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Abstract: With the expansion of wireless mobile networks into both the daily lives of individuals as
well as into the widely developing market of connected devices, communication is an increasingly
attractive target for attackers. As the complexity of mobile cellular systems grows and the respective
countermeasures are implemented to secure data transmissions, the attacks have become increasingly
sophisticated on the one hand, but at the same time the system complexity can open up expanded
opportunities for security and privacy breaches. After an in-depth summary of possible entry points
to attacks to mobile networks, this paper first briefly reviews the basic principles of the physical layer
implementation of 4G/5G systems, then gives an overview of possible attacks from a physical layer
perspective. It also provides an overview of the software frameworks and hardware tool-software
defined radios currently in use for experimenting with 4G/5G mobile networks, and it discusses
their basic capabilities. In the final part, the paper summarizes the currently most promising families
of techniques to detect illegitimate base stations—the machine-learning-based, localization-based,
and behavior-based methods.

Keywords: 4G; 5G; security vulnerabilities; Physical Layer (PHY); machine learning; eavesdropping;
jamming; spoofing; localization

1. Introduction

With the recent developments of mobile networks, users profit from ubiquitous con-
nectivity, ever-increasing data rates, and a wide range of emerging applications. On the
other hand, our dependence on communication technology can lead to increased, or com-
pletely new, security risks. Cellular networks such as the Fourth Generation (4G) and
Fifth Generation (5G) systems of mobile communications are among the most widespread
and commonly used communication systems nowadays. As such, they are often used
for managing various private systems as well as critical infrastructure, making them po-
tential and attractive targets for cyberattacks [1,2]. Attacks on mobile networks usually
aim to compromise at least one of the requirements of secure communication, such as
confidentiality, integrity, accountability, availability, or privacy. On top of that, several
unprecedented risks may arise from the use of currently very popular Open Radio Access
Network (RAN) architecture, as mentioned in the current report of the German Federal
Office for Information Security on security related to Open RAN [3].

In the last decade, several studies of 4G and 5G cellular networks have dealt with their
security risks, e.g., [4] they have focused on the threats to voice and short message services.
The survey paper [5] presented techniques for physical layer authentication, but only from
the general methodological perspective. Study [6] was aimed only at the deep-learning
techniques for physical layer security themselves. In contrast to [2], we include up-to-
date 5G-related findings in the domain of physical layer security, provide an overview
of machine learning, localization, and behavior-based methods to detect malicious base

Sensors 2024, 24, 5523. https://doi.org/10.3390/s24175523 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s24175523
https://doi.org/10.3390/s24175523
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0002-6353-1859
https://orcid.org/0009-0008-0271-6543
https://orcid.org/0000-0002-3784-5707
https://orcid.org/0000-0001-7084-6210
https://orcid.org/0000-0002-7958-834X
https://orcid.org/0000-0003-2926-5507
https://doi.org/10.3390/s24175523
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s24175523?type=check_update&version=3


Sensors 2024, 24, 5523 2 of 40

stations and include an overview of hardware tools and open RAN architectures suitable
for practical experimentation.

Although the focus of this study is on the techniques related to the Physical (PHY) layer,
prior to diving deep into PHY and corresponding threats, we first provide an overview of
the possible attack entry points. In Figure 1, the topology of a 4G and 5G network defines
possible attack vectors for network breaches. While both Non Stand Alone (NSA) and
Stand Alone (SA) architectures aim to deliver the benefits of 5G, they differ significantly
in their approach to network infrastructure and security. The 5G NSA networks leverage
existing 4G Long Term Evolution (LTE) infrastructure, sharing the 4G core network Evolved
Packet Core (EPC) for the control plane, with the 5G RAN providing enhanced user plane
capabilities. In contrast, 5G SA networks are built from the ground up, with all functions,
including the control and user planes, residing in the 5G Core Network (5GC). Depending
on the network architecture, whether its 4G, 5G NSA, or 5G SA, potential entry points for
threats can vary. These entry points can generally be categorized into four groups: the
compromised mobile device, the access network, the backhaul network, and external or
third-party networks, where each category can implement various technologies.
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Figure 1. (a) SA vs. (b) NSA architecture of 5G New Radio (NR) network with possible vector attacks.

1.1. Entry Points for Attacks to 5G Networks
1.1.1. Compromised Mobile Device

The first possible entry point is compromised or malicious User Equipment (UE). This
is a significant threat to mobile networks, serving as both targets and enablers for attacks.
Malware spread through application downloads is a common method of compromising
devices [7,8].

Compromised device attacks are also influenced by the behavior of UE users. Risky
actions, such as downloading from unofficial application stores [9], connecting to unknown
Bluetooth [10] and WiFi [11] devices, scanning harmful QR codes (phishing), or receiving
malicious messages via SMS or communication apps [12,13], can lead to attacks on mobile
devices. Mobile botnets, facilitated by malware like Trojan horses, are emerging as major
threats, allowing the remote control of compromised devices. Denial of Service (DoS) or
Distributed Denial of Service (DDoS) attacks on mobile networks can be launched through
malware on user equipment, targeting specific network components [14,15]. Furthermore,
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malicious applications can compromise devices through permission grants, and threats
from the internet, phishing, and Man-In-The-Middle (MITM) attacks also pose risks.

1.1.2. The Access Network

The second entry point can reside in the access network, particularly concerning the
S1/NG interface in 4G/5G (see Figure 1) and this poses significant risks to mobile networks.
Vulnerabilities related to the access network include using gNodeBs (gNBs) to attack the
core service and inject fake traffic into applications. Weaknesses in data and signaling
encryption further exacerbate these risks. During initial authentication procedures, the mes-
sages exchanged lack encryption and integrity protection, potentially exposing sensitive
data like International Mobile Subscriber Identity (IMSI) [16]. The absence of authentication
between Serving and Home Networks, along with inadequate cryptosystems, leaves net-
works vulnerable to redirection attacks and message modification. Seamless interoperation
between access technologies, such as Global System for Mobile communications (GSM),
Universal Mobile Telecommunications System (UMTS), and LTE, also presents security
challenges [17–19], especially with the combination of downgrade attacks, as reported
in [20]. The GSM Authentication and Key Agreement (AKA) protocol suffers from weak-
nesses, including a lack of mutual authentication and integrity protection, which can be
exploited [17]. The storage of authentication triplets in the Visitor Location Register (VLR)
further exposes vulnerabilities [17]. Additionally, signaling overload, limited bandwidth,
and heavy processing in Radio Resource Control (RRC) procedures create opportunities for
attacks in the Core Network (CN) [21].

1.1.3. The Backhaul and Core Network

The third entry point includes the backhaul and CN [22,23]. The backhaul, which is
responsible for data transfer between the RAN and the CN, presents a potential access point
for attackers to intercept control and data traffic. Integration of diverse access technologies
like femtocells and non-Third Generation Partnership Project (3GPP) WiFi [2] introduces
new vulnerabilities, particularly in 4G/5G, with interfaces like X2/Xn (see Figure 1) and
diameter signaling protocols amplifying signaling overload and transitioning to Internet
Protocol (IP). The EPC CN faces severe threats due to its flat IP-based architecture and
direct connections from Base Stations (BSs) to the ALL-IP network [22]. Weaknesses
in the Evolved Packet System (EPS)-AKA scheme, handover procedure, and Machine
Type Communication (MTC) security architecture exacerbate risks [22,24]. Additionally,
vulnerabilities in the General Packet Radio Service (GPRS) Tunnelling Protocol (GTP)
protocol used in EPC Non-Access Stratum (NAS) expose networks to abnormal packet
threats and traffic analysis [25]. Furthermore, virtualization and software-defined networks
in the CN introduce emerging threats by dispersing user and control-plane traffic across
network elements and non-trusted networks [7].

1.1.4. The External or 3rd Party Network

An external or 3rd party network serves as a fourth entry point for threats against
mobile networks, offering various user services, including internet browsing, corporate
network interconnection, and roaming partner networks. Non-3GPP access networks,
especially when interworking with a Wireless Local Area Network (WLAN) [2], introduce
security issues, such as disclosure of user information, permanent identity tracking, and
network impersonation [26]. Additionally, bypassing access control and authentication
processes, interference with charging, and prevention of user access to services are con-
cerns [26–28]. Converged networks utilizing technologies like Worldwide Interoperability
for Microwave Access (WiMAX) also pose threats due to weaknesses in the physical and
Multiple Access Channel (MAC) layers, thereby leaving them vulnerable to spoofing,
MITM, and eavesdropping attacks [29].
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1.2. General Countermeasures for the Access Network, Backhaul, and Core Network

To protect the 5G network, 3GPP has established specific and detailed security ob-
jectives [30]. These objectives are closely aligned with the 5G security architecture and
procedures, which are divided into five key areas [31]:

• Confidentiality: Ensures only authorized users access confidential data.
• Integrity: Protects against unauthorized data modification, ensuring data is transmit-

ted in its original form.
• Authentication: Verifies the identities of entities (UEs, network functions, serving

networks, Public Land Mobile Networks (PLMNs)) before communication, which
involves a key exchange.

• Replay Protection: Prevents attackers from capturing and reusing packets for illegiti-
mate communication.

• Privacy: Protects users’ sensitive data, including inferred information like habits,
profiles, and location, from unauthorized access.

Authors in [1,32] surveyed the security requirements recommended by 3GPP for
Device-to-Device (D2D), Internet of Things (IoT), Vehicle-to-Everything (V2X), network
slicing, network function virtualization, mobile edge computing, and other 5G-specific
technologies. The authors in [33] highlighted weaknesses, such as a scenario where an
attacker, by reusing a previous key, could force the UE and serving network, establishing
a secure communication link. This could potentially enable the reply of user data. To
cope with this issue, they also suggested a protocol improvement to use a different key
for each session. They also confirmed that IMSI catchers are defeated by the use of a
randomized public key encryption. The authors in [34] provided a performance overhead
comparison for various optional AKA integrity protection algorithms applied on the user
plane. Practically, the throughput and latency are minimally affected, while the security
of the network is increased. In [35] the authors analyzed critical 5G interfaces and their
endpoints, as depicted in Figure 2. They provided suggested improvements for system
interfaces, which can be summarized by the following points:

• N1 and Uu Interfaces: Ensuring the integrity of the control plane on the N1 and
Uu interfaces, as well as the Permanent Equipment Identifier (PEI) on N1, is crucial
and is enforced using NIA1-Network Integrity Algorithms (NIA)3. Operators have
the discretion to choose the level of confidentiality using Network Encryption Algo-
rithms (NEA)1-NEA based on their specific requirements. The Subscriber Permanent
Identifier (SUPI) and the Subscriber Concealed Identifier (SUCI) should be protected
using the Elliptic Curve Integrated Encryption Scheme (ECIES). Additionally, opera-
tors can determine the integrity and confidentiality measures for the user plane on the
Uu interface by selecting the appropriate NIA1-NIA3 and NEA1-NEA3 algorithms.

• N2, N3, Xn, and F1 Interfaces: To safeguard confidentiality and integrity and protect
against replay attacks on the N2, N3, Xn, and F1 interfaces, operators can implement
IP Security (IPsec) Encapsulating Security Payload (ESP), along with Internet Key
Exchange version 2 (IKEv2) utilizing certificate-based authentication.

