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Abstract—This paper introduces innovative methods for reduc-
ing the control set in finite control set model predictive control of
the Permanent Magnet Synchronous Motor powered by a 3-level
voltage source inverter. The primary objective of this reduction
is to address a crucial factor in the computational burden of
the control algorithm—the exponential growth in the number of
potential switching state combinations forming the controller’s
control set with an increasing prediction horizon length. The
proposed methods aim to decrease the number of switching
states necessary for evaluation, mitigating the aforementioned
exponential growth. These methods leverage information about
the controller’s behavior. The first method relies solely on
the count of transitions between individual switching states.
Additionally, the second method incorporates information about
the states of the controlled motor to construct a decision tree,
forming the new control set. The behavior of the controllers with
reduced and complete control sets is compared in the simulation
experiment, emphasizing the proper tracking of the requested
angular speed and their overall computational complexity.

Index Terms—finite control set, model predictive control, non-
linear control, permanent magnet synchronous motor, supervised
learning

I. INTRODUCTION

The advantages of permanent magnet synchronous motors
(PMSMs), such as the power-to-scale ratio and high reliability
[1], make them available for wide use in many industrial
applications. However, their properties, such as a combination
of a short electrical time constant and, in comparison, a longer
mechanical time constant, cause difficulties in the controller
design. The cascade controller scheme can solve this problem.
On the other hand, this structure has issues dealing with the
constraints of different motor states, e.g., stator currents. Thus,
researchers aim at the utilization of various novel control
methods.

Nonlinear model predictive control (NMPC) belongs to the
group of these researched methods. [2], [3] Its multi-variable
and multi-constraint nature makes it stand out among advanced
control algorithms. However, its computational complexity,
mixed with the short sampling times necessary for proper
motor control, poses a challenge from an implementation point
of view.

Utilizing the full potential of NMPC in its multi-variability
requires a longer prediction horizon, which further increases
its computational complexity. For this reason, most researchers
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focus on the control of only one variable. The most prevalent is
the Predictive Current Control [4]-[6] followed by Predictive
Torque Control (PTC) [7], [8] and Predictive Speed Control
(PSC) [9]. In [10], [11], authors successfully implemented the
controller to control both speed and current. However, the
computational complexity of multi-step predictive control still
causes implementational problems [12].

This paper aims to decrease the computational complexity
of the NMPC controller providing control of both the speed
and the current of PMSM fed by the 3-level Voltage Source
Inverter (VSI). For this purpose, the paper proposes two
methods of control set reduction. These methods build upon
the data about the transitions between individual switching
states of VSI. The first method selects the desired number
of most prevalent transitions and forms to control set out
of them. The second one uses the data about transition and
measurement to learn a decision tree, forming the reduced
control set.

The organization of the paper is following. Section II intro-
duces the control scheme for the nonlinear model predictive
speed control of PMSM. The problem of the computational
burden and its dependency on the length of the prediction
horizon is outlined. The following section presents the exper-
iment that served for the analysis of the transfers between
individual switching states. Section IV presents the methods
for reducing the control set based on the data acquired in a
previous section. The following section compares the overall
performance and computational time demands of controllers
working with the reduced control and the controller with the
complete control set in the simulation experiment. The last
section concludes this paper.

II. PROBLEM DEFINITION

The Finite Control Set Nonlinear Model Predictive Speed
Control aims to find the optimal switching state s(k) of the
Voltage Source Inverter that guarantees the minimal value of
a given cost function. This cost function usually covers the
minimization of the tracking error between the requested value
of angular speed w,, , and its actual value w,, and penalization
of the values of current and the transfers between switching
states. [13], [14]

Figure 1 shows the control scheme of such a predictive con-



troller. After measurement of necessary states - phase currents
iabe, angular speed w,, and mechanical angular position ,,,
currents are transformed to dg-reference frame. Then the
model

iakr1 = tak + (Ts/La) (—Rsiap + PpLqiqwmk + tajk)
igik+1 = igik + (Ts/Lq) (—Rsiq — PpLdiqkwmk) +
+ (Ts/Lq) (—Pp¥ prrwp i + Uqgr)
Winfkt1 = Wil + (Ts/I)[(3Pp/2) (¥ pariqr+
+ (La — Lq) iajriq|r)]
ﬁm|k‘+1 = ﬁm“@ + Tswm|k»

