
Additionally, we also identify potential new avenues for future bioinformatic analyzes and advancements related to PRS.

Keywords: polygenic risk score; genetic variations; GWAS; genomic prediction; genotype; phenotype

Introduction Scoring systems developed in those areas later inspired genetics

The concept of Risk Score (RS) calculation has been used in vari-
ous fields and for many years [1-4]. Risk assessment and related
scoring methodologies can be found and have been utilized in
various industries such as finance [5], insurance [6], cybersecu-
rity [7] and, of course, healthcare [1] to evaluate and quantify
the likelihood and impact of potential risks associated with the
parameters and variables of the respective system under study.

and heritability research as well [8], which have become known as
calculations of Genetic Risk Score (GRS) [9] or Polygenic Risk Score
(PRS) [10]/Polygenic Score (PGS) [11]. Scientists have discussed
the polygenic nature of many human phenotypes for some time
[12]. However, it was not until relatively recently that Genome-
Wide Association Studies (GWAS) [13, 14] provided evidence that
the genetic basis of most complex traits largely consists of the
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cumulative influence of hundreds or even thousands of variants
with minor effects [14], and thus, aggregating multiple SNP-loci
with minor effect appeared indicated, leading to the concept of
PRSs (Fig. 1).

GWAS primarily focuses on identifying associations between
individual genetic markers, usually single nucleotide polymor-
phisms (SNPs), and specific traits or diseases. While GWAS can
identify single genetic variants associated with traits, they typi-
cally do not directly test for combinations of alleles. Also, identi-
fied individual GWAS candidate SNPs are sufficient for diagnostic
purposes only if the effect sizes are large, which oftentimes is not
the case (Fig. 1). PRS combine the small effects, i.e., the strengths
of the association of allelic variants with a particular phenotype,
of many individual SNPs (potentially all known SNPs) to result in
an aggregated score. As often the study context is with regard to
assessing risks for failure/disease, we speak of a ‘risk’ score. The
higher the heritability of a trait, the more predictive power PRS is
likely to have, as there is a larger proportion of genetic variance
that can be captured and used for risk prediction. Conversely,
traits with low heritability may be more challenging to predict
accurately using PRS alone, as the genetic influence is weaker.
PRS, in turn, can be used to investigate the heritability of a partic-
ular trait by comparing the proportion of variance explained by
the PRS to the total phenotypic variance observed in a population
[17]. By assessing the contribution of PRS to the trait’s heritability,
we can gain insights into the genetic component of the trait under
study. The PRS approach can potentially be expanded to examine
the impact of copy number variants, epigenetic markers, and
various other factors [18].

PRS calculations have been particularly widely adopted
in behavioural genetics for their potential to illuminate the
genetic foundations of complex, multigenic behavioural traits.
Behavioural genetics [19] focuses on understanding how both
genetic and environmental factors contribute to individual
differences in behaviour, personality and psychological traits.

Obtained
model High risk
individual,
Timely
check-up
by doctor

Low risk
individual

=lje =

(1

Figure 1. [llustration of the basic concepts of PRS. Individuals of a populations are each characterized by their inherited genotypes and their associated
phenotypes. GWAS aims to identify genetic variants that are causaly related with a phenotype of interest. However, it is generally observed that common
variants (high minor allele frequency) are associated with only minor phenotypic effects, as large effect genotypic differences are generally selected
against, as they are frequently detrimental. Thus, when profiling a general population, large-effect-SNPs are rare. This, and the polygenic origin of many
diseases and conditions, necessitates the combination of many markers (SNPs) to arrived at an aggregated risk score, the PRS. This figure is in part
adapted from [15, 16].

PRS allows researchers to harness the cumulative effects of
numerous genetic variants associated with these behavioural
traits. By utilizing PRS, researchers can assess an individuals’
genetic risk-specific behaviours or psychological conditions, such
as schizophrenia [20] or depression [21]. This predictive capability
offers valuable insights into the interplay between genetic
predisposition and the environment, enabling a more compre-
hensive understanding of the complex nature of behavioural
traits. Overall, PRS holds great promise as a powerful tool
for investigating the genetic basis of complex behavioural
traits and can lead to a deeper understanding of human
behaviour and psychological conditions, ultimately contributing
to advancements in personalized medicine and behavioural
interventions.