• Service-Based Interface (SBI) Interface: To ensure confidentiality, integrity, and pro-
tection against replay attacks on the SBI, operators can employ Transport Layer Secu-
rity (TLS). This protocol encrypts data, verifies its integrity, and prevents unauthorized
retransmissions, ensuring a secure communication channel for the SBI interface.

Note that the above presented security mechanisms involve rather higher layers than
PHY, but they are worth mentioning for the sake of completeness.
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Figure 2. 5G architecture block scheme with critical interfaces (red text) and its end points. Purple
and blue colors represent Control Plane (CP) and User Plane (UP) functions respectively.

1.3. Paper Structure and Organization

Traditional cryptography solutions, while crucial, cannot address all security chal-
lenges in 5G networks, not only because of their inherent complexity and computational
demands but primarily because many attacks happen in the initial phase of the connection,
when communication is usually unprotected. This paper explores the role of PHY layer
security in 5G and its potential to safeguard communications against evolving threats.
Therefore, we focus primarily on the vulnerabilities of the lower layers, such as the PHY
layer, and on the potential use of the PHY for authenticating legitimate communication
devices. This article is divided as follows: In the Section 2, we review the technology
background of the 5G PHY layer. In Section 3, we focus on possible basic threats to mobile
networks such a jamming, smart jamming, and spoofing/overshadowing attacks, and
we complement it with the basic countermeasure approaches. Section 4 is focused on
Multiple-Input Multiple-Output (MIMO)-specific attacks such a Beam Alignment (BA)
jamming, pilot contamination, and user tracking, together with the most common mitiga-
tion techniques. Hardware and open-source software tools, which can be used to build
4G/5G testbeds for experimentation, are introduced and thoroughly compared in Section 5.
Sections 6, 7, and 8, respectively, present surveys of machine-learning techniques and meth-
ods that rely on localization information and device behavior to detect the most common
threat—the rogue base station. Section 9 then discusses the PHY layer security related to
the future technology candidates for beyond 5G networks. Finally, Section 10 concludes
the paper.

2. Technology Background of Physical Layer

The PHY layer of wireless communication systems is responsible for transmitting
and receiving data over the air interface. The PHY is also a potential target of various
security attacks, such as jamming, spoofing, eavesdropping, and relay attacks. These attacks
can degrade the performance, reliability, and confidentiality of wireless communication.
Therefore, it is important to design and implement security mechanisms at the PHY level,
in addition to at the higher layers of the protocol stack.

2.1. Frequency Bands in 5G

The 5G standard is a revolutionary step in the field of wireless communication, utiliz-
ing Frequency Range 1, Frequency Range 2, and New Radio Unlicensed (NR-U) to cater to
a wide array of requirements and scenarios. In the following, we provide a summary of 5G
NR frequency bands.

2.1.1. 5G FR1 Sub-6 GHz Band

The Frequency Range 1 (FR1) encompasses the sub-6 GHz spectrum, some of which
is used by previous standards. Higher-order MIMO in FR1 bands enables spatial multi-
plexing and Multi User Multiple-Input Multiple-Output (MU-MIMO), offering a balance
of coverage and capacity, making it suitable for wide-area deployments and ensuring
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compatibility with existing 4G networks. FR1 frequency bands offer a balance between
coverage and capacity. They provide wider coverage compared to higher frequency bands
such as those in Frequency Range 2 (FR2), or millimeter-wave bands, typically used in
urban, suburban, and rural areas. Additionally, FR1 bands offer better penetration through
buildings and obstacles, enhancing indoor coverage.

2.1.2. 5G FR2 mmWave Band

The FR2, on the other hand, utilizes mmWaves and refers to frequency bands above
24.25 GHz and up to 52.6 GHz in order to achieve low latency and wide bandwidth to
achieve high data throughput. This frequency band is typically used in small femto-cells to
cover small areas, typically building floors.

2.1.3. 5G Spectrum Expansion to FR3 FR4 FR5 Bands

There is ongoing discussion [36,37] aimed at utilizing other frequency bands in 5G.
The current hot topic is a discussion about the use of frequency ranges FR3, FR4, and FR5.
Basically, the plan is to reserve frequencies ranging from 7.125 GHz to 24.25 GHz, and
from 52.6 GHz to 71 GHz for future releases of 5G. Each manufacturer (Qualcomm, Apple,
Lenovo, Nokia, . . . ) pick different names for each range. Some manufacturers use the
FR3 label for range 7.125 GHz to 24.25 GHz, and some manufacturers use FR3 naming for
the frequency range 52.6–71 GHz. However, regardless of the names, it is likely that the
mentioned frequency bands will be used in the future.

2.1.4. 5G New Radio Unlicensed Band

The 5G standard also defines a non-licensed mode named 5G New Radio Unlicensed
(NR-U). This mode of operation has been studied in [38] and introduced as a part of the
3GPP Release 16 specifications [39]. It is an evolution of the 4G LTE License Assisted
Access (LAA) standards. NR-U provides the necessary technology for cellular operations
to integrate an unlicensed spectrum into 5G networks. The RAN provides support for a
sidelink in the unlicensed spectrum, specifically aimed at FR1 unlicensed bands (n46 and
n96/n102), which are the 5 GHz and 6 GHz [40] unlicensed bands, in line with the most
recent regulations [36]. The NR-U is also considered to utilize mmWave frequency ranging
from 57 GHz to 71 GHz [41].

There are two operation modes defined for 5G NR-U:

• Anchored NR-U: This requires an anchor in the licensed or shared spectrum. It
combines the unlicensed spectrum with the licensed spectrum or shared spectrum
such as Citizens Broadband Radio Service (CBRS] to boost deployments for a better
user experience with higher 5G speeds.

• Standalone NR-U: This utilizes only the unlicensed spectrum, i.e., it does not require
any licensed spectrum. It allows the deployment of 5G private networks entirely with
the unlicensed spectrum.

2.1.5. 5G IoT Technologies

The advent of 5G technology has brought significant advancements, not only in the
field of wireless personal communication but also in the domain of connected devices—IoT.
IoT-based communication and related technologies, characterized by low hardware and
operational cost, low power and data rate, and long range communication capabilities,
have become integral into many sectors, including industry and healthcare [42]. Critical
components of 5G, such as LTE Cat-M and Narrow Band IoT (NB-IoT) technologies, address
the growing demand for IoT applications. These technologies are specifically designed for
Low-Power Wide Area Network (LPWAN) communications [43], making them ideal for
connecting a vast number of IoT devices.

However, these advancements also introduce new security challenges, particularly at
the PHY layer of communication [44]. Ensuring robust security at this layer is crucial, as it
serves as the foundation for all higher-level security mechanisms. Currently, numerous
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studies are focusing on the security threats of IoT technologies. Shian et al. [45], in their
survey study, examined the Cellular IoT Service Security issues and challenges. They
noted that integrating cellular IoT into existing cellular networks can lead to security
vulnerabilities due to various operational differences between the cellular IoT and non-
IoT devices. Jia et al. [46] addressed the issue of terminal identity trustworthiness in
IoT-based mobile communication, specifically targeting forgery attacks in single-package
authorization and proposing a solution to handle this problem. Other studies [47–49]
have explored IoT security issues and their detection using Machine Learning (ML) and
Deep Learning (DEL) approaches. In [47], an ML-based IoT intrusion detection model to
enhance data processing security and attack detection accuracy was developed. Survey
papers [50–52] provide overviews of IoT technologies, including LTE Cat-M and NB-IoT,
discussing security and vulnerability issues. Addressing these security threats is essential
to protect the integrity, confidentiality, and availability of 5G networks [53], ensuring safe
and reliable communication for IoT devices.

2.2. Parameters and Basic Structure of 5G PHY Layer

Understanding key parameters and PHY layer access is crucial to assess network
security. These parameters define aspects like spectrum allocation and initial access proce-
dures, and they have influence on security challenges such as vulnerability to interference
or eavesdropping.

2.2.1. 5G Numerology over Frequency Bands

In the realm of NR FR1, the maximum bandwidth is 100 MHz, whereas in the mil-
limeter wave range FR2, it extends up to 400 MHz; see Table 1. Specific Sub-Carrier
Spacing (SCS), such as 15 and 30 kHz, are exclusive to the sub 6 GHz range, while 120,
480, and 960 kHz spacing is solely applicable to the millimeter wave range FR2. However,
a spacing of 60 kHz can be utilized in both the sub 6 GHz FR1 and the millimeter wave
range FR2. The configuration of specific parameters is determined by the network operator.
Overview tables of individual channels are provided in references [54,55].

Table 1. Subcarrier spacing options in 5G NR, reprinted with permissions from [56].

Subcarrier
Spacing

Slots per
Subframe

Meant for
Carriers. . . Min BW [MHz] Max BW [MHz]

15 kHz 1 4.32 49.5
30 kHz 2 < 6 GHz 8.64 99
60 kHz 4 __________ 17.28 198

120 kHz 8 > 24 GHz 34.56 396
240 kHz 16 69.12 397.44

2.2.2. PHY Layer Frame Structure

Depending on whether the deployment type of the 5G network is NSA or SA, the
initial access to the network is provided through either 4G or 5G physical channels.

5G technology offers not only faster data rates and lower latency but also a new, flexible
frame structure to accommodate a wide range of devices and applications. This structure
is more adaptable than its LTE predecessors. It optimizes network utilization by dividing
time–frequency resources into blocks and grid elements, ensuring efficient connectivity for
various scenarios. The 5G technology implements the so-called time–frequency resource
allocation method. The time–frequency resources are divided into resource blocks and
further subdivided into resource grid elements.

The fundamental scheduling unit in 5G has shifted from a subframe in 4G to a slot [57].
This allows dynamic adjustment of the time slot duration based on the service type. This
flexibility enhances network efficiency and responsiveness. Additionally, the concept of
mini-slots provides faster response times for certain applications, which are crucial in
emergency situations.



Sensors 2024, 24, 5523 8 of 40

The 5G frame structure incorporates both self-contained and non-self-contained sub-
frames, adding another layer of flexibility. This allows for different data transmission
methods depending on the application requirements, maintaining service quality and
further reducing latency. The 5G radio frame is 10 ms long and, the same as for the 4G,
it is divided into 10 subframes with 1 ms duration. Each subframe is divided into slots,
depending on which SCS is considered. Each slot contains 14 Orthogonal Frequency Di-
vision Multiplexing (OFDM) symbols in one Resource Block (RB) or 12 symbols for the
extended CP. With increased SCS, the number of slots in the subframe increases because
of the shorter symbol duration (from the OFDM theory, the OFDM symbol duration is
inversely proportional to the subcarrier spacing). A comparison of the frame structures for
4G and 5G is depicted in Figure 3.
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Figure 3. Frame structure comparison between 4G LTE and 5G NR.

For the duplexing, it is important that any cellular communication systems must be
able to transmit in both directions—Uplink (UL) and Downlink (DL)—simultaneously. To
provide the highest possible flexibility, 5G supports various duplexing schemes, such as
Frequency Division Duplex (FDD),Time Division Duplex (TDD), Semi-static TDD, and
Dynamic TDD. TDD operation is set to be the primary duplex arrangement for higher
frequencies in 5G, while lower frequencies continues to utilize FDD. This choice is due to
the mitigation of interference issues in larger cells, which can be achieved by employing
distinct frequencies for the UL and DL directions.