(D

where R is the stator winding resistance, Lg 4 are the rotor
inductance components, P, is the number of pole pairs, ¥ p s
is the permanent magnet flux, J is the moment of inertia, 7 is
the smapling period and k represents the discrete unit of time;
is evaluted for given input voltage vector u = {uq)s, Ug)i }-
With this model, the controller solves the optimization prob-
lem

s(k) = argmin{C (k) |0 < J < |S|}, 2
J

where S is the Control Set of possible switching states, C'y
represents the cost function value for J-th member of the
control set. Each member of the set S is a vector, which
consists of switching states that should be applied in individual
sampling times - generating the aforementioned voltage vector.
The standard approach in obtaining the cost function value is
to evaluate all possible switching state combinations across
the prediction horizon length N [15]. The number of possible
combinations grows exponentially, where the base of the
exponential function is the number of switching states for a
given voltage source inverter. This paper deals with the 3-
level VSI; therefore, 27 possible switching states exist. Table
I displays their overview.
For the given number of possible switching states and the
length of the prediction horizon, index J contains the infor-
mation about the candidate vector v ;. In the presented case
of 27 possible switching states
vy = [mod(J,27) mod([J/27Nt] 27)],  (3)

(round down) function
function defined as

where || denotes the floor
and mod(a,b) is modulo
mod(a,b) = a —b(|a/b]).

The exponential growth in the number of combinations leads
to the problem with the ability of the controller to find the
optimal switching state in the time necessary for proper motor
control, even on platforms performing parallel computing
such as FPGAs and GPUs.

III. SWITCHING STATE TRANSFER ANALYSIS

This section deals with the design of the experiment, which
results served as a basis for the design of the reduced control
set.
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Fig. 1: Control Scheme

TABLE I: Switching State Overview

s(k) A B Cc
0 0 0 0

1 0 0 0.5
2 0 0

3 0 0.5 0
4 0 0.5 0.5
5 0 0.5 1
6 0 1 0
7 0 1 0.5
8 0 1 1
9 0.5 0 0
10 0.5 0 0.5
11 0.5 0 1
12 0.5 0.5 0
13 0.5 0.5 0.5
14 0.5 0.5 1
15 0.5 1 0
16 0.5 1 0.5
17 0.5 1 1
18 1 0 0
19 1 0 0.5
20 1 0 1
21 1 0.5 0
22 1 0.5 0.5
23 1 0.5 1
24 1 1 0
25 1 1 0.5
26 1 1 1

A. Data Acquisition

Gathering data for the control set reduction consisted of
two steps. The first step was the design of the FCS-Controller
working with the whole control set. The following step was
the data acquisition itself.

First, the control algorithm was implemented on the platform
Jetson Xavier utilizing the parallelism of evaluating each
candidate solution vector in its specific thread.

The controller design took into account the standard re-



TABLE II: Parameters of PMSM

Parameter Value Unit
R 0.38 Q

Ly 0.405 mH
Lq 0.665 mH
Upar 0.02594 Wb
Pp 3 -

J 446 -106 kg m?
Upc 12 \%

Ir 6 A

TABLE III: Controller parameters

Parameter Value

W 0.50

wi, 0.50 1079
Wi, 0.50 - 10—8
wsw 0.85-10~7
wic 0.25-109
N 3

Ts 10 us

quirements for motor speed control - monitoring the desired
value and keeping the stator current within the defined limits.
Meeting these requirements was ensured by a cost function in
the form of

N

Crk)y =Y (ww (@i, — wm (k + 1)) + w;, i2(k + i)) +
=1

N
+ > (wiyig(k + i) + wswls(k + ) — s(k+i— 1)]) +

1=1
N
+>  —wiclog (If — i3(k + i) — i2(k + 1)),
=1
“4)

where w,,, w;,, w;, and wsw are weighting coefficients for
the tracking of requested angular speed, direct and quadrature
component of the current, and the number of switchings
performed. The last term deals with constraint limiting the
current vector by its rated value. The coefficient wic affects
the skewness of this barrier function. [16]

Described algorithm constants were tuned for the motor with
parameters presented in Table II. The table also contains the
rated current /r value and the power supply voltage Upc.
Tuned algorithm parameters are in Table III.

