
Compositional Shape Analysis with Shared Abduction
and Biabductive Loop Acceleration

Florian Sextl1(�) , Adam Rogalewicz2 , Tomáš Vojnar2,3 , and Florian Zuleger1

1 TU Wien, Faculty of Informatics, Institute of Logic and Computation, Vienna, Austria,
florian.sextl@tuwien.ac.at

2 Brno University of Technology, Faculty of Information Technology, Brno, Czechia
3 Masaryk University, Faculty of Informatics, Brno, Czechia

Abstract. Biabduction-based shape analysis is a compositional verification and
analysis technique that can prove memory safety in the presence of complex,
linked data structures. Despite its usefulness, several open problems persist for
this kind of analysis; two of which we address in this paper. On the one hand,
the original analysis is path-sensitive but cannot combine safety requirements for
related branches. This causes the analysis to require additional soundness checks
and decreases the analysis’ precision. We extend the underlying symbolic ex-
ecution and propose a framework for shared abduction where a common pre-
condition is maintained for related computation branches. On the other hand,
prior implementations lift loop acceleration methods from forward analysis to bi-
abduction analysis by applying them separately on the pre- and post-condition,
which can lead to imprecise or even unsound acceleration results that do not form
a loop invariant. In contrast, we propose biabductive loop acceleration, which
explicitly constructs and checks candidate loop invariants. For this, we also intro-
duce a novel heuristic called shape extrapolation. This heuristic takes advantage
of locality in the handling of list-like data structures (which are the most common
data structures found in low-level code) and jointly accelerates pre- and post-
conditions by extrapolating the related shapes. In addition to making the analysis
more precise, our techniques also make biabductive analysis more efficient since
they are sound in just one analysis phase. In contrast, prior techniques always
require two phases (as the first phase can produce contracts that are unsound and
must hence be verified). We experimentally confirm that our techniques improve
on prior techniques; both in terms of precision and runtime of the analysis.

Keywords: Shape Analysis · Biabduction

1 Introduction

Over the last two decades, shape analysis has proven to be one of the most useful tech-
niques for ensuring memory safety in programs. This kind of analysis focuses on veri-
fying memory-safe handling of linked data structures by representing them as abstract
memory shapes. Thereby, memory safety can often be verified with fully automatic
reasoning for a wide range of data structures. Examples of successful shape analyzers
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include the tools Predator [10], which has won a number of medals at the well-known
SV-COMP competition (see [2,3]), and Infer [4], which has been used for several years
to check large code bases at Meta (formerly Facebook).

Among the reasoning principles underlying shape analysis, biabduction has the
unique ability to enable compositional analysis for open programs (i.e., program frag-
ments) by synthesizing invariants and function contracts consisting of separation logic
formulas [25]. The ability to synthesize contracts, i.e., pairs of pre- and post-conditions,
allows for a highly modular inter-procedural analysis. In addition, the compositional
analysis with biabduction enjoys what Calcagno et al. [5,6] have called “graceful im-
precision”, i.e., the analysis will find useful results for some parts of a program, even
if it introduced imprecisions for other parts. In contrast, closed program analyses are
likely to build up such imprecisions and fail, even if they could handle further parts of
the program otherwise. Due to this and due to not requiring programmers to develop
verification harnesses, biabduction-based shape analysis is often considered to be more
useful for large-scale verification compared to techniques for closed programs, which
are advantageous for smaller, self-contained programs. However, this advantage comes
at the cost of more complex computation principles as well as generally less expres-
sive abstract shapes. Moreover, existing biabduction-based shape analyses can compute
unsound results and, thus, require a second analysis phase to filter out these results.

The highly path-sensitive analysis proposed by [5,6] does not work well with branch-
ing if the branch to be taken cannot be determined purely from the pre-condition of the
analyzed function (e.g., because it depends on user input or because the used logical
fragment cannot express the dependency sufficiently), see [6, section 4.3]. We call these
cases non-determinable branching. The problem with these cases arises since maintain-
ing different pre-conditions for each program path is, in general, insufficient because the
only sound precondition might consist of a combination of these. Thus, Calcagno et al.
suggested a heuristic procedure for merging pre-conditions, but their approach may fail
to compute any valid pre-conditions (see Section 2.1) at all. In contrast, we present a
novel technique of shared abduction, which allows for sound pre-condition computa-
tion across program branches. The technique extends biabductive symbolic execution
by tracking which program locations share which pre-condition requirements. Due to
this, shared abduction circumvents the need for a verification phase for programs with
arbitrary branching, and, at the same time, can infer non-trivial contracts in more cases
than the traditional analysis (since it does not give up on the cases where some sharing
of information between branches is necessary).