Frequency Division Duplex refers to a paired spectrum with separate UL and DL
carriers. This allows simultaneous data transfer in both directions due to distinct carrier
frequencies. Resource allocation is dynamic and independent for each direction, utilizing
paired bands. There are two possibilities in FDD. Half duplex mode is used for frequency
bands where it is not possible to have simultaneous transmission and reception in both
the UL and DL within the cell. It allows simplified device implementation due to the
relaxation or absence of duplex filters. For a certain frequency band, it is possible to have
simultaneous transmission and reception in both the UL and DL within a cell. One of the
drawbacks of this scheme is that the band definition requires a guard band between the UL
and the DL, and the receiver must be equipped with a duplex filter to suppress interference
from the transmitter.

In the Time Division Duplex, as a type of half duplex scheme, a single carrier frequency
is utilized for both the UL and the DL, and their separation is achieved by using different
time slots. An essential aspect of any half-duplex system in general is the possibility of
providing a sufficiently large Guard Period (GP) or Guard Time (GT), where neither DL
nor UL transmissions occur [58]. The length of GT typically increases for stations that
cover larger areas. TDD uses unpaired bands, where the UL and DL transmissions do
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not overlap in time, from both the device’s and the cell’s viewpoint. The benefit of TDD
is the channel reciprocity assumption, allowing improved channel estimation and link
adaptation, including precoding and directional antennas. This is particularly beneficial for
methods like beamforming.

Semi-Static TDD introduces a higher degree of flexibility compared to static TDD. In
Time Division Long Term Evolution (TD-LTE), UL/DL configurations were defined within
a single 10 ms frame. However, in 5G NR higher layer configuration parameters can be
employed to achieve a UL/DL allocation parameterization that is specific to a cell or even
a UE. Therefore, the slot configuration is adaptable and can be modified periodically while
still prioritizing the management of inter-cell interference, see Figure 4.
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Figure 4. TDD mode vs. FDD in 5G NR.

Dynamic TDD is the most adaptable approach for configuring UL/DL. Signaling
mechanisms play a crucial role in informing the UE about resource allocations for UL and
DL transmissions. Firstly, dynamic signaling for the scheduled device involves the device
monitoring DL control signals to determine whether to transmit in the UL direction or
listen for DL transmissions, with the scheduler controlling the UL/DL allocation. Secondly,
semi-static signaling via RRC allows for UL/DL allocation information to be transmitted,
aiding in power conservation by reducing the need for constant device monitoring. Finally,
dynamic slot-format indication shared among a group of devices utilizes a special downlink
control message, the Slot Format Indicator (SFI), to dynamically signal UL/DL allocation,
facilitating efficient resource management and channel quality assessments. These mech-
anisms collectively ensure adaptive resource allocation and effective traffic management
in dynamic TDD scenarios. This method could be applicable for small cells, or even for
standalone or isolated indoor cells that have overlapping coverage with neighboring cells,
thereby reducing the impact of inter-cell interference.

2.2.3. PHY Layer Channels

There is a list of PHY channels used in 5G NR. These channels play crucial roles in
synchronization, system information, and overall communication.

• Physical Broadcast Channel (PBCH): This carries essential system information for UEs.
It provides information such as downlink system bandwidth and timing information
in radio frames, and it is part of Synchronization Signal (SS) burst set periodicity,
system frame number, and other upper-layer details.

• Physical Downlink Control Channel (PDCCH): This carries essential control informa-
tion called COntrol REsource SET (CORESET) that guides UEs on how to receive and
decode downlink data. It provide information about information element multiplex-
ing, channel coding, rate matching, scrambling, modulation, and dynamic resource
control. Contrary to the 4G channel, it is not allocated across the entire system band-
width and is more generalized.
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• Physical Downlink Shared Channel (PDSCH): The main channel used for carrying
user data from gNB to the UE. There are only minor changes between 4G and 5G.

• Physical Uplink Control Channel (PUCCH): This carries information such as Hybrid
Automatic Repeat reQuest (HARQ) feedback, Channel State Information (CSI), and
Scheduling Request (SR). In 5G, a short format to support low latency application is
introduced.

• Physical Uplink Shared Channel (PUSCH): This carries data in the UL. It has the same
function as in 4G.

• Physical Random Access Channel (PRACH): This is used by the UE to initiate random
access procedures. The preamble contains information about the UE’s identity and
timing adjustment. It allows the UE to request resources for UL transmission and es-
tablish synchronization with the network. Zadoff-Chu sequences are used to generate
the random access preamble, similar to LTE technology.

With respect to the NR predecessor, the Physical Control Format Indicator Channel
(PCFICH), carrying organization of data and control information in the downlink by
Control Format Indicator (CFI), is removed. The Physical Hybrid ARQ Indicator Channel
(PHICH), carrying hybrid Automatic Repeat reQuest (ARQ) indicators (ACKnowledged
(ACK) Non-ACKnowledged (NACK)), is moved and is indicated in UL Downlink Control
Information (DCI) in NR.

2.2.4. PHY Layer Signals

The following signals in the physical layer of 5G NR are critical to enable effective
communication between UE and the network:

• Primary Synchronization Signal: There are three possible sequences of the PSS. The
Primary Synchronization Signal (PSS) is based on maximum length sequences (m-
sequences), contrary to Zadoff-Chu sequences in LTE. There are 127 consecutive
subcarriers in the frequency domain, contrary to 72 in LTE. The frequency position of
the PSS in NR can vary in order to adopt more flexibility in the deployment, contrary
to the fixed scenario in LTE. The PSS is linked to the cell identity group N2

ID.
• Secondary Synchronization Signal: This is based on a Gold sequence of length

127 mapped to 127 subcarriers, which is formed by combining two m-sequences.
Due to low cross correlation of signal, the UE can distinguish between neighboring
base station. The number of possible Secondary Synchronization Signal (SSS) varia-
tions is 336, contrary to 168 in LTE. The SSS is linked to the cell identity group N1

ID,
and the signal length is the same as that of the PSS. Unlike LTE, the NR SSS does not
change depending on which subframe it is transmitted from. Both PSS and SSS are
related to the Physical Cell ID (PCI) by the following formula:

PCI = 3 × N1
ID + N2

ID (1)

resulting in 1008 possible PCIs (also referred to as NCellIDs). This differs with respect
to the LTE, where only 504 combinations are possible.

• DeModulation Reference Signals: These aid in the channel estimation for the coherent
demodulation of PDSCH and PBCH, as outlined in [57]. DeModulation Reference
Signals (DM-RS) symbols are mapped to specific resource elements within an RB.
The structure depends on the network configuration, such as localized or distributed
mapping and SCS. Contrary to LTE, the DM-RS are separated for the PDSCH, PUSCH,
PDCCH, PUCCH, and PBCH.

• Phase Tracking Reference Signal: This is introduced in 5G PDSCH and PUSCH to
help in the phase tracking process and to mitigate Common Phase Error (CPE) ef-
fects in the mmWave, caused by phase noise from local oscillators, ensuring system
performance [57].
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• Sounding Reference Signal (SRS): This is used for channel sounding in the UL. The
signal is transmitted periodically by the UE and can utilize frequency hopping to
avoid interference.

• Channel State Information Reference Signal (CSI-RS): This is transmitted by gNB to
estimate DL radio channel quality. CSI-RS is used in beamforming to determine the
best beam based on the channel’s state and to maximize the spectral efficiency in
MIMO transmission [57].

2.3. Initial Access
2.3.1. Basic Inital Access Procedure

The initial access [59] of 5G is a sequential procedure between the UE and gNB to acquire
UL synchronization and obtain identification information for the radio access communication;
the process is also known as the Random Access Channel (RACH) process. This process is
initiated in several cases. The initial access is called when the UE moves from the RRC idle
state, which is related to the low-power mode, to the RRC connected state, or during the
RRC connected state when the UL synchronization status is marked as non-synchronized, or
during the RRC re-establishment procedure, or during the transition from the RRC inactive
state. The procedure is also called when the UE demands system information that is not
included in broadcast packets, or when the UE establishes a time alignment at the secondary
cell to improve data rates or make a more reliable connection. The initial access procedure is
also called in the case of beam failure or handover between cells. The initial access procedure
is depicted in Figure 5. The primary distinction between LTE and 5GNR RACH occurs right
before the RACH preamble transmission. This difference arises from the default support for
beamforming in NR, particularly in mmWave scenarios.

5G

DL Sync.

UL Sync. / UL Scheduling

SIB 1

SSB / PBCH

Downlik
Synchronization

Downlik
SIB 1 Decode

msg1: PRACH

RA-RNTI

msg2: RAR

TC-RNTI

msg3: PUSCH

C-RNTI

msg4: Connection Resolution

RA Response Window (SIB 1)

K2(UL Grant/RAR) + ∆

RA Connection Resolution Timer (SIB1)

UL Timing Adjustment
MSG Scheduling

Contention Resolution

SIB 1

Specific:
TimeFrequency resource domain
Sequence Number
Preamble Type

Figure 5. Initial access procedure and its messages. Parameters ∆ and K2 specified in [60].
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2.3.2. Beam Management in 5G

In NR, when operating in the beamforming mode, the UE must detect and choose the
optimal beam for the RACH process. The Synchronization Signal Block (SSB) is closely
related to beam management. SSBs are bursts of signals that contain essential information
for the UE to perform initial cell search and synchronization with the gNB. In the context
of beam management, SSBs are used to establish the initial beam-pair link between the UE
and the gNB where the gNB transmits multiple SSBs, each on a different beam. The UE
detects the best beam among them and sends PRACH to the location, which is mapped
to a specific SSB beam ID. Beam management procedures are applied for both DL and UL
transmission and reception [61,62]. These procedures include the following:

• Beam sweeping and Beam Alignment (BA) process: This involves broadcasting a series
of beams across a defined spatial zone with predetermined timing and directional
patterns. Each SS block corresponds to a specific beam.

• Beam measurement: This describes the assessment of signal reception quality at either
the gNB or the UE, utilizing metrics like Reference Signal Received Power (RSRP),
Reference Signal Received Quality (RSRQ), Signal to Interference and Noise Ratio
(SINR), or Signal to Noise Ratio (SNR).

• Beam determination: This pertains to choosing the most appropriate beam or set of
beams at the gNB or UE based on the data acquired from beam measurement activities.

• Beam reporting: This is a procedure during which the UE is communicating informa-
tion about beam quality. The UE sends out the PRACH preamble that matches the SS
block linked to the optimal beam. This direct correlation between the incoming SS
block and the outgoing RACH preamble serves as the UE’s method of indicating the
best beam choice to the gNB.

• Beam recovery: This is a process that detects beam failure and searches for another
candidate beam with good quality. When the number of beam failures reaches the
limit in RRC, the UE triggers the beam failure recovery process with the candidate
beam using PRACH identified by a preamble index [63].

3. Possible Attack Types on Physical and MAC Layer

Since the 5G NR networks support various types of devices from low-power IoT
devices, MTC, and smartphones working in a variety of frequency ranges and bandwidths,
the NR technology has to support various types of protocol technologies and also inherit
some technologies from their predecessor. Thus, 5G is susceptible to various types of
attacks, such a Radio Frequency (RF) jamming, spoofing, and sniffing [19,56], with some
of them being similar to the case of LTE. Several case studies on PHY layer security are
presented in [64–66], along with several attacks and proposed countermeasures that have
been realized in real-world scenarios, as published in [56,67]. An interesting study focused
on higher-layer security and False Base Station (FBS), with examples of several attacks,
and is available in [68]. The authors provide an example of a novel FBS attack including
clock information injection and baseband fuzzing, which are manual and automated traffic
injection methods that result in continuous DoS attacks.