The theoretical framework of PRS is closely linked to GWAS.
GWAS involves analyzing the entire genome of many individuals
to identify genetic variants associated with specific traits or dis-
eases [22]. These studies have been instrumental in uncovering
numerous genetic markers linked to a wide range of complex
traits and conditions. PRS, on the other hand, leverages the results
of GWAS by aggregating the effects of multiple genetic vari-
ants associated with a particular trait [23, 24]. This cumulative
approach allows researchers to calculate a PRS for an individual,
which represents their genetic predisposition to a specific trait or
disease based on the presence of these variants. The integration of
PRS and GWAS findings has opened up new avenues of research in
various fields, including medicine, psychology, and personalized
healthcare [25, 26]. PRS can be used to predict an individual’s risk
of developing specific diseases or exhibiting certain behavioural
traits, aiding in early detection and preventive measures. Addi-
tionally, PRS can provide insights into the genetic architecture of
complex traits, allowing researchers to identify potential biologi-
cal pathways and therapeutic targets.

The concept of PRS is a burgeoning field in genetics, still in
its early stages of development. As rapid advances in genomics
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technologies are made, the number of SNPs that can be detected
and the population sizes that can be genotyped increase rapidly
and significantly [27]. With this rise in genetic data availability,
the predictive power of PRSs increases. By incorporating a broader
array of genetic variants associated with specific traits or dis-
eases and with larger populations tested for SNP effects, the PRS
becomes more robust and accurate in assessing an individual’s
genetic risk for complex traits.

Most review articles on PRS present a comprehensive view of
different algorithms or point out directly specific challenges [14,
28, 29]. However, a comprehensive overview of the available tools
is in need of an update, which we aim to provide with this article.

Mathematical description

GRS [9], or Genetic Index, is the most common approach to eval-
uate the cumulative effect of many genetic factors with major
effects on the phenotype or disease. It can be used to estimate
the probability (or risk) for the manifestation of an outcome of
interest based on genetic variants.

GRS aggregates effects of allelic variants found in an individual
j on phenotype by summing over k independent genetic variants
with a strong association to phenotype based on the determined
individual effect size and associated P-value [9, 30]:

k
GRS; = > BiNj;, )

i=1

where B; estimates the effect size, expressed as log-odds ratios
derived from a logistic regression analysis with additive genetic
effects for binary traits or coefficients obtained from linear mod-
els for quantitative traits associated with a single allele count,
multiplied by the number of respective alleles N; at a given locus
1in individual j.

For example, N may take on values of 0, 1, or 2 for a diploid
organism, representing, for example, genotypes (‘AA’, ‘aA’, ‘aa’),
where A is the reference allele, encoded as ‘0’. Effect sizes, denoted
as B;, are usually derived from GWAS computations. They incor-
porate adjustments for confounding factors like population struc-
ture. The P-values generated by GWAS can be utilized to fil-
ter for k significant SNPs. However, a crucial limitation arises
from the strict additive treatment of variants, which fails to
adequately capture interactions—epistasis. Moreover, linear mod-
eling approaches encounter challenges in handling dominant/re-
cessive alleles.

PRS is an extension of GRS by including SNP-loci with smaller
effect sizes, eventually even all SNPs, regardless of effect size
and associated P-value [9]. Thus, the difference relative to GRS
is only with regard to the chosen k, the number of SNP-sites
included in the score. Therefore, by including weak associations,
the score becomes more ‘poly-gene-informative’ than the GRS, and
identifies high-risk individuals more precisely [9, 31, 32]. Since PRS
requires input from GWAS, computing of PRS is demanding, when
the model is first established in a population, but cheap once an
individual is genotyped.