Symbolic analyses generally require loop acceleration techniques to allow the anal-
yses to reach a fixed point. In shape analysis, this acceleration replaces concrete point-
ers with more abstract, typically inductive shape predicates such as list segments. The
analysis by [5] lifts such abstraction to the setting of biabductive analysis by applying
abstraction separately to the pre- and the post-condition. However, such a direct lifting
is not guaranteed to result in a sound loop invariant (see [6, section 4.3] or [29, Ap-
pendix F.1]). In contrast, we introduce a novel biabductive loop acceleration scheme
that constructs candidate loop invariants after analyzing the loop body once. This step
allows us to verify the soundness of the candidate invariant explicitly through another
symbolic execution of the loop body. To construct the candidate invariant, we intro-
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duce a novel shape extrapolation heuristic, which exploits the locality of typical data
structure traversals to find fitting abstract shape predicates.

Even though the two-phase approach is easy to implement as the two phases primar-
ily differ in which biabduction rules are used, and even though most related works rely
on the second phase (see [13,12]), it is quite natural to wonder whether the overhead
of the two phases can be reduced. Overcoming this overhead for the broader family of
biabduction-based shape analyses is exactly the goal of this paper. Thereby, our shared
abduction technique avoids the unsoundness problem for non-determinable branching
and circumvents the need for the second phase (at the same time, producing more non-
trivial contracts than the previous approaches). In addition, our loop acceleration ap-
proach only requires us to check the extrapolated invariant for soundness, but this check
is much more local and less costly than the second analysis phase.4 Our approach to
constructing the invariant is heuristic and, hence, not always applicable, but the under-
lying invariant check is still guaranteed to assert soundness. In addition, our experiments
demonstrate that our approach can significantly improve the efficiency, i.e., reduce the
needed number of loop iterations and lower the runtime compared to the two-phase bi-
abduction architecture in practice. We conjecture that this is because programmers do
commonly write loops in a way compatible with our approach.

Main Contributions. The main contributions of this work in the context of analyzing
sequential, non-recursive programs are the following:

– A novel sound analysis for loop-free code based on shared abduction (Section 4).
– A novel sound way to construct and check loop invariants as part of biabductive

shape analysis via biabductive loop acceleration. It uses a novel heuristic to exploit
locality via shape extrapolation on list-manipulating programs (Section 5).

– Formal proofs of shared abduction and biabductive loop acceleration being sound
(Theorems 1 and 2 with proofs in [29, Appendix D]).

– An experimental evaluation based on a proof-of-concept implementation applied to
a number of small-scale but rather challenging programs, including real-life library
functions, that show the superiority of our approach with regard to runtime and
completeness compared to established analyzers (Section 6).

General Limitations. Our acceleration approach is currently limited to programs ma-
nipulating various kinds of lists (singly or doubly linked, possibly circular, nested, and
intrusive). While this restriction coincides with prior work [6,13], we hope that exploit-
ing locality for loop acceleration will apply to further data structures (such as trees),
but we must leave this for future work. Furthermore, we only focus on non-recursive
programs, following most previous biabductive shape analysis approaches. Qin et al.
[22] introduced an extension to handle recursion via a fixed point computation of the
function contract, but this is orthogonal to our work. Moreover, our prototype tool is
focused on low-level C code, which rarely contains recursion anyway.

An extended version of this paper with the full appendix can be found as [29].
4 The traditional approaches to biabduction, such as [13,12], will analyze each loop at least

twice (to get to a fixpoint) in each of the phases, i.e., each loop is analyzed at least four times,
but often even more (see table 2). On the other hand, our approach may soundly find a loop
invariant within one analysis phase, which analyses the loop in general only twice.
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true for read ≤ 0 ∨ in_mode ≥ 2 | hd 7→ ℓ1 ∗ out 7→ ℓ4 for in_mode = 0

curr ̸= hd : curr 7→ ℓ3 ∗ out 7→ ℓ4 and curr = hd : lst 7→ ℓ2 ∗ out 7→ ℓ4 for in_mode = 1

Fig. 1: Insufficient candidate pre-conditions for user_choice

2 Motivation

2.1 Cross-Branch Abduction Sharing

int user_choice(node *hd, node *lst,
node *curr, node *out) {

int in_mode = 0;
int read = scanf("%d", &in_mode);

if (read <= 0) {
return -1;