The PHY vulnerabilities can be categorized into several groups, depending on which
technology is used as the input point. Table 2 summarizes the selected attacks on the PHY
and MAC layers. The table is sorted from less sophisticated attacks to more sophisticated
ones. It is important to note that even smart jamming attacks need to be synchronized in
most cases with the targeted gNB. The column “Effectiveness” represents the ratio between
the attack’s efficiency and its complexity.
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Table 2. Possible attack types on PHY and MAC layers [56,67].

Layer Attack Type Target Effectiveness Effects

L1 PHY

Smart Jamming

PSS HIGH DoS

PBCH MEDIUM DoS

SSS MEDIUM DoS

PBCH DM-RS MEDIUM DoS

PRACH MEDIUM DoS

PDCCH LOW DoS

PUCCH LOW DoS

Spoofing

Implicit Beam Reporting (RA) HIGH User Localization

DCI/UCI MEDIUM UL Jamming by UE, Resource Jamming,
HARQ Failure

PDCCH Order MEDIUM DoS

L2 MAC Spoofing

BWP Switching LOW DoS, MITM Enabler

CSI-RS/SP-SRS Act./Deact. HIGH Passive User Localization and Tracking,
Massive MIMO Pilot Contamination

SCell Act./Deact. MEDIUM Throughput Throttling,
Battery Draining

Timing Advance, Recommended
BitRate MEDIUM DoS, De-synchronization

Beam Failure Recovery LOW DoS

3.1. Jamming Attack Types

Traditionally, using band-limited noise to jam the entire transmitter band is considered
as a functional but energy-inefficient jamming technique. More energy-efficient methods
include partial band jamming, single-tone jamming, multi-tone jamming, asynchronous
single-tone jamming, and asynchronous multi-tone jamming, as illustrated in Figure 6.
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Figure 6. Illustration of jamming types with higher energy efficiency.

• Single tone jamming involves the utilization of a single, high-power Codeword (CW)
tones to disrupt a single subcarrier. This method necessitates the precise knowledge
of the subcarrier’s exact frequency, as depicted in Figure 6. Additionally, single-tone
jamming can be employed to disrupt the cell-specific reference signal, consequently
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diminishing the overall system capacity. However, for effective jamming, the jammer
must achieve perfect synchronization with the network.

• Multi-tone jamming is employed to disrupt multiple subcarriers simultaneously. In
contrast to single-tone jamming, multi-tone jamming involves the generation of multi-
ple random phase CW tones [69]. Similar to single-tone jamming, multi-tone jamming
also necessitates accurate knowledge of the subcarriers’ exact frequencies, as illus-
trated in Figure 6.

• Partial band jamming involves transmitting Additive White Gaussian Noise (AWGN)
across a specific frequency band. The effectiveness of this jamming technique correlates
directly with the ratio of the jamming bandwidth to the signal bandwidth when
maintaining constant jamming power [70,71]. As depicted in Figure 6, this method
allows for the jamming of a segment of continuous subcarriers.

• The asynchronous form of jamming can be categorized into two types: asynchronous
single tone jamming and asynchronous multi tone jamming, as also shown in Figure 6.
The underlying principle of asynchronous jamming involves disrupting the target
signal with a frequency offset from the subcarrier. This offset allows the jamming
signal to interfere with neighboring subcarriers, resulting in a scenario of Inter-Carrier
Interference (ICI) at the receiver, rather than directly jamming the signal. Compared to
the other types of jamming mentioned earlier, asynchronous jamming demonstrates
superior performance [72].

The susceptibility of a physical channel or signal to jamming depends significantly on
its sparsity within the overall time–frequency resource grid [19]. A key factor mitigating
vulnerability is if the channel or signal is allocated on the time–frequency resource grid
using a dynamic scheme controlled by higher-layer parameters, which may not be known
to a potential jammer. This fact, from the point of view of the jammer, defines a trade-off
between the complexity of the jamming method and the effectiveness of the jamming and
jammer power consumption. Also, Frequency Ranges (FR) are a factor that have to be
calculated in jammer design, since the hardware complexity of FR2/mmWave jammers is
significantly greater than the jamming of the sub 6 GHz channels.

3.2. Smart Jamming

Knowing the frame structure of 5G transmissions, smart jamming attacks can be
targeted against various physical signals in both UL and DL directions, as described bellow.

• Synchronization signals in NR are more resilient to jamming [56] due to Gold sequence
low cross correlation allowing the UE to distinguish between nearby base stations on
the same channel at low SINR. Thus, jammers need to transmit with high power in
order to jam the synchronization signals. The SS bursts are mapped to the resource
grid based on SCS, carrier frequency, and offset-ref-low-scs-ref-PRB parameters [57].
A jammer targeting the PSS and/or SSS in time needs to synchronize with the cell
and identify the SCS, which can often be determined using public band plans. This is
slightly more complex than in LTE [19].

• The Physical Broadcast Channel (PBCH) is located in the same slot as PSS and SSS.
The combination of PSS/SSS with PBCH, known as SSB, is transmitted over 4 OFDM
symbols and 240 subcarriers (20 RBs). The Synchronization Signal Block is transmitted
with a variable interval with at least a period of 20ms, depending on SCS. The
allocation in time–frequency space is variable to the center or to the side of the DL
channel. Jamming the PBCH prevents the UE from accessing the critical information
it needs to connect to a cell. If the jammer can synchronize with the target cell, PBCH
jamming can be done in a time-selective manner. Alternatively, the jammer could
continuously jam the subcarriers on which the PBCH is located. The latter method
involves jamming 240 subcarriers. To put this into context, a 20 MHz DL with a 15 kHz
SCS has 1272 subcarriers. Therefore, this would mean jamming approximately 19% of
the DL signal, resulting in a jamming gain of approximately 7 dB compared to barrage
jamming [56,73].
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• The Physical Downlink Control Channel (PDCCH) is used to send control information
to the UE to schedule DL and UL transmission and defines its modulation and coding
and carries HARQ and DCI messages. The PDCCH always starts in the first symbol
of each slot, is Quadriphase Phase Shift Keying (QPSK) modulated, and uses polar
coding. To determine PDCCH localization in the time–frequency grid, the CORESET
parameters have to be demodulated [57]. To successfully jam the PDCCH, the jammer
has to set a valid jamming duty cycle according to the CORESET time duration
parameters [56]. DCI is vulnerable to various passive attacks, such as localization and
traffic fingerprinting, which infer users’ information from allocated resources.

• The Physical Uplink Control Channel (PUCCH) carries control information about
the Scheduling Request (SR), HARQ, UL CSI, and others [74]. There are five formats
of PUCCH carrying various parameters provided by higher layers. The PUCCH is
modulated by Binary Phase Shift Keying (BPSK) or QPSK and can be coded by polar
or simplex or Reed Muller codes. PUCCH can also implement inter slot hopping to
reduce interference. Similarly to LTE, some control information can be carried by
PUSCH. This makes PUCCH very unreliable for jamming.

• Reference signals are used for the channel estimation of DM-RS or for phase tracking
the Phase Tracking Reference Signal (PT-RS). DM-RS can be assigned in both the time
and frequency domains, and they are separated by physical channels; compared to
LTE, DM-RS are assigned in the frequency domain and are transmitted in specific
resource blocks within the LTE carrier. For the jammer, the ideal Reference Signal (RS)
to disrupt is the one that requires minimal energy, but that is crucial for the link’s
operation. The DM-RS for the PBCH fulfill the criteria as it is consistently located and
only needs the cell ID and PBCH location, which a time-synchronized jammer can
easily know. The DM-RS for the PBCH takes up a quarter of the PBCH’s Resource
Elements (REs) and can be jammed without cell synchronization by disrupting the
correct 60 subcarriers. PT-RS for the PDSCH are used only when the higher layer
parameter is enabled. The mapping depends on time density and frequency density
parameters. The effectiveness of a downlink PT-RS jamming attack is uncertain
without knowing how often PT-RS are enabled and the density default set by base
station vendors [56].

• The Downlink and Uplink User Data Physical Downlink Shared Channel (PDSCH)
and the Physical Uplink Shared Channel (PUSCH) represent the main part of the
frame. It is feasible to selectively interfere with these channels. The jammer could
equally interfere with the whole UL and DL; hence, the jamming of PDSCH and
PUSCH is one of the least important threats to consider.

• The Physical Random Access Channel (PRACH), similarly to LTE, is used by the UE
after the synchronization of SSB and the decoding of PBCH to transmit a preamble that
is in the form of a Zadoff-Chu sequence that embeds a value used for the temporary
identification of the UE. The gNB broadcasts the candidate locations of the PRACH
in the time–frequency grid in case the UE attempt to connect [57]. From the jammer
point of view, the many configurations of PRACH and real-time data decoding makes
the jamming of PRACH unreliable.

• Another published attack exploits the beam configuration of a cell to proceed a SSB-
RA fingerprinting localization attack. The attacker creates a map detailing the exact
locations of the BS and all beams within a cell. By monitoring the random access
channel, the attacker can infer the beam selected by the UE from the random access
occasion. The attacker also acquires the Timing Advance (TA) value from the RA
response sent by the BS. These values are then used to calculate the UE’s azimuth and
distance from the BS, providing an estimated location of the UE. With a combination
of PDCCH Order (PO), the attacker can also target already connected users.

To quantify the complexity and power efficiency of jamming-type attacks against
the 5G PHY layer, the Jammer to Signal (J/S) ratio was introduced in [19,75]. According
to Table 3, considering the complexity of attacks on PHY channels, the most effective
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jamming or spoofing attacks are those in DL against PSS, PBCH, SSS, and DM-RS of PBCH,
respectively. The less effective attacks in DL are against PDCCH, and in the UL against
PRACH and PUCCH.

Table 3. Jamming spoofing parameters and J/S values for a FR1 channel bandwidth of 20 MHz and
SCS of 30 KHz, reprinted with permissions from [56].

Channel/Signal Modulation % of REs Sync. Params. Required J/SCH J/SF

PDSCH (DL) {4, 16, 64, 256}-QAM 90% No None 0 dB −1 dB

PBCH QPSK 1.7% Yes None 0 dB −17 dB

PDCCH QPSK 7% Yes Medium 0 dB −11 dB

PUSCH (UL) {4, 16, 64, 256}-QAM ∼ 90% No None 0 dB −1 dB

PUCCH QPSK ∼ 10% Yes High 0 dB −10 dB

PRACH Zadoff-Chu Sequence ∼ 2% Yes Medium 10 dB −7 dB

PSS (Spoofing) M-Sequences 0.1% (3 (PSSs) No None 10 dB −20 dB

SSS Gold Sequences 0.3% Yes None 10 dB −15 dB

3.3. Spoofing

• Synchronization signal spoofing is a more effective attack in contrast to a simple
injection of wideband noise by the jammer. Attackers are able to effective transmit fake
PSS/SSS signals, as it does not require cell synchronization and requires less power.
Note that PSS and SSS are detectable at low SNR [19], and their successful jamming
would require a higher J/S ratio. Spoofing involves transmitting asynchronous fake
PSS signals at higher power, potentially causing denial of service during the initial cell
search [76]. The 5G NR specifications do not detail UE behavior upon detecting a valid
PSS without an associated SSS [75], making the impact of PSS spoofing implementation
specific. More sophisticated blacklisting is needed to mitigate the effects of increased
fake PSS transmissions.