The study [9] by Igo Jr. et al. divided PRS calculation approaches
into two ways:

(1) Pruning and Thresholding (P+T), also called Pruning or
Clumping.
This approach addresses linkage disequilibrium, LD, by
selecting a representative subset of variants from GWAS
to use in the RS. Several different procedures for finding

Genetic and polygenic risk scores | 3

significance thresholds related to predicted binary outcomes
are as follows [9]:

a) Selection based on AUC (Area Under the ROC-Receiver
Operating Characteristic-Curve) threshold,

b) pseudo-R? [33],

c) and other parameters of prediction performance.

(2) Bayesian and Variable reduction models.

Advanced approaches for calculating of PRS perform regres-
sion with correlated data. These approaches calculate with
all markers jointly. In general, the Bayesian statistical frame-
work [34] has a prior probability distribution for the parame-
ters of interest and produces an updated posterior distribu-
tion given the data. These models utilize summary statistics
to estimate shrinkage towards marker effects, taking into
account LD information from the reference panel [9, 35-
37]. Consequently, a specific distribution is chosen, which
significantly contributes to the overall heritability.

PRS versus Genomic Predictions

Genomic Predictions (GP) is a concept that is closely related to PRS.
While GP aims to directly predict a phenotype of interest using
whole-genome information, PRS focuses more on aggregating
effects of multiple genetic variants associatd with a trait or dis-
easeresultingin a score that can be interpreted as a risk to develop
a certain phenotpye. The difference is that PRS aggregates individ-
ual SNP effect sizes into a global score, whereas GP determines
the effect size of SNPs in light of all SNPs simultaneously and
depending on the chosen prediction model (e.g., ridge regression).

As is the case for any statistical prediction model, correlated
variables pose problems with regard to the stability of parameter
estimates and interpretation. For identical (or highly correlated)
SNP-patterns as caused by linkage or at different sites in the
genome) associated with large effects, classical PRS will add the
same effect size twice (unless explicitely accounted for as noted
above, or as implemented, for example, by LD score regression
(see below)), whereas in GP, by virtue of the typically employed
regularized regression method (most promintently Lasso or Rigde
regression), only one of the two will be chosen (by Lasso) or both
but at reduced effect size estimates (by Ridge regression).

Another differentiating aspect concerns the inclusion of covari-
ates, such as population structure. As the GWAS methodology is
generally set up to account for it, for example, via the kinship
matrices, GRS/PRS does generally consider population structure
as a confounding factor. In GP, this may or may not be done,
as often, GP aims at predicting outcome, and not at correctly
identifying causal genomic variants.

Given the similarities between PRS and GP, some level of confu-
sion can be noted among researchers. To aid in a better differenti-
atiation between the two, we present an overview of the standard
procedures for calculating both PRS and GP (Fig. 2—workflow of
procedure for GP and PRS calulations), which we hope will help
highilighting commonalities and differences between PRS and GP.

Advantages and limitations of the PRS

PRS aims to adequately capture the polygenic nature of many
traits by taking into account the collective influence of numerous
genetic variants, each with a relatively modest impact. Therefore,
PRSs are becoming increasingly popular in the field of genetics
and personalized healthcare [37]. PRSs offer personalized
risk assessments, aiding individuals in understanding their
genetic predisposition to diseases and enabling informed
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Figure 2. Workflow of procedure for GP and PRS calculations. The pre-processing steps are the same for both methods. GP can include GWAS for extracting
SNPs using thresholds, nevertheless, this step is not mandatory for GP. It is also possible to use the whole SNP dataset (although it can be more time
consuming for training the models). On the other hand, GWAS is a mandatory step in PRS calculation as it yields the effect sizes associated with every
SNP to yield the PRS. In total, there are three Quality Control steps (QC I, QC Il and QC III). QC I is connected to checking sequencing data quality, QC II
is connected to testing quality control of data for predictive modelling, such as sufficient data variability to avoid overfitting, and finally, QC III, which
is connected to the background of the majority available tools. QC III usually uses seven control parts, which are included in PLINK [35] (available on

https://zzz.bwh.harvard.edu/plink/) and described in [36].

decision-making. Additionally, PRS accelerates genetic research,
provides cost-effective genetic risk assessment, and aids in
population-level disease risk identification, thus benefiting
healthcare and research endeavors.