} else if (in_mode == 0) {
memcpy(out, hd,...);

} else if (in_mode == 1) {
if (curr != hd) {
memcpy(out, curr,...);

} else {
memcpy(out, lst,...);

}
}
return in_mode;

}

Listing 1: Non-determinable branching

Listing 1 shows a program fragment that
works on a data node based on user input read
from the command line via scanf. Based
on this, user_choice takes the user in-
put and calls memcpy with the corresponding
arguments. The exact invocation depends on
the user input,5 which is modeled by a non-
deterministic choice in the analysis, and, in
the case of in_mode = 1, also depends on
whether curr = hd. We call these kinds of
branching non-determinable, since the branch
taken at runtime can’t be determined from the
function parameters alone.

Problem. Non-determinable branching is difficult to handle for a path-sensitive
biabduction-based shape analysis as proposed in [6,5]. This is because such an anal-
ysis will generate one precondition per program branch in Figure 1, expressed with
standard separation logic connectives.6

We note that the preconditions can take into account branching conditions that de-
pend on the function’s arguments, e.g., the preconditions in Figure 1 contain the pred-
icates curr = hd and curr ̸= hd . However, non-determinable branching, such as for
in_mode = 0, cannot be modeled in terms of the function’s arguments, and hence such
conditions can never be part of a precondition. Then the problem arises that the different
branches require different memory locations to be allocated (note the different pointers
arguments to memcpy), e.g. hd 7→ ℓ1 ∗ out 7→ ℓ4 for the branch with in_mode = 0.
However, due to the non-deterministic input, none of the required allocations for one
branch guarantee a memory-safe execution for all user inputs.

Previous Solutions. This problem has already been noticed in the original work [6,5]
and was partially addressed by a heuristic that would combine pre-conditions such that
they could cover move branches. This heuristic has been implemented as an optional
strategy in the Abductor tool and was subsequently made the default in the Infer tool.

5 We chose user input as an easy to understand example of non-determinable input. Other cases
of such input includes IO operations such as incoming network traffic or reading from a file.

6 We use “:” to separate the formulas’ pure and spatial parts (if any). In contrast to the program
variables hd, etc., the ℓi variables are purely logical and implicitly universally quantified. We
write program variables in formulas in italic and otherwise in typewriter font.
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However, this heuristic does not guarantee that the found pre-conditions are sound, and
it can easily miss safe pre-conditions even for simple loop-free code. Indeed, for the
example above, the heuristic finds the combined pre-condition curr ̸= hd : hd 7→
ℓ1 ∗ lst 7→ ℓ2 ∗ curr 7→ ℓ3 ∗ out 7→ ℓ4, but it does not produce a sound pre-condition
for the case curr = hd. We also remark that the heuristic is quite fragile as renaming
the variable hd to first enables the heuristic to find a safe pre-condition for the case
curr = hd in Infer while leading to a crash for Abductor.7

We finally note that recent work [33], developed concurrently with our approach,
also addresses the problem of unsound pre-conditions for branching programs. They
introduce a specialized operator called tri-abduction, which generalizes the setting of
bi-abduction to simultaneously compute a combined pre-condition for two branches.
While this operator offers more precision than the (classical) biabduction operator we
rely on in this paper, it is unclear how to build a realistic symbolic execution based on
the tri-abduction operator. To this date, such an analysis has only been sketched but not
implemented. We comment more on the relationship to our approach in Section 7.

Shared Abduction. The fundamental problem discussed above is that the different
program paths cannot be analyzed in isolation; instead, we must combine their precon-
ditions. That is, biabduction-based analyzers need to track which program configura-
tions can be reached from the same initial configuration and synchronize the abduced
requirements. Moreover, the analysis needs to be precise in tracking which configu-
rations are allowed to exchange such information – otherwise, inconsistencies can be
introduced by exchanging information among independent program points. Our solu-
tion is, therefore, to track exactly which program configurations can be reached from a
common pre-condition and explicitly share newly found requirements with all of these
configurations (and only such configurations). Section 4 introduces how this technique,
which we call shared abduction, allows sound handling of all kinds of branching.