• Physical Broadcast Channel (PBCH) sniffing and spoofing can be processed similarly
to the LTE [19]. A Master Information Block (MIB), providing information about
System Information Block (SIB) mappings in the time–frequency grid, represents the
information that can be sniffed and spoofed. SIB provides information such as the idle
timer configuration of the network, unique identifiers of the cell, and the RB mapping
of critical control channels, and it also provides information on the received power
threshold that can trigger a handover to another cell. Contrary to LTE, the NR SIB
and RRC messages introduce new parameters, such as a whitelist or blacklist of cells.
These unprotected messages can be exploited for security breaches against the NR
protocol by spoofing SIB messages or impersonating a base station during the RRC
handshake [67,77].

• Physical Downlink Control Channel (PDCCH) spoofing is analyzed in [67], which
describes several vulnerabilities linked with DCI carried by PDCCH, such as the
following:

– Attacks on resource scheduling: For the DL, this has limited value as the UE fails
to decode data in incorrect slots. However, for the UL, it is more effective as an
attacker can cause multiple UEs to transmit over the same resources, leading
to jamming and battery drain. The attacker crafts and injects UL DCI into each
time slot, making Induced-Jammer UEs (IJ-UEs) transmit data, even without
pending data. To amplify the attack, the attacker manipulates the Transmit
Power-Control (TPC) field within the same DCI to force the IJ-UEs to transmit at
maximum power. This severely impacts the SNR of other devices and reduces
their throughput.
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– PDCCH Order (PO): This is a special DCI that instructs a specific UE to initiate an
RA procedure to update synchronization. As the only unprotected control proce-
dure for triggering RA, it efficiently and stealthily induces RA, causing resource
drain and potential disconnections and can be used for triggering localization
attacks.

– Bandwidth Part (BWP) Switching Attack: This exploits a 5G feature dividing
total bandwidth into multiple parts for different users. An attacker can spoof this
DCI, redirecting the UE to different BWP, causing loss of scheduled transmissions
and disrupting connectivity. This can also facilitate sophisticated attacks like
Man-In-The-Middle (MITM), where specific messages from the base station are
missed, or DL data are injected into an empty BWP.

• Physical Uplink Control Channel (PUCCH) spoofing vulnerabilities have been pub-
lished in [67], where the authors provide several attacks against PUCCH, such as the
following:

– Spoofing Scheduling Request (SR) exploits the UL physical layer message sent
from the UE to the gNB to request UL resources. When the gNB receives an
SR, it allocates resources for the user. SRs can be exploited by attackers in three
ways: An attacker can keep users’ Radio Network Temporary Identifier (RNTI)
connections active for extended periods, bypassing the RRC inactivity timer and
enabling long-term tracking. They can request resources on behalf of multiple
users without pending UL data, leading to network congestion. Furthermore,
they can request an UL DCI for a specific user and hijack the allocated UL grant
to spoof higher-layer data on behalf of the user. The second method is a stealthier
alternative to the resource scheduling attacks mentioned earlier since spoofed UL
transmissions are harder to detect as they may appear to come from legitimate
UEs. The third method is particularly advantageous for attackers as it allows
them to hijack UL grants and inject MAC layer information for a specific user
on demand.

– The HARQ attack exploits the lack of synchronization between the base station
and a UE due to spoofed DCI with an altered Downlink Assignment Index (DAI).
An attacker injects a DCI with a higher DAI value than expected, causing the UE
to report an incorrect ACK bitmap size. This mismatch leads to a HARQ failure,
as the base station cannot match the ACKs to the correct packets, resulting in
communication disruption and potential loss of connectivity for the targeted UE.
This attack is effective because it leverages the unprotected nature of the lower
protocol layers, where integrity checks are not enforced. This attack is depicted
in Figure 7.
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Figure 7. Hybrid Automatic Repeat reQuest attack in PDCCH.

– Channel State Information (CSI) sniffing to track users. This attack uses the
vulnerability of the L1 layer combined with the L2 layer and allows tracing
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of users by SRS or leakages in CSI-RS [67]; more information is described in
Section 4.

• Contrary to jamming, the spoofing of Physical Random Access Channel (PRACH)
signals can be applied in flood attacks, where the transmitting of large numbers of
invalid preambles can be used for DoS attacks on gNB. The authors in [67] applied an
attack against initial access using the SIB overshadowing technique by modifying the
ra-ResponseWindowSize parameter to minimum and the preambleTransMax parameter
to maximum, resulting in a failure for all UEs trying to connect to the network. To
amplify the collision effect during RA, the PO can be injected to multiple users. This
type of attack also effects UE battery draining because the UE increases transmit power
after each unsuccessful RA.

3.4. Jamming and Spoofing Mitigation Techniques

Several techniques have been proposed to mitigate the effects of spoofing attacks to
the 4G/5G PHY layer, such as:

• PSS spoofing can be mitigated using a timer and a blacklist. After a certain time
when the SSS is not received, the PSS is blacklisted for a specific time and the second
strongest PSS at the channel can be chosen.

• PSS/SSS spoofing can be mitigated by the UE’s proactive measures. The UE can
generate a comprehensive list of all the cells present within a specific frequency
channel. This list should also include the received power levels of each cell, as
described in [78]. Then, PBCH can be decoded for the strongest cell and timer applied
for decoding MIB. After timer expiration, the second strongest cell can be decoded.

• Spoofing and sniffing can be mitigated by the reduction of information broadcast by
MIB and SIB frames, which contain essential information to establish a radio link [79].
Both UEs and base stations implicitly trust all messages before authentication and
encryption, potentially leading to security exploits. It is essential to develop methods
for UEs to verify a base station’s legitimacy before acting on unauthenticated RRC
and NAS messages, despite current specifications not requiring this.

4. mmWave and MIMO-Specific Attacks
4.1. Beam Alignment Jamming

The BA process outlined for 5G NR has been engineered to be fast and precise in
non-malicious radio environments [62]. However, it can represent a potential vulnerability
and advantage for smart jammers [80,81]. They could initiate an attack during the BA
phase with the aim of reducing the precision of beam selection. This could negatively
affect the overall performance and the quality of service that users experience. This type of
attack can also be performed on other communication standards relying on beamforming
technology, such as 802.11ad [82]. The 5G NR BA process is illustrated in Figure 8.
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In order to mitigate the effect of the BA jamming attack, the authors of [80] propose a
randomized probing technique, which involves transmitting a corrupted probing sequence
to enable the user equipment to reject the jamming signal using subspace-based orthogonal
projections and jamming cancellation. This method shows promising results in maintaining
the accuracy of beam selection and ensuring the quality of service despite the presence of
smart jammers.

4.2. Pilot Contamination

Another type of vulnerability could be pilot contamination. The term pilot contam-
ination refers to the interference that occurs in the channel estimation process when the
same pilot sequences are reused in adjacent cells or by injection by the attacker. This
is a significant challenge in massive-MIMO (mMIMO) systems because the size of the
coherence interval is constrained, limiting the length of the pilot sequence. In [83], the
authors modify the precoder employed by the legitimate transmitter in a controlled way
to strengthen signal reception at the eavesdropper during data transmission. Addition-
ally, they explore the transmission efficiency of an advanced full-duplex eavesdropper
to ensure effective eavesdropping and impair the detection capabilities of the legitimate
receiver simultaneously.

4.3. User Tracking

In [67], the authors identified several vulnerabilities in L2 MAC procedures with a
combination of NR MIMO technology. One of the vulnerability is the potential to track users
using SRS reference signals. SRS are applied to report channel state information, and for
resource allocation optimization. SRS can be transmitted periodically, semi-persistently, or
a-periodically. These modes are driven by secured RRC messages. Semi-persistent reference
signals are sent at regular intervals and can be enabled or disabled via an MAC Control
Element (Semi-Presistent (SP)-SRS Activation/Deactivation) [67]. Aperiodic reference
signals, on the other hand, are initiated by DCI and require a single transmission. Here is
an overview of the most important related threats:

• Tracking using SRS signals: SRS is applied for assessing the channel conditions over
the entire UL frequency range and for transmitting UL mMIMO pilot signals. The
attacker can use this in three ways. Firstly, since it is an unexpected UL transmission
by the BS, it can cause interference with other UL communications arranged by the
BS. This interference results in either the jamming of user data or contamination of
other users’ SRSs, leading to a disruption in the CSI that has been gathered. Secondly,
an attacker can interrupt ongoing semi-persistent SRS transmissions by issuing a
deactivation MAC Control Element to a UE. This action can significantly impair the
channel estimation process at the BS, which in turn can drastically reduce the data
throughput for the UE, especially in MIMO scenarios where beamforming is utilized.
Lastly, the SRS is composed of a pre-established wideband Zadoff-Chu sequence,
known for its excellent cross-correlation characteristics. Despite its original design
not being intended for localization purposes, an attacker could exploit this signal to
pinpoint the location of a specific user with a high degree of precision by measuring
the differences in signal arrival times [84].

• Leakages in CSI-RS: DL channel measurement differs from SRS. CSI-RS signals are
sent by the base station, and the UE reports them back. This report includes beam
identifiers and signal-strength RSRP, which can be used by an attacker to track user
locations. The attacker first fingerprints the cell beam layout, then decodes the UE’s
CSI report to obtain beam information. The authors in [67] applied a BeamToPath algo-
rithm to outlier sporadic signals and discarded impossible beam transitions. Finally,
they computed path coordinates and interpolated the path for location tracking with
14 m in 90.32%, with an average error of 5.34 m, compared to the Global Positioning
System (GPS)-recorded path.
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• Beam Failure Recovery (BFR) DoS: Beam management requires rapid, dynamic recon-
figuration to respond the changes in the wireless environment, like signal blockage.
Typically, the gNB triggers beam management processes, such as beam swaping. How-
ever, if a UE detects beam failure, it measures the strongest beam and initiates an RA
procedure, including the BFR MAC control element in Msg3, signaling that the user is
switching to a different beam. This process can be exploited by an attacker, causing
a misalignment between the beams at the UE and gNB, since the legitimate UE is
unaware of the beam switch.

With the standardization efforts towards the 5G-Advanced and Sixth Generation (6G)
of mobile communications, the Reconfigurable Intelligent Surfaces (RIS) PHY layer se-
curity must not be neglected in order to ensure secure and reliable communications in
advanced wireless networks. Metasurface manipulation attacks pose potential vulnera-
bilities to RIS in terms of jamming [85], eavesdropping [86], pilot spoofing [87], and pilot
contamination [88] attacks.

4.4. MIMO and mmWave Attacks Mitigation Techniques

In order to mitigate or detect jamming and spoofing attacks in NR FR2, several meth-
ods have been published. These methods typically use virtual channel [89] representation,
which effectively describes the spatial properties of the channel.

In [80,90], the authors proposed a randomized probing technique, which involves
transmitting a corrupted probing sequence to enable the user equipment to reject the
jamming signal using subspace-based orthogonal projections and jamming cancellation.
This method shows promising results in maintaining the accuracy of beam selection and
ensuring the quality of service despite the presence of smart jammers.