On the other hand, evidently, the predictive power of PRS is
limited by the number of SNPs tested [9, 31] and the population
used for developing the model (GWAS population). PRSs are built
upon our existing comprehension of genetic associations, which
is far from complete. Numerous genetic factors might not have
been identified or incorporated into PRS calculations, indicating
the inherent gaps in our knowledge (see below for a discussion of
intermediate steps between genotype and phenotype).

Moreover, PRS can exhibit ethnic biases since many are for-
mulated using genetic data from specific populations, potentially
introducing biases and inaccuracies when applied to individuals
from different ethnic backgrounds.

Importantly, current PRS methodologies do not account
for environmental factors, lifestyle choices and gene-environment
interactions, which are pivotal in determining disease risk.

Complexity and confounding factors in
biological systems challenge predictive
polygenic risk scoring analyses

Following the central dogma of molecular biology, PRSs link the
genetic information to the highest level (for an individual), the

phenotype (Fig. 3). Thus, many steps, such as the transcription,
protein and metabolite levels, are ‘side-stepped’ as are the many
forward, horizontal, and backward regulatory interactions [38-
41]. This unresolved complexity leads to a lower power of GWAS,
PRS and GP analysis, because many relevant interactions and
sources of variability are not considered (for more information,
see [42]). This also includes confounding factors hidden in the
data and affecting organismic properties [43, 44]. Furthermore, the
data underlying the original prediction model may change over
time, known as ‘concept drift’. Concept drift analysis, as explained
in reference [43], is an underappreciated concept thus far [44].
Minimally, continually checking and/or revising calculated PRS
values, by taking into account factors such as the passage of time,
to accurately account for the presence of confounding variables,
is an essential part of PRS applications.

PRS analysis relies on static DNA information. In contrast,
biological systems are dynamic with millions of regulatory inter-
actions aross all levels of molecular organization, as depicted in
Fig. 3 [39, 41]. Recently, we provided a systematic analysis of how
much phenotypic variance is captured by classical GWAS analysis
[42]. Using an in-depth literature survey, we concluded that in
the best cases, only 10-50% of variance is captured by genetic
information alone. This dynamic interplay between different
organizational levels holds significant importance in determining
prediction outcomes. Presently, the scientific community is
actively addressing this challenge through the field of integrating
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Figure 3. Conventional central dogma of molecular biology, embedded in the more comprehensive ‘modern’ dogma (figure adapted from [38, 51]), which
includes potential feedback loops leading to ‘forward’ and ‘reverse’ flow of information. With the concept of PRS, we aim to predict the phenotype
directly from the genomic (DNA) information. Thus, in case they are not fully genetically determined, significant influencing interactions are not

captured adequately.

multi-omics/panomics sciences with GWAS, GP, machine learning,
Al and metabolic modelling [42]. To address this problem we
have integrated metabolomics, GWAS, GP and data-driven inverse
modelling recently in an analysis of 241 Arabidopsis thaliana
genotypes [45]. This revealed a significant congruence of control
points in the metabolomics data by metabolic GWAS and inverse
data-driven metabolic models indicating causal relationships
from the genotype to the metabotype [45]. In another study,
we have applied this metabolomics-driven inverse modelling
approach in a multiomics data set to reveal control points
of macrophage metabolism [46]. In this study, a checkpoint
of macrophage M1/M2 polarization was identified and later
confirmed as an immunosuppressive anti-tumorigen switch
revealing causal metabolic pathways from genes to molecular
phenotypes [46, 47]. In the future we are aiming for the
further integration of these principles of data-driven multiomics
modelling [40] with GP and PRS and combine it with machine
and deep learning strategies to reveal causal pathways from the
genome to the phenotype. The ‘modern’ central molecular biology
dogma (Fig. 3) [48-50] captures the potential impact of dynamic
information flow in forward, backward direction and within a
given level of molecular organization. Using PRS, the aim is to
predict the phenotype directly from the genomic information
(Fig. 3). According to our discussion departures from perfect
predictability may then be interpreted as additional contributions
of the complex interactions at the dynamic intermediate levels
and, in particular, of the environment [41, 42].