Our technique has the advantage of being lightweight and easily implementable on
top of an existing biabductive analysis. In the example above, our analysis first abduces
the precondition hd 7→ ℓ1 ∗ out 7→ ℓ4 for the case in_mode = 0. The analysis then
proceeds with the branch for in_mode = 1, making a case distinction on curr = hd .
Shared abduction retains the required allocation hd 7→ ℓ1 ∗ out 7→ ℓ4 for both cases
as this requirement is already part of the shared precondition. Then, by analyzing the
nested branches, the requirements curr ̸= hd : hd 7→ ℓ1 ∗ curr 7→ ℓ3 ∗ out 7→ ℓ4
and curr = hd : hd 7→ ℓ1 ∗ lst 7→ ℓ2 ∗ out 7→ ℓ4 are computed. We note that this
guarantees the soundness of the found pre-condition and its completeness regarding the
branching, thus outperforming the previous heuristic.

2.2 Shape Extrapolation for Biabductive Acceleration

Our second contribution aims at the analysis of loops, which generally requires accel-
erating the symbolic execution to allow the analysis to reach a fixed point.

7 We observed this behavior with the commit f93cb281edb33510d0a300f1e4c334c6f14d6d26
found at https://github.com/facebook/infer and the publicly available Abduc-
tor release at http://www0.cs.ucl.ac.uk/staff/p.ohearn/abductor.html.

https://github.com/facebook/infer
http://www0.cs.ucl.ac.uk/staff/p.ohearn/abductor.html
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Problems. The prior technique for loop acceleration, proposed by [5,6] and adopted
in [13], separately abstracts the pre- and post-condition with no other information than
the formulas themselves taken into account. Intuitively, after analyzing some loop iter-
ations and applying the abstraction operator, the obtained formulas will stabilize, and a
fixed point is reached. Thereby, the abstraction follows the intuitive principle of collect-
ing linked memory blocks with a similar layout into a single abstract shape predicate. In
the context of simple singly-linked lists, this means that the abstraction procedure scans
the formula for points-to predicates x 7→ ℓ and ℓ 7→ z, linked by a location ℓ (i.e., the
target of the first predicate contains the address of the second), or a linked list segment
ls(x, ℓ) and a points-to ℓ 7→ z, respectively. Abstraction then replaces these predicates
with the single predicate ls(x, z). However, abstraction cannot be applied when there
is a program variable y that references ℓ, e.g., as y = ℓ. This is not supported since it
would lose the information that variable y is allocated (note that ℓ does not occur in
ls(x, z) anymore). More generally, abstraction cannot be applied if there is a program
variable y whose value depends on ℓ, such as y = v ∧ ℓ 7→ v. While the abstraction
principle is intuitive, there are also multiple drawbacks, which we discuss next.

void weighted_sum(o_node *o,
long *sum){

while (o != NULL) {
i_node *i = o->inner;
while (i != NULL) {

*sum = (*sum) +
(o->wgt * i->elem);

i = i->next;
}
o = o->next_o;

} }

Listing 2: Nested list traversal

(1) For the example in Listing 2, Abductor, Infer,
and Broom do not reach a fixed point for the inner
loop and thus cannot synthesize any contract. This
is because the value pointed to by sum after n loop
iterations is ℓsum + ℓ1 · ℓw + · · ·+ ℓn · ℓw, where ℓw
is the value pointed to by o.wgt and the ℓi are the
elem values of the list nodes traversed so far. Thus,
the dependence on the values ℓi blocks abstraction
(as described above). We note that the design of a

stronger abstraction operator is not straight-forward because we also need to track val-
ues in memory precisely as they could be relevant for memory accesses based on pointer
arithmetic in other parts of the program.

void traverse_skip_two(node *list) {
node *tmp = list->next->next;
while (tmp != NULL) {

tmp = tmp->next;
} }

Listing 3: Offset list traversal

(2) A formula-based abstraction operator
can easily lose too much information. For ex-
ample, Abductor, Infer, and Broom fail for the
simple example in Listing 3. The reason is
as follows: The abstraction operation (as de-

scribed above) contracts pointer chains of length at least two into a list segment, re-
sulting in the formula list ̸= NULL : ls(list ,NULL). This predicate describes a non-
empty list segment with at least one node. However, this formula does not suffice as
a pre-condition that guarantees memory safety because traverse_skip_two re-
quires a list of length ≥ 2 as input.