In [91], the authors applied a Principal Components of Channel Virtual Representation
(PC-CVR)-based method to detect spoofing attacks. The method uses a statistical test for
static environments and machine learning for dynamic environments—achieving high
accuracy in both scenarios. The non-machine-learning is introduced in [92], where the
authors applied a more simplified method based on leveraging the sparseness and statistical
features of virtual channels.

In [93], the authors proposed an active–passive cascaded RIS-aided receiver for jam-
ming nulling and signal enhancing based on a low-complexity optimization framework
using Alternating Majorization-Minimization (AMM) and Conventional/Modified Cyclic
Coordinate Descent (CCD) (C/M-CCD) methods to obtain the coefficients of the active
RIS. Another method is proposed in [94], where the algorithm forks in two phases. Firstly,
uncertain jamming information is robustly processed using CCD and Successive Convex
Approximation (SCA) to optimize the RISs’ phase shift and amplitude matrices. Addition-
ally, closed-form solutions for the transmitting and receiving beams are derived. Finally,
a low-complexity Block Coordinate Descent (BCD) algorithm alternately optimizes these
variables and a greedy algorithm manages and adjusts the multiple RISs.

5. Test-Beds for 4G/5G Experimentation

To verify vulnerabilities at the PHY layer, a proper testing system is necessary. The
development of a full 4G/5G systems is a very time- and money-consuming process; fortu-
nately, there are currently possibilities to build a private 4G/5G network for reasonable
costs. For such implementations, three components are needed: the Software Defined
Radio (SDR) with well-chosen front-end, which serves as the transmitting and receiving
device; the RAN, which manages the wireless communication between mobile devices
and the backbone network; and the backbone network, which includes all 5G functions
and interactions including authentication, security, session management, and traffic ag-
gregation from end-user devices. Various Software (SW) frameworks and tools have been
developed for experimenting with security threats and countermeasures in 4G/5G cellular
networks [95]. The open-source projects developed by the community are one of the most
suitable solutions for such experiments. Here, the functionality of the overall system can be
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adapted to demonstrate vulnerabilities or implement countermeasures against specified
threats. There are several options for RAN implementation, including, but not limited to
the following:

• Free5G RAN [96] (Hsinchuis, Taiwan, current version v3.4.2) an open-source project
with very limited functionality. The current version includes a receiver that decodes
MIB and SIB1 data and can act as a cell scanner in SA mode.

• OpenAirInterface [97] (Biot, France, current version v2.1.0) developed by Eurecom,
and maintained under a public license, which implements NSA/SA gNB as well as
5G NSA/SA UE. The project is also integrated with the NVIDIA Aerial software
development kit’s L1 inline hardware accelerator with the OpenAirInterface L2 and
above to build an accelerated 5G virtual RAN. This kit provides a full L1 high-PHY
implementation of 5G NR compatible and interoperable with the Open-RAN 7.2×
front-haul split.

• srsRAN [98] (Cork, Ireland, current version 23.11) an open-source SW that provides a
compete 5G RAN solution, optimized for SDRs [99]. This software package supports
5G NSA/SA modes for both srsUE and srsENB. In 4G mode, it implements the EPC;
alternatively, for 5G SA mode, it supports the 3rd party 5G cores. The big advantage
of srsRAN for amateur and educational usage is that it can be used with the ZMQ
virtual RF front-end. In such a case, there is no need for physical RF-hardware
to implement RAN. It allows simultaneous packet capturing and analyzing by a
Wireshark. There have been many recent research publication profiting from the use
of this project [19,67,100].

According to provided tests [99], srsRAN is more suitable for beginners in the field
but yields unstable results in terms of latency, while OpenAirInterface offers more flexible
configuration options. A brief overview of related works dealing with SW tools developed
to test the vulnerabilities of cellular protocols is provided in [101].

These findings highlight the importance of selecting the appropriate software tools for
testing and implementing 5G technologies. There are many options for 5GC implementa-
tion. Some include only 5GC for 5G SA networks, while others also include EPC for 4G
and 5G NSA modes. The most known and widespread are as follows:

• Open5GS, an open-source project that provides a comprehensive 4G/5G core network
solution. It implements a Release 17-compliant EPC for 4G and 5G NSA networks, as
well as a 5G SA core. Open5GS supports the delivery of voice calls and text messages
through the LTE network. This is achieved by leveraging third-party Voice over LTE
(VoLTE) and SG-SMS (SMSoSGs) solutions, respectively, such as those from Kamailio
and Osmocom [102]. This 5GC is recommended by srsRAN for 5G SA.

• free5GC, an open-source 5G mobile core network project. The goal of the project is to
implement the 5G core network defined in 3GPP Release 15 and beyond [103].

• Open5GCore toolkit, the first global practical implementation of the 3GPP 5G core
network, supporting the functionalities of 3GPP Releases 17 and 18. Open5GCore
implements the new 5G components as a standalone, independent of the previous 4G
EPC functionality [104].

• Open Core Network is a cloud-native and converged core that consists of a collection
of microservices implementing various core network functions. Supports 3GPP 5GC
and LTE EPC for licensed, unlicensed (e.g., Wi-Fi), and shared spectrum (e.g., CBRS)
networks. It enables seamless migration from 4G EPC to 5GC in both NSA and SA
modes [105].

Based on chosen RAN implementation and the selected mode of operation (4G or 5G
NSA/SA), a suitable SDR has to be chosen to be used for UE, gNB/Evolved Node B (eNB)
implementation. In the case of OpenAirInterface, these devices are supported: Ettus USRP
B2x0/X3x0 families, or a proprietary solutions EURECOM ExpressMIMO2 [106], and the
capabilities of individual SDR’s are shown in Table 4. In the case of srsRAN, these devices
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are reported as supported: Ettus USRP B2x0/X3x0 families, BladeRF, and LimeSDR [98].
For details on the capabilities of individual SDR’s, see Table 5.

Table 4. Appropriate hardware to use with OpenAirInterface and individual 4G or 5G types.

USRP 4G SISO 4G
MIMO

5G NSA
SISO

5G NSA
MIMO

5G SA
SISO

5G SA
MIMO

ExpressMIMO2 yes yes yes yes yes yes
X310 yes yes yes no yes yes
B210 yes yes yes * no yes yes
B200 yes no no no yes no

* In 5G NSA mode, the 4G and 5G must operate on the same frequency due to the presence of only one shared
local oscillator. Suitable for experimentation only.

Table 5. Appropriate hardware to use with srsRAN and individual 4G or 5G types.

USRP 4G SISO 4G MIMO 5G NSA
SISO

5G NSA
MIMO

5G SA
SISO

5G SA
MIMO

X310 yes yes yes no yes yes
B210 yes yes yes * no yes yes
B200 yes no no no yes no

BladeRF yes yes yes * no yes yes
LimeSDR yes no no no yes no

* In 5G NSA mode, the 4G and 5G must operate on the same frequency due to the presence of only one shared
local oscillator. Suitable for experimentation only.

Our team experimented with srsRAN [107,108], where the raw data are captured by a
modified RFSoC development kit from AMD/Xilinx [109] with an XM500 frontend.

6. Machine Learning for Enhancing PHY Layer Security

Advances in machine-learning methods, both classical [110] and especially deep
learning, have opened up opportunities for use in enhancing the security of 5G networks.
To secure the wireless transmitters at the physical layer, exploitation of machine-learning
techniques mainly leverages either the unique RF impairments of transmitting devices
(RF fingerprinting) or channel state information inconsistencies via anomaly detection
or model-based approaches. In the following, we provide an overview of the most-used
machine-learning and deep-learning models and outline their use for physical layer-based
authentication.

6.1. Convolutional Neural Networks

Convolutional Neural Network (CNN) are one of the most fundamental architectures
in the field of deep learning [111]. Initially inspired by the human visual perception
mechanism [112], they have been proven to be highly effective for computer vision [113].
Later, they were adopted for several other tasks, such as natural-language processing [114],
automatic modulation classification, signal identification, and interference detection and
RF fingerprinting for LTE and 5G networks [107,115,116].

The CNN typically consists of several layers that process and transform the inputs to
produce the desired output, where the fundamental layers are called Convolutional layers,
Pooling layers, Flatten layers, and Fully-connected layers [117]. Convolutional layers are the
heart of CNNs and consist of learnable convolutional kernels that extract and learn features
automatically through convolution operation. Pooling layers are used to reduce the spatial
dimensions of the input data and help reduce the computational load and memory usage.
On top of that, they help to detect invariant features to scale and orientation changes.
Towards the end of the network, CNNs typically include one or more fully connected
layers (equivalent to traditional Multi-Layer Perceptron (MLP) networks), which perform
high-level reasoning, such as classifying the input data based on the features extracted
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by the Convolutional and Pooling layers [111]. The schematic of a simple CNN for the
processing of 1D input data is shown in Figure 9. Table 6 presents recent examples of
CNN-based machine-learning experiments applied to 5G devices security enhancements in
terms of device authentication by fingerprinting, or jamming attack detection. The potential
of CNN architecture has also been studied for satellite transmitters [118] and represent a
pioneering work towards the use of future 5G non-terrestrial networks [119].
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Convolutional layer Flatten layer
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t

Fully-Connected layerPooling layer

Figure 9. Schematic of a simple CNN for processing 1D input data with depicted Convolutional,
Pooling, Flatten, and Fully-Connected layers. The input data are vectors X with length T. Figure
from [120] and extended.

Table 6. Examples of CNN-based machine-learning methods for 5G physical layer security enhancement.

Reference Task Input Data Testbed Setup Pre-Processing Deep-Learning
Method Remarks

[121] RF
fingerprinting

5G PRACH
Signal

USRP B210 +
OAI + 6× 5G

mobile phones
DCTF Extraction

CNN-based
LeNet-5
structure

Experiments
with

Single-Channel
DCTF and

Multi-Channel
DCTF

[122] RF
fingerprinting

LTE PRACH
signal 2× USRP B205 DCTF extraction Multi-channel

CNN -

[123] RF
fingerprinting Wifi, LTE, 5G USRP B210

Experiments
with

downsampling
VGG-style CNN Usage of Data

Augmentation

[124] Jamming
detection 5G, PSS Not specified PSS Correlation,

DWT, EPNRE CNN
Double

threshold
approach

6.2. Triplet Networks

A triplet network is a type of neural network architecture designed to learn the simi-
larity of fine-grained input data in an embedding space. The general network architecture
is shown in Figure 10. The core idea behind a triplet network for RF fingerprinting is to
take three input signals at a time, referred to as a triplet: an anchor signal (xA), a positive
signal (xP)—similar to the anchor, and a negative signal (xN)—dissimilar to the anchor.
These signals are passed through a shared neural network, which generates embedding
(vectors) for each image.

The objective of the network is to learn embeddings so that the distance (often Eu-
clidean or cosine similarity) between the anchor and the positive example is smaller than
the distance between the anchor and the negative model by a margin. This is achieved
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through a loss function known as the triplet loss. The triplet loss is formulated to ensure
that, for a given anchor, a positive example of the same class is closer to the anchor than
any negative example of a different class. The triplet loss is typically combined with the
global loss function, which can be a standard classification loss function, such as categorical
cross-entropy. The network can be built on any deep-learning architecture, F, such as
CNN, that typically share weights across the parallel architecture branches, as depicted in
Figure 10 [125,126].