A brief historical overview of GRS and PRS
concepts

Over the past few decades, the field of genetics has undergone
significant advances in understanding the complex relationship
between genetic factors and human traits or diseases. GRS
emerged as an early approach, utilizing a limited number
of genetic markers with strong associations to predict an
individual’s risk for certain single-gene disorders [52]. However,
GRS had limited applicability to complex traits influenced by
multiple genetic variants. With the advent of GWAS around
the mid-2000s, the focus shifted towards studying the entire
genome and identifying genetic variants associated with various
complex traits [53, 54]. This led to the development of PRS, which
aggregates the effects of multiple genetic variants to predict an
individual’s overall genetic risk for complex traits or diseases.
Since then, PRS has gained substantial traction, as researchers
continue to refine methodologies, integrate more genetic data
and optimize prediction models.

Another important conceptual development of PRS has
been that of including the effects of LD [55]. LD describes the
non-random association of alleles at neighboring genetic loci,
ie, the correlation of alleles of neighboring SNPs. Because of
linkage, neighboring SNPs often carry redundant information
and may lead to inflated PRSs as effects that are truly only
associated with a single SNP are spread over all linked SNPs.
‘LD score regression’ has been introduced to better factor in
linkage in the estimation of effect sizes and overall heritability
of a trait or disease [56]. LD score regression has become a
crucial tool for calculating PRS, enabling researchers to weigh the
contributions of individual genetic variants more accurately [57].
By accounting for LD patterns, LD score regression enhances the
precision of PRS, making it a more robust and effective approach
for predicting an individual’s genetic risk for multifactorial traits
or diseases. The relationship between LD and PRS underlines the
importance of understandingthe genetic basis of complex traits
and their potential applications in personalized medicine and risk
assessment.

In the following, we will first categorize methods for calculating
GRS and PRS and briefly highlight the state of the art in each
category. Then, a chronological assessment of tools for computing
RS, GRS, and PRS will be provided. These tools are classified by
methodology, delineating between RS, GRS or PRS calculations.
Furthermore, they are categorized from a user-oriented viewpoint,
taking into account factors like operating system compatibil-
ity and the scope of calculation capabilities, be it specific or
universal.

Classification of methods for calculating
PRS

The classification of methods for calculating PRS encompasses
diverse approaches tailored to extract meaningful insights from
genetic data. Extending the classification given above [9], we
propose to distinguish between the following:

1) Clumping and Thresholding techniques—streamline data
by focusing on significant genetic variants and establishing
thresholds for inclusion.

Tools belonging to this category: Clinotator [65], PRSice [12],
PRSice-2 [68, 69].

2) Genetic correlations and their linked functional annota-
tions—address the interconnectedness of genetic variants
and their functional implications, providing a nuanced
understanding of genetic risk.

Tools belonging to this category: CanRisk [75], GenRisk [79],
JASS [72], impute.me [73], Neptune, PRScs, SumHer [59].
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Figure 4. Evolution of tools for calculating RS, GRS and PRS. This figure presents a chronological ordering of available tools for calculating RS, GRS and
PRS within their initial decade of development. The tools are categorized based on their methodology, distinguishing between the calculation of RS, GRS
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capabilities of each tool.

3) Regression-Based Methods—employ statistical regression
models to quantify the cumulative effect of genetic variants
on disease risk.

Tools belonging to this category: AFA-Recur [82], CanRisk
[75], GDM [77], SCFA [74], PXS [66].

4) Bayesian Methods—leverage Bayesian statistical frame-
works to infer probabilities and uncertainties in polygenic
risk assessment.

Tools belonging to this category: SNP2TFBS [64], SBayesR [70].

5) Other Machine Learning and Optimization Algorithms—
such as Support Vector Machines or Genetic Programming
[58] utilize sophisticated algorithms to discern complex
patterns in genetic data, further enhancing risk prediction
capabilities.

Tools belonging to this category: Clinotator [65], CluStrat
[71], ECS [66], GenRisk [79],JASS [72], LDPred-2 [63], Neptune,
PRScs [67], PUMAS [26], PXS [66], TrumpetPlots [83].