(3) Furthermore, acceleration based on abstraction (as described above and imple-
mented in Abductor, Infer, and Broom) can be highly inefficient. In general, every loop
will require at least two (often three) analysis iterations, as abstraction can often only
be applied after the second loop iteration and a fixed point can only be checked for after
another iteration. In the presence of inner loops, such as for the example in Listing 2,
this quickly multiplies, e.g., amounting to nine analysis iterations for the inner loop in
Listing 2 just for the first analysis phase.
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s1 : (I ̸= NULL ∧ i = I : I.next 7→ ℓ1 ∗ I.elem 7→ ℓ2 ∗o.wgt 7→ ℓ3∗ sum 7→ ℓ4 ∥

I ̸= NULL ∧ i = ℓ1 : I.next 7→ ℓ1 ∗ I.elem 7→ ℓ2 ∗o.wgt 7→ ℓ3∗ sum 7→ ℓ4 + ℓ3 · ℓ2 )

sinv : (I ̸= NULL ∧ i = I : ls(I, ℓ1) ∗ ls(ℓ1,NULL) ∗o.wgt 7→ ℓ3∗ sum 7→ ℓ4 ∥

I ̸= NULL ∧ i = ℓ1 : ls(I, ℓ1) ∗ ls(ℓ1,NULL) ∗o.wgt 7→ ℓ3∗ sum 7→ ⊤ )

Fig. 2: State s1 after the first loop iteration analysis and the constructed candidate invariant sinv ,
with color-coded arrows showing the information flow between different subformulas

The problems described above are mostly related to the direct application of ab-
straction for acceleration and its missing ability to take into account more information
about the loop, e.g. the observation that inductive data structures are often traversed
one step at a time. For example, in Listing 2, the nested linked list is traversed in such
a way to compute the weighted sum of the elements in the inner lists. It is apparent
that each of the two loops operates on a local, shifting view of the respective traversed
list plus some context. For the inner loop, this means that the loop only operates on a
unique i_node at a time while also accessing the same variables sum and o->wgt in
each iteration. Similarly, the outer loop only operates on one o_node at a time. These
shifting views on the traversed shapes are akin to “local actions” (see [7]).

Biabductive Loop Acceleration. This observation allows us to extrapolate what the
analysis abduces from a single iteration to arbitrarily many iterations and directly com-
pute a candidate loop invariant if applicable. We call this heuristic shape extrapolation.
It is part of our biabductive loop acceleration, which consists of three main steps: First,
we use the analysis result of a single iteration to obtain locality information about the
shape and the context; second, we use this information to extrapolate the shape to an
abstract one; third, we check that the heuristically constructed state is a sound invariant.

In the case of weighted_sum, after the first iteration of the inner loop, the anal-
ysis finds the state s1 depicted in Figure 2, consisting of a pre- and post-condition
separated by ∥ . Our analysis then partitions the pre- as well as the post-condition into
a shape and a context part, where the shape part is I.next 7→ ℓ1 ∗ I.elem 7→ ℓ2, and
the context is o.wgt 7→ ℓ3 ∗ sum 7→ ℓ4 for the pre-condition and o.wgt 7→ ℓ3 ∗ sum 7→
ℓ4 + ℓ3 · ℓ2 for the post-condition. The following heuristic obtains this partitioning:
We consider the changed variables (here i,sum) whose value moved to some pointer
value (here i whose value moved to i->next). The predicates associated with these
variables are then put into the shape parts and the others into the context.

Based on this partitioning, our procedure directly constructs a (candidate) loop in-
variant sinv (see Figure 2). Thereby, our procedure accelerates the shape part of the pre-
as well as the post-condition (here we obtain in both cases the list segment ls(I, ℓ1),
with internal next pointer next and data field elem). Intuitively, these predicates cor-
respond to the loop iterations up to the current point. In addition, we add predicates
ls(ℓ1,NULL) to the shape part of sinv , for both the pre-and post-condition, which are
taken as the accelerated predicate ls(I, ℓ1) of the pre-condition of s1, where I has been
replaced with l1, which is the current value of i, and l1 has been replaced with NULL,
which has been obtained from the loop condition. Intuitively, these predicates corre-
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spond to the future loop iterations up to the loop’s termination. We refer to the red and
orange colors in Fig. 2 to illustrate the information flow. The context part of sinv keeps
the context of s1, except that our procedure abstracts the value of sum in the post-
condition (with the unknown value ⊤) because it cannot be tracked precisely. Next,
our procedure checks that sinv is indeed a loop invariant, which requires one symbolic
execution of the loop body and an entailment check.

Finally, based on the loop invariant our analysis constructs a contract that abstracts
the inner loop and that can be used for the analysis of the outer loop:

(i = I : ls(I,NULL) ∗ o.wgt 7→ ℓ3 ∗ sum 7→ ℓ4 ∥
i = NULL : ls(I,NULL) ∗ o.wgt 7→ ℓ3 ∗ sum 7→ ⊤).

Based on this