The triplet function built upon CNN has been successfully implemented and demon-
strated to achieve an accuracy of 99.86%, irrespective of the training/testing time gap for
the over-the-air datasets [126].

Shared weights

Shared weights

xP

xA

xN

Deep architecture

Deep architecture

Deep architecture

F
ee

d 
F

or
w

ar
d

Triplet
Loss

Global
Loss

F(x )A

F(x )P

F(x )N

Figure 10. The general structure of the triplet network. The network has three inputs—an anchor
signal (xA), a positive signal (xP) and a negative signal (xN). The inputs are passed through
concurrently in parallel through the same structures Deep architectures F with shared weights
resulting in embeddings F(xA), F(xP) and F(xN). The embeddings are directly used to calculate the
triplet loss, and extra Feed Forward layers are used to calculate the global loss. The final loss is an
addition of triplet loss and global loss.

6.3. Reccurent Neural Networks and Long Short-Term Memory

Recurrent Neural Network (RNN) and Long Short-Term Memory (LSTM) [127] net-
works represent advancements in deep learning for analyzing and interpreting sequential
and time-series data, potentially in applying RF fingerprinting.

RNNs are designed to process data sequences by maintaining a hidden state that
acts as memory and allows them to capture temporal dependencies and patterns within
the data. However, RNNs often struggle with long-term dependencies due to issues
like vanishing and exploding gradients. LSTMs, a special type of RNN, address these
challenges with a more complex internal structure comprising gates that regulate the flow
of information. These gates effectively allow LSTMs to remember and forget information
over long sequences, making them particularly adept at modelling time-series data or
sequences where the timing and order of events are critical [128,129]. The fundamental
building units of RNN and LSTM networks are depicted in Figure 11.

The capabilities addressed above make RNNs and LSTMs particularly suitable for RF
fingerprinting applications that require analysis of the temporal characteristics of signals,
enabling more accurate identification of devices and transmission patterns within LTE and
5G networks. Integrating RNN and LSTM models in RF fingerprinting signifies a move
towards more sophisticated, temporal-sensitive analysis techniques, offering improved
performance over traditional methods in capturing the dynamic nature of wireless signal
transmissions. To our best knowledge, although an LSTM has very recently been used for
5G anomaly detection in signaling traffic [130], no works have used RNNs and LSTMs for
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the RF fingerprinting of 5G and LTE signals on the PHY layer. Nevertheless, several recent
works have focused on other wireless transmission signals. For instance, [131] focuses
on fingerprint identification for Long Range (LoRa) devices and [132] considers a set of
USRP SDR’s transmitting WiFi signals. The 802.11a/g signals transmitted from USRP
have also been considered in [133], with the neural network architecture consisting of
convolutional-LSTM architecture. At the same time, multiple deep-learning approaches,
MLP, CNN, and LSTM, are compared with multiple variants of the input data, such as
raw In-Phase Quadrature (IQ), frequency domain signal, and spectrogram. Study [134]
is based on processing raw IQ data for RF fingerprinting by software-defined radio-type
USRP-2900.

Besides direct use for the authentication of devices, recursive networks also have the
potential to improve the performance of location-based approaches, such as the RNN used
for signal preprocessing in [135].

Although not yet showcased for 5G, the properties of the RNN and LSTM networks
described above, and successful demonstrations of RF fingerprinting presented in pa-
pers [131,133,134], make these network architectures potential candidates for successful RF
fingerprinting classification of LTE and 5G transmitter devices.

tanh

xt

ht-1 ht ×

×

×

+

σ

σ σ tanh

tanh

xt

ht-1 ht

ct
ct-1

(a) (b)

Cell State

Forget
Gate

Input Gate Output Gate

Figure 11. The fundamental building cells of (a) RNN and (b) LSTM networks. ct denotes the cell
state, ht is the current hidden state, and xt is the input data. ht−1 and ct−1 are the previous hidden
and cell states, respectively. The yellow blocks are component-wise and the red blocks are layers.
LSTM has marked the Forget Gate, Input Gate, and Output Gate.

Transformers

Transformers, initially introduced in [136] in the context of Natural Language Process-
ing (NLP), have rapidly become a revolutionary architecture in the field of deep learning
due to their ability to handle sequential data without the limitations inherent to RNNs and
LSTMs networks [137]. The schema of vanilla Transformers is depicted in Figure 12. At the
core of the Transformer architecture is the self-attention mechanism, commonly extended
to multi-head self-attention, which allows the model to weigh the importance of different
parts of the input data, enabling it to process sequences in parallel and capture complex,
long-range dependencies more effectively than its predecessors [138]. This characteristic is
particularly beneficial for RF fingerprinting, where capturing the intricate temporal and
spatial relationships within signal data can enhance identification accuracy and robust-
ness in LTE and 5G networks. The ability of Transformers to efficiently handle large data
sequences while maintaining context awareness makes them a promising option for RF
fingerprinting methodologies. As far as we are aware, there has yet to be a recent publica-
tion on research focusing on RF fingerprinting utilizing 5G/LTE signals. However, a few
recent studies have explored similar concepts using alternative technologies. The approach
from [139] used LoRa devices, where the input of the model consisted of spectrograms ob-
tained via Short-Time Fourier transform (STFT). The collected signals were preprocessed, and
the preprocessing compromised four stages: (1) Synchronisation, (2) Preamble Extraction,
(3) Carrier Frequency Offset (CFO) Compensation, and (4) Normalization.
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Figure 12. The vanilla Transformer architecture from [136]. The fundamental building blocks are the
Input Embeddings, Positional Encoding, Encoder (green block), and Decoder (purple block). The orange
blocks represent the Multi-head self attention (MSA) modules, the yellow blocks are the additions
of residual connections and normalization layers, and the blue blocks are the feed forward neural
networks.

6.4. Autoencoders

From the point of view of deep-learning, tamper detection in LTE and 5G networks
can be treated as an anomaly detection task. An anomaly detection task identifies unusual
patterns or outliers in data that deviate from the norm. To our knowledge, only a limited
number of recent papers have been published, so this section will review potential deep-
learning architectures for anomaly detection and, if applicable, survey the recent works.
The main goal of an autoencoder is to learn a latent space representation (encoding) for a
data set. The general architecture is depicted in Figure 13. The input data, X, are passed to
the Encoder network that compresses the input into smaller and meaningful representations
called the latent space representation, Z. The Decoder network reconstructs the latent space
representation to produce output X̂ as similar as possible to the input [140]. Based on the
specific application, the autoencoders can be built using the appropriate building blocks
described in the previous chapter (i.e., CNNs, LSTM, Transformers, ...).

ZEncoder decoderX X̂

Figure 13. General autoencoder architecture.

From the point of view of the anomaly detection task, in the learning stage, only the
tamper-free data are passed to the input and output of the model to learn the high-level
representation of the data. In the testing stage, both tamper and tamper-free data are passed
to the model, while the reconstruction error E(X, X̂) is measured. When the reconstruction
error exceeds a certain defined threshold, the data are considered to be tampered with.

A similar approach was used in [141], where the Deep-Convolutional Autoencoder
(DCAE) was adopted for physical tamper attack detection and tested in indoor scenarios on
custom OFDM signals. Starting from simple thresholding of the reconstruction error as the
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metric to judge the presence of anomalies, the method has been improved by considering
the Probability Density Function (PDF) estimation of the reconstruction error. Its further
extension towards multi-antenna configuration, in either a centralized or decentralized
manner, has then been proposed in [142].

Although, in the above, the applications of autoencoders focused on tamper attack
detection have been discussed, the autoencoder approach can also be adopted for trans-
mitter classification [143], profiting from denoising autoencoder properties to mitigate
noise interference and then improve its robustness under low SNR conditions. Again, in
this paper, as well as in its predecessor [144], the principle has been evaluated on WiFi
or ZigBee devices. The application to 4G device classification, among the authorized and
rogue ones, has been shown in [145] on the transient part of the LTE PRACH signal with
a two-dimensional wavelet coefficients graph. The autoencoder, more specifically the
autoencoder with Bahdanau attention [146], has been proposed in [147] to allow physical
layer authentication in highly dynamic environments, i.e., in the presence of moving users
or fast-changing nearby objects. The proposed method relies on a model-based approach
to predict the CSI. The decision is then based on the Mean Square Error (MSE) between the
measured and predicted CSI. The use of the deep autoencoder to secure 5G-IoT devices is
then proposed in [148].

7. Location-Based Techniques for Enhancing PHY Layer Security

Among the important threats to the integrity of 5G infrastructure is the proliferation
of FBS—rogue devices impersonating legitimate base stations to intercept communica-
tions, launch attacks, or deceive users. Detecting and localizing these malicious entities
is paramount for safeguarding the confidentiality, integrity, and availability of wireless
communications in 5G systems [149,150]. With the potential for FBSs to exploit vulnerabil-
ities and compromise network security, robust countermeasures are essential to mitigate
their impact and ensure the trustworthiness of communication channels [68]. Further,
with the recent growth of distributed, cooperative computing methods, such as federated
learning [151], the localization of individual nodes could represent an additional layer
of security [152]. In general, there exist several methods and approaches to localizing
transmitting devices, such as FBS, among others, including the following: signal analysis,
anomaly detection, ML and DL algorithms, and network-based approaches.

7.1. Signal Analysis and Anomaly Detection

Signal analysis and anomaly detection techniques can be applied to identifying FBSs
by exploring the wireless communication signals exchanged between mobile devices and
base stations. These methodologies leverage the distinctive characteristics and behaviors
of legitimate base stations to differentiate them from malicious entities by exploiting
signal strength clustering [153], or higher-order noise statistics [154]. Suhui et al. [155],
suggested a method of Received Signal Strength (RSS)-based LTE base station localization
with only a single mobile receiver when the path-loss exponent parameter is unknown.
RF fingerprinting involves analyzing the unique radio frequency signatures emitted by
legitimate base stations to create a reference database. By comparing the received signals
with the reference fingerprints, anomalies indicative of FBSs can be detected. The usability
of this technique for such a purpose has been studied in [156–158]. Utilizing the PSS as a
signal strength metric to distinguish between genuine and false eNodeBs was introduced
in [108].

7.2. Machine-Learning and Deep-Learning-Based Approaches

As mentioned in the previous section, various machine-learning and DL-based ap-
proaches are used more and more for RF fingerprinting, as well as for device localiza-
tion [159]. The same trend is evident in the field of the localization of FBSs. Ref. [160]
introduced a DL-based solution employing a CNN to locate cell towers. This approach
utilized crowdsourced smartphone measurements and operator-side tower licensing data.
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The study demonstrated that the proposed classifier can effectively geolocate eNodeBs from
other metropolitan areas or mobile operators. The authors of [107,161] demonstrated that
Maximum Likelihood (ML)/DL-based approaches can effectively detect FBSs by utilizing
various parameters measured at the PHY layer of a wireless link. In contrast, Mubasshir
et al. [162] introduced an ML-based solution, named FBSDetector, which detects FBSs in
cellular networks by analyzing network traces at Layer 3. This work also contains a good
introduction and discussion about the challenges and importance of FBS detection. The
results obtained from these studies, along with ongoing research in this field, indicate that
ML/DL-based approaches hold significant potential for enhancing the accuracy of FBS
detection and localization in the future.