The reference angular speed signal designed to collect
transitions between switching states contained a raising ramp
with a slope higher than the possible torque achievable by
the controlled motor. After reaching the defined value, the
request stayed constant. Then the decreasing ramp with a
less steep slope, achievable by the motor, followed until the
measured angular speed settled on zero. The same waveform,
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Fig. 2: Requested angular speed for the data acquisition
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Fig. 3: Transitions between switching states

but for negative angular speeds, followed. Figure 2 shows the
complete waveform.

This composition of the reference signal covered the
possibilities of demands for both high and low torque for
positive and negative angular speed.

B. Data Analysis

The bar chart in Figure 3 shows the transitions between

individual switching states. As expected, the most prevalent
transitions were not, in fact, transitions but keeping the original
switching state. In the figure, these are the peaks on the
diagonal whose values had to be saturated for other transitions
to be visible.
As the figure shows, many possible state transitions are miss-
ing. On top of that, some states did not occur at all. A typical
example is the case of states 26 and 13 because, from the
model perspective, the generated voltage is the same for these
states and the state 0. These results suggest that the evaluation
of many of the possible switching state combinations is not
necessary for the proper function of the control algorithm.



IV. PROPOSED REDUCTIONS

Previous section has shown on gathered data, that it is not
necessary to compute the cost function for all candidate vec-
tors from the original control set. Based on the acquired data,
this section presents two methods of control set reduction.

A. Raw Data Based Control Set

The basis of the first method for creating a reduced control

set is a simple idea based directly on the measured data pre-
sented in Figure 6. During the prediction stage, the algorithm
would evaluate only the first n most frequent transitions. This
approach can have a problem in the original data acquisition
because an incorrectly designed request signal can affect the
number of transitions.
On top of that, the choice of parameter n has a significant
impact on the controller behavior. For example, setting n = 4
allows the controller to switch only one phase; therefore,
making it a controller of 2-level VSI with the reduced control
set.

B. Decision Tree Based Control Set

A control set reduction based only on transitions does
not take advantage of the additional data used for control.
The second proposed approach, on the other hand, attempts
to utilize this data. For example, one can assume that the
applicable combinations for deceleration are different from
those for acceleration.

This approach uses the algorithm [17] for decision tree learn-
ing to create multiple reduced control sets. Measurement of
motor states then specifies which control set would be used in
the given control value computation.

The learning algorithm of the decision tree worked with a
feature vector constructed as

x=[s(k) wmr(k) wm(k) da(k) ig(k) Awn(k)]”,
where Aw,, (k) is the difference between the requested and
measured angular speeds. The pattern represented the next
switching state. As the data in the figure 3 show, the controller
tends to keep the switching state as long as possible. Therefore,
this transition was always presumed to be present, and the
learning algorithm did not use the data representing it.

Each leaf of the tree denotes the next possible switching state
for the conditions the learning algorithm stated. Aggregating
these leaves and conditions into groups of n — 1 leaves and
the original switching state creates the reduced control set for
given system states.

This approach covers a broad number of switching state com-
binations without the need for the control set expansion. Thus,
keeping the number of evaluated switching state combinations
lower than the Raw Data Based Control Set.

V. SIMULATION RESULTS

This section compares proposed reduced control set ap-
proaches with the controller using the complete control set
(cCS). All experiments are performed in PIL simulation, in
which Jetson Xavier works as a platform for the execution of

TABLE IV: Speed Mean Square Error Overview

MSE,cg MSE.,,,
cCS — 4.3726
rdCS 0.0464 4.6046
diCs 0.2407 5.7777

the control algorithm of the PMSM simulated in Simscape.
The parameters of PMSM and the cost function are the same
as in the data acquisition section (Tabs II and III). The Raw
Data Based Control Set (rdCS) worked with the eight possi-
ble switching states, leading to 512 possible switching state
combinations. The second mentioned - Decision Tree Based
Control Set (dtCS) - worked with four possible switching
states, thus, 64 possible combinations.

The designed reference signal was composed of ramps con-
necting the constant values of angular speeds. To differ from
the original signal used for the data acquisition, the slope of
the ramps and the order of the constant values is different.
Furthermore, the final constant value of the requested angular
speed was 30rads™! to test whether the controller can keep
different constant values than the ones used for the construc-
tion of reduced control sets.