Some tools may appear in multiple categories based on their
functionality or classification. Each method contributes uniquely
to the refinement and accuracy of PRS calculations, advancing the
field of personalized medicine and genetic risk assessment.

Survey of available GRS/PRS tools

This chapter offers a chronological evaluation of tools designed
for computing RS, GRS, and PRS, tracking their evolution over
the initial decade of development. These tools are organized
based on their methodologies, distinguishing between RS, GRS
or PRS calculations. Additionally, they are categorized from a
user-centric perspective, considering factors such as operating
system compatibility and the breadth of calculation capabilities,
whether specific or universal; see Fig. 4 and Table 1. These tools
were selected based on functionality, publication or availability on
bio.tools website. The other 149 tools that are available in public
repositories, such as github or bitbucket web-server, and deal with
PRS, are included in the Supplemental Table S1.

During the early period, until the years 2010-15, foundations of
GRS and PRS models were laid. With the advent of state-of-the-art
genomics technologies and large-scale genomic data, scientists
have expanded the scope of GRS and PRS computations. This led
to the futher development of the first GRS and PRS tools described
and presented in this chapter.

The early developments of GRS and PRS

LINKAGE—the first mention of the LINKAGE software tools dates
back to 1996 [59]. The LINKAGE comprises a series of programs at
its core, serving the purposes of maximum likelihood estimation
for recombination rates, lod score table calculations and genetic
risk analysis. The last update is from 2013 (see https://www.
jurgott.org/linkage/LinkageUser.pdf).

LDPred—LDPred is the predecessor of the LDPred-2 tool [60].
Initially introduced as a method, this tool estimates the posterior
mean effect size of each marker by leveraging prior information
on effect sizes and LD data [55].

PRSice—the first dedicated PRS software. PRSice [12] (‘precise’)
offers a comprehensive suite of functionalities for calculating,
applying, evaluating, and visualizing PRS results. PRSice allows
PRS calculations at various thresholds, accommodating high-
resolution analyses, as well as broader P-value thresholds. It
handles genotyped and imputed data, incorporates ancestry-
informative variables, and can simultaneously apply PRS analysis
across multiple traits [12].

SNP2TFBS — computational resources and databases such as
SNP2TBS are also crucial for PRS development and calculations.
SNP2TFBS serves as a computational resource designed to assist
researchers in exploring the molecular mechanisms involved in
regulatory variation within the human genome [61].

Clinotator—the tool takes input variants and utilizes NCBI
E-utilities to produce ClinVar Variation Report scoring metrics
[62]. Its primary objective is to generate annotations relevant to
batches of variants to aid in clinical interpretation. The scoring
metrics include Clinotator Raw Score, Average Clinical Assertion
Age, Clinotator Predicted Significance and classification Recom-
mendation [62].

State-of-the-art GRS and PRS tools

FCS—FCS Frequency Conservation Score for detecting pathogenic
single nucleotide variants in nuclear and mitochondrial DNA [63].
These scores are based on a random forest model trained using
various predictors, locus variability from the gnomAD database,
and physicochemical distance for amino acid substitutions and
impact over the canonical transcript.

PRScs—PRScs uses a high-dimensional Bayesian regression
framework. This unique approach exhibits robustness across
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diverse genetic architectures, delivers significant computational
benefits, and facilitates multivariate modeling of local LD
patterns [64].

PRSice-2—PRSice-2 is an upgraded version of PRSice, which
offers significantly improved speed and memory efficiency com-
pared with PRSice-1, LDpred and lassosum while maintaining
comparable predictive performance [65, 66].

PXS—PXS is a web tool that upgraded PRS into Poly-exposure
score (PXS). It is based on an additive modelling approach
to estimate and validate a PXS that extends beyond con-
sidering a limited number of factors, such as smoking and
pollution [63].

SBayesR—the SBayesR tool extends a robust individual-level
data Bayesian multiple regression model called BayesR to leverage
summary statistics from GWAS [67]. SBayesR enhances prediction
accuracy compared with commonly employed state-of-the-art
summary statistics methods, all while consuming a significantly
lower amount of computational resources [67].