7.3. Network-Assisted Methods

In order to localize base stations (either legitimate or rogue ones), network-assisted
methods can also be used. In addition to the above-mentioned DL-empowered method [162],
more straightforward solutions can be used, without the need to exploit machine learning.
The Timing Advance (TA) parameter sent from the base station to the UE, or the Measure-
ment Reports (MR) collected by the BS, have been considered in the literature [163]. The
tri-lateration approach is widely used in such methods.

The exploitation of the TA parameter for base station location has already been studied
thoroughly, starting from network simulations in [164] employing a Gaussian Mixture Filter,
to practical field tests in Austria as described in [165]. As an example of network-assisted
methods relying on measurement reports, [166] should be mentioned.

7.4. Angle of Arrival—Empowered Methods

The positioning of devices is recently at the center of interest of 3GPP, expecting the
exploitation of sounding reference signals as the known patterns for localization. The
thorough study of various localization techniques such as Angle of Arrival (AOA) or Time
Difference of Arrival (TDoA) was provided in [167]. The application of AOA for localization
in ultra-dense networks was studied in [168]. Recent work [169] has exploited the AOA
as an enabler for physical layer authentication by providing resistance to impersonation
(spoofing) attacks.

8. Behavior-Based Methods to Detect False Base Stations

In the previous two sections, the task of enhancing the PHY layer security of 5G
networks has been seen from the perspective of machine/deep-learning methods and
location-based techniques, or their combination. However, there are other families of
techniques that do not fall into these two categories. Often, the securing of 5G networks
is understood as a classification task aiming to distinguish between legitimate and rogue
devices (UE or BS). In a technical report for 3GPP, [170] defines several solutions to be
implemented on higher layers to protect against connection to a false BS, such as digitally
signing the broadcasted system information, or identifying a false BS from active UE
measurement reports. For the later case, the report also states that if a false BS copies the
identity of a legitimate one, it is difficult to detect which one, as measured by the UE in the
measurement report, belongs to a genuine base station and which one is false.

Such approaches belong to a relatively large family of methods able to detect illegiti-
mate devices and comprises methods based on studying the discrepancies in the behavior
between usual legitimate devices and their false counterparts. Note that, in many cases, at
the final stage of such a method, the classifier, either a classical one or a machine-learning-
based one, performs the final decision. In some cases, the behavior of the device under
consideration is not studied by a single node, but rather in a network-assisted manner, in
which several neighboring devices share their observations. Several exemplary suspicious
marks of BS behavior have been sketched in dissertation [68], such as the following:

• sudden peaks in RSRP/SINR;
• changing the transmission power without coordination with the network;
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• increased handover failure rate;
• moving base station.

Other misbehavior marks have been described in [171], from which we have selected
the following examples:

• PCI outside the range of a given area;
• operating cells that have historically been powered-off outside working hours;
• received signal quality greater than usual in a given area;
• invalid PLMN identification.

Similarly, the method from [172] relied on a custom-designed state machine that
analyzes portions of the RRC message logs exchanged between the base station and the UE,
as well as the handover request history. According to the authors, the method outperforms
several classical machine-learning-based classifiers, but was not compared with any deep-
learning ones. Note that other examples of behavior methods can rely on the analysis of the
measurement reports, such as [166], but as the gathered information is used to tri-laterate
the position of the BS, we consider this method as the most location-aware one.

9. Future PHY Layer Security Challenges and Opportunities beyond 5G

In many countries, the deployment of 5G is still in the initial stages, with the most
employed NSA mode being in the FR1 band. However, the new SA mode-based services
based on private networks are currently growing, as well as the use of the FR2 band. In
the near future, the promising Frequency Range 3 (FR3) band will play its role, and 5G
is also expected to move to space, with the help of the current standardization activities
on Non Terrestrial Networks (NTN). With the transition from 5G to 6G, several emerging
technologies will gain much importance to provide additional functionalities and improve
coverage. The two most prominent examples are probably Reconfigurable Intelligent
Surfaces (RIS) and Joint Communication and Sensing (JCaS). The reconfigurable surfaces
(see Figure 14) promise to provide coverage in areas beyond the line of sight, or to im-
prove the signal transitions from outdoor to indoor environments, while the JCaS aims to
share spectral resources, to provide environment awareness and/or to optimize the radio
link performance.

With the new technologies, new risks and opportunities arise. With implicit environ-
ment awareness, the JCaS has the potential to increase PHY layer security [173], but on the
other hand, it can also open up new ways of information and privacy leakage [174]. The
possibility of attacking legitimate communication without any internal energy to generate
jamming signals by sophisticated reflection of the signals from the legitimate transmit-
ter to the legitimate receiver with the use of RIS has been documented in [85]. On the
other hand, recently designed Simultaneous Transmitting and Receiving RIS (STAR-RIS)
could provide the potential for defeating eavesdropping in a new field of so-called covert
communications [175].

The current and prospective axes of PHY layer security research towards 6G thus
include, but are not limited to, the means to secure JCaS transmissions [174], RIS deploy-
ments [176,177], and even to combine these technologies together [178]. In parallel, the
security challenges arising from the combination of terrestrial and satellite networks [179]
will also be at the center of interest with the rise of 5G NTN.

Figure 14. Propagation mechanisms of RIS (left), principle of RIS deployment (right).
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10. Summary

Contemporary cellular communication networks can be subject to a variety of serious
security threats. To achieve fast network attack procedures, the initial phases of connection
setup are not secured by the authentication mechanisms and are thus much more vulnerable
to the attacks. With the use of beamforming techniques in 5G networks, users can be tracked
by stealing their location information from the initial beam access reports, with increased
precision due to the use of new millimeter-wave frequency bands. Thus, the potential to
compromise security and privacy in the new generations of mobile communications will
probably increase in the near future.

This survey paper provided an overview of 4G/5G technology from the point of
view of the physical layer, and summarized the most important security threats related
to the physical layer, ranging from jamming, spoofing, and message manipulation to
beamforming-related attacks. We also reviewed possible countermeasures such as machine
learning, location-empowered, and behavior-based techniques for the detection of false
base stations—one of the key enablers of active attacks against cellular networks.

The main outputs of this survey paper provide insights into the hot topic of security
threats and countermeasures at the PHY layer in 4G/5G cellular networks. This allows
researcher and industry experts to identify key threats such as jamming, eavesdropping,
spoofing, and more. These insights can serve as a foundation for defining and developing
optimal strategies to enhance the security of 4G/5G cellular networks.
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CCD Cyclic Coordinate Descent
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CP Cyclic Prefix
CPE Common Phase Error
CSI Channel State Information
CW Codeword
CN Core Network
D2D Device-to-Device
DAI Downlink Assignment Index
DEL Deep Learning
DCI Downlink Control Information
DCAE Deep-Convolutional Autoencoder
DCTF Differential Constellation Trace Figure
DL Downlink
DMRS Demodulation Reference Signals
DoS Denial of Service
DDoS Distributed Denial of Service
DM-RS DeModulation Reference Signals
DWT Discrete Wavelet Transform
EPNRE Energy Per Null Resource Elements
EPC Evolved Packet Core
EPS Evolved Packet System
eNB Evolved Node B
FBS False Base Station
gNB gNodeB
FDD Frequency Division Duplex
FR Frequency Ranges
FR1 Frequency Range 1
FR2 Frequency Range 2
FR3 Frequency Range 3
GP Guard Period
GPRS General Packet Radio Service
GPS Global Positioning System
GTP GPRS Tunnelling Protocol
GSM Global System for Mobile communications
GT Guard Time
HARQ Hybrid Automatic Repeat reQuest
ICI Inter-Carrier Interference
IMSI International Mobile Subscriber Identity
IoT Internet of Things
IP Internet Protocol
IQ In-Phase Quadrature
JCaS Joint Communication and Sensing
LAA License Assisted Access
LoRa Long Range
LPWAN Low-Power Wide Area Network
LTE Long Term Evolution
LSTM Long Short-Term Memory
MAC Multiple Access Channel
MIB Master Information Block
MIMO Multiple-Input Multiple-Output
MITM Man-In-The-Middle
ML Machine Learning
ML Maximum Likelihood
MLP Multi-Layer Perceptron
mMIMO massive-MIMO
MSA Multi-head self attention
MSE Mean Square Error
MTC Machine Type Communication
MU-MIMO Multi User Multiple-Input Multiple-Output
NACK Non-ACKnowledged
NB-IoT Narrow Band IoT
NAS Non-Access Stratum
NLP Natural Language Processing
NR New Radio
NR-U New Radio Unlicensed
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NSA Non Stand Alone
NTN Non Terrestrial Networks
OFDM Orthogonal Frequency Division Multiplexing
PBCH Physical Broadcast Channel
PC-CVR Principal Components of Channel Virtual Representation
PCFICH Physical Control Format Indicator Channel
PCI Physical Cell ID
PDCCH Physical Downlink Control Channel
PO PDCCH Order
PDSCH Physical Downlink Shared Channel
PDF Probability Density Function
PHY Physical
PHICH Physical Hybrid ARQ Indicator Channel
PRACH Physical Random Access Channel
PSS Primary Synchronization Signal
PT-RS Phase Tracking Reference Signal
PUCCH Physical Uplink Control Channel
PUSCH Physical Uplink Shared Channel
QAM Quadrature Amplitude Modulation
QPSK Quadriphase Phase Shift Keying
RACH Random Access Channel
RAN Radio Access Network
RB Resource Block
RE Resource Element
RF Radio Frequency
RIS Reconfigurable Intelligent Surfaces
RNN Recurrent Neural Network
RRC Radio Resource Control
RA Random Access
RAN Radio Access Network
RS Reference Signal
RNTI Radio Network Temporary Identifier
RS Reference Signal
RSS Received Signal Strength
RSRP Reference Signal Received Power
RSRQ Reference Signal Received Quality
SA Stand Alone
SCA Successive Convex Approximation
SCS Sub-Carrier Spacing
SW Software
SDR Software Defined Radio
SFI Slot Format Indicator
SIB System Information Block
SINR Signal to Interference and Noise Ratio
SNR Signal to Noise Ratio
SP Semi-Presistent
SP-SRS Single Panel Sounding Reference Signal
SR Scheduling Request
SRS Sounding Reference Signals
SS Synchronization Signal
SSB Synchronization Signal Block
SRS Sounding Reference Signal
CSI-RS Channel State Information Reference Signal
SSS Secondary Synchronization Signal
STAR-RIS Simultaneous Transmitting and Receiving RIS
STFT Short-Time Fourier transform
TA Timing Advance
TDD Time Division Duplex
TD-LTE Time Division Long Term Evolution
TDoA Time Difference of Arrival
TPC Transmit Power-Control
UCI Uplink Control Information
UE User Equipment
UL Uplink
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UMTS Universal Mobile Telecommunications System
UP User Plane
V2X Vehicle-to-Everything
VLR Visitor Location Register
WiMAX Worldwide Interoperability for Microwave Access
WLAN Wireless Local Area Network
CP Control Plane
PEI Permanent Equipment Identifier
SUPI Subscriber Permanent Identifier
SUCI Subscriber Concealed Identifier
ECIES Elliptic Curve Integrated Encryption Scheme
IPsec IP Security
ESP Encapsulating Security Payload
IKEv2 Internet Key Exchange version 2
SBI Service-Based Interface
TLS Transport Layer Security
NIA Network Integrity Algorithms
NEA Network Encryption Algorithms
PLMN Public Land Mobile Network
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