Figure 4a displays the result of the speed tracking experiment.
The shallow comparison says that all controllers achieved
similar behavior. A more thorough analysis shows slight
differences in the controllers’ performance. The controller
working with rdCS tends to oscillate more than the dtCS. In
time 3.25 s, there was a larger overshoot of the dtCS-controlled
motor compared to others. In Table IV are speed mean square
errors of all tested controllers in comparison to the requested
angular speed (M SE,,,, ,) and the cCS-controller (M SE.cs)
defined by the relations, expecting starting time of experiment
to be zero,

T . .
MSEwmyr - E Z (wm,r(z) - Wm,C(Z))Q (5)
1=0
T, i
MSE.cs = tTf (Wm.cos(i) —wmc(D)®,  (6)
=0

where t; is the final time of the experiment and w;, ¢
represents the speed achieved by the motor controlled by the
given controller.

The attained results indicate dtCS-controller’s behavior was
more similar to the cCS-controller and outperformed the rdCS-
controller.

Currents in Figures 4b, 4c do not evoke similar behavior
observed on the speeds. Even with such different current
values, all controllers were able to keep the current within
a defined limit, as shown in Figure 5. As in the case of
speed, the dtCS-controller outperformed the controller with
rdCS from the MSE point of view. Calculated mean square
errors from the cCS of quadrature current part of 0.0496 for



the dtCS-controller and 0.1024 for rdCS again show that dtCS
outperformed the second mentioned. A similar case was the
direct part of the current. Especially the notable peaks in the
1q waveform led to a much worse value of MSE.

The most crucial factor of the current waveform was the
behavior of both controllers when the requested value of
angular speed was zero. The controllers with a reduced control
set kept switching between two states, as shown in Figure 6.
This switching resulted in the oscillations of the stator current.
Compared with the cCS-controller, which turned all phases
off, this behavior is unwanted because it leads to unnecessary
energy consumption, thus, reducing the efficiency of the motor
control.

The final factor of the comparison is the time required to
calculate the control value. The following times are averages
across fifty measurements. First, the controller working with
the complete control set needed on average 650 us to eval-
uate the optimal switching state. The reason for such high
computational demands was the necessity for some sequential
computation because of the implementation platform capabil-
ities. The time needed by the rdCS-controller was 45 ps. Even
though the dtCS-controller needed to evaluate only 64 possible
combinations, its time demands rose because of the necessity
to evaluate the decision tree. Therefore, the dtCS-controller
needed 20 ps to calculate the switching state.

VI. CONCLUSION

This paper presented two original methods for reducing the
computational complexity of the Finite Control Set Model
Predictive Controller controlling the speed and the current of a
permanent magnet synchronous motor fed by a 3-level voltage
source inverter.

The main idea of the proposed methods is to reduce the
number of combinations needed to evaluate for proper com-
putation of the VSI switching state. The data acquired during
the experiment served as a basis for the presented methods.
The first method uses information about the transfers between
individual states to construct the reduced control set. The
second proposed method combines the measurement of the
motor’s states and the machine learning algorithm to construct
the decision tree, which then constructs multiple reduced
control sets and decides which one to use and when.

The presented methods were compared with the controller
using the complete control set. The comparison has shown
that the controller working with the decision tree surpassed
the second one in both dynamical behavior and computational
demands.

The achieved results created a new approach in implementing
FCS-NMPC of PMSM, thus, making it more suitable for
the computation in sampling times necessary for the proper
motor control. Future research will deal with the application of
presented methods to more complex voltage source inverters.
Also, further code optimization can allow the real-time control
of PMSM using FCS-NMPC.
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(a) Angular speed during the experiment, black - reference, red -
cCS, blue - rdCS, orange - dtCS.

(b) Direct component of the current during the experiment, red - cCS,
blue - rdCS, orange - dtCS.
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(c) Quadrature component of the current during the experiment, red

- ¢CS, blue - rdCS, orange - dtCS.

Fig. 4: Results of the second experiment.
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Fig. 5: Current in the dg-reference frame during the experi-
ment, red - cCS, blue - rdCS, orange - dtCS.
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Fig. 6: Applied switching states during the experiment, red -
cCS, blue - rdCS, orange - dtCS.
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