SumHer—SumHer [56] is a tool for a summary of statistical
analysis. It is presented as an auxiliary tool to improve the PRS
calculation.

AMLRS—a web-based prognostic tool to forecast the prognosis
of Acute Myeloid Leukemia (AML) in patients. By employing a log-
rank test, univariate COX regression analysis and LASSO-COX, it
identified 10 survival-related genes that constituted the AML Risk
Score [68].

CluStrat—the CluStrat tool [68] introduces a structure-
informed clustering approach for population stratification. The
method leverages GWAS data to estimate the effects of trait-
associated alleles and calculate PRS, providing valuable insights
into the genetic architecture of the studied traits.

JASS—the software package JASS [69] efficiently computes joint
statistics for selected GWAS results and facilitates interactive
exploration of the findings via a user-friendly web interface.

impute.me—the tool impute.me offers advanced DNA anal-
ysis that goes beyond individual SNPs, empowering users with
comprehensive genetic information [70]. The web-based engine is
providing state-of-the-art trait and disease genetic scores based
on advanced polygenic risk scoring.

Subtyping via Consensus Factor Analysis (SCFA)—SCFA is a
groundbreaking approach for cancer subtyping and risk predic-
tion known as Subtyping via Consensus Factor Analysis (SCFA)
[71]. This method effectively eliminates noisy signals, retaining
consistent molecular patterns, thereby enabling the reliable iden-
tification of cancer subtypes and accurate RS predictions for
patients.

CanRisk—CanRisk [72] is an innovative web interface for the
Breast and Ovarian Analysis of Disease Incidence and Carrier
Estimation Algorithm risk prediction model [73]. It is the first com-
prehensive model to enable reliable breast cancer risk prediction
in unaffected women, common cancer genetic susceptibility vari-
ants using PRS, explicit family history, personal lifestyle, hormonal
and reproductive risk factors, and mammographic density.

Gestational diabetes mellitus (GDM) —this tool uses a machine
learning-based prediction model specifically tailored for Chinese
women in early pregnancy to accurately predict the likelihood of
GDM [74].

Neptune—Neptune (https://gitlab.com/bcm-hgsc/neptune) is
an innovative system designed to facilitate seamless interaction
between a clinical laboratory and an electronic health record
system, creating an environment for delivering genomic medicine
with immense potential for enhancing healthcare. This tool
required customizable clinical reports encompassing various

genetic data types, such as SNVs, CNVs, pharmacogenomics
and PRS.

LDPred-2—LDpred? [60] is an updated version of LDpred
designed to calculate PRS. It introduces two new options: a ‘sparse’
option capable of learning effects that equal zero and an ‘auto’
option that directly learns the two LDpred parameters from the
data. In benchmark tests using simulated and real data, LDpred?2
outperforms its predecessor LDpredl, showcasing enhanced
robustness and predictive accuracy.

PUMAS—PUMAS (A Novel Method for Fine-Tuning PRS Mod-
els Using GWAS Summary Statistics) [24] offers a cutting-edge
approach to fine-tuning PRS models using summary statistics
from GWASs.

19andMe— ‘19 and Me: COVID-19 Risk Score Calculator’ is an
innovative tool that combines reported COVID-19 geographic case
data and up-to-date scientific research to estimate the potential
risk the disease poses to an individual.

Clinic and Genetic Risk Score (CGRS)—the CGRS calculator is a
web application designed to assess the prognosis of gastric cancer
patients [75].

GenRisk—GenRisk is a Python package that leverages vari-
ous gene-based scoring schemes to analyze and identify signifi-
cant genes associated with a phenotype in a population [76]. It
enables the computation and integration of gene scores, consider-
ing both rare deleterious variants’ burden and common-variants-
based PRS.

PRS Knowledge Base—PRS Knowledge Base serves as a central-
ized online repository, enabling users to calculate and contextu-
alize PRS (https://github.com/kauwelab/PolyRiskScore).

PheRS—the PheRS tool [77] calculates PRS derived from elec-
tronic health records to investigate Mendelian diseases and rare
genetic variants. The phers R package was developed to address
this as a comprehensive and user-friendly collection of functions
and maps that facilitate a PheRS-based analysis of linked clinical
and genetic data [77].

VannoPortal—VannoPortal web is a comprehensive variant
annotation database, consolidating and integrating genome-
wide variant annotations and prediction scores from diverse
biological domains [78]. These domains include allele frequency,
LD, evolutionary signature, trait association, pathogenesis, allele
imbalance, base-wise functional prediction, and tissue- or cell-
type-specific functional profiles.

AFA-Recur—AFA-Recur, a machine-learning-based probability
score, demonstrates predictive performance in estimating the 1-
year risk of recurrent atrial arrhythmia following AF ablation [79].
This freely accessible online calculator offers patient-specific pre-
dictions, enabling tailored therapeutic approaches for individual
patients.

TrumpetPlots—the tool visually represents the association
between an allele frequency and effect size in genetic studies
[80]. It takes as input a data frame comprising association
results and generates a plot that displays the effect size of risk
variants on the Y-axis and the allele frequency spectrum on the
X-axis.

Summary

The concept of the PRS emerged at the forefront of genetic
research around the year 2008, with reproducible software
tools starting to be published in subsequent years, particularly
around the year 2018. It represents a significant advancement
in capturing the genetic basis of complex traits and diseases.
Implementing the PRS involves utilizing various computational
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tools and methodologies to calculate and aggregate the effects of
multiple genetic variants associated with a specific trait.

Researchers continuously work to optimize and refine the PRS
methodology by exploring novel approaches and incorporating
the latest advances in genomics and statistical methods. As a
powerful predictive tool, the PRS holds immense promise for
personalized medicine and risk assessment in various fields, from
healthcare to behavioural genetics, as was already proven in the
first decade of GRS and PRS development.

Future outlook

The future of GRS and PRS shows immense potential in support
of precision genetics and personalized healthcare. With ongoing
technological advancements, we anticipate significant progress
in data collection, genomics and computational methodologies,
enabling the incorporation of even more genetic variants into GRS
and PRS calculations. These refined models will offer improved
accuracy and enhanced predictive power, enhancing risk assess-
ment for a wide array of complex traits and diseases. Moreover,
continuous research could deepen our understanding of the intri-
cate interplay between genetics and environmental factors.

While PRSs exhibit strong reproducibility, they account for
only a fraction of the genetic variance and lack the inclusion of
interactions. A more realistic scenario suggests the existence of
numerous independent marginal effects alongside a vast array
of interaction effects. Current research offers extensions to the
PRS methodology [81, 82] to address these problematic effects,
and showcases a notable role of gene-gene interactions in bipolar
disorder.

By integrating environmental data, lifestyle information, and
other omics data (e.g., epigenomics, metabolomics) into GRS and
PRS models, we can adopt a comprehensive and holistic approach
to individual risk assessment. This will pave the way for personal-
ized interventions and targeted prevention strategies. A primary
focus in the future will be the integration of GRS and PRS into
clinical practice, allowing healthcare providers to tailor treatment
plans based on each patient’s unique genetic risk profile.

While PRS tools are still in their early stages of development,
they hold the potential to revolutionize disease screening and
early detection, ultimately leading to more tailored and effective
healthcare strategies. Notably, there are also promising applica-
tions in plant cultivation, with studies beginning to emerge in this
field [83].

Key Points

¢ Genetic Risk Scores (GRS) and Polygenic Risk Scores (PRS)
hold great potential for precision medicine predictive
analyses.

e Advancements in data collection, genomics and com-
putational methodologies are expected to enable the
inclusion of a larger number of genetic variants in GRS
and PRS calculations.

e This survey provides a brief overview of GRS and PRS tool
developments.

e Integrating environmental data, lifestyle information
and other omics data into GRS and PRS models will
provide a more comprehensive approach to individual
risk assessment, enabling personalized interventions
and targeted prevention strategies.
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Supplementary data

Supplementary data is available online at Briefings in Bioinformatics
online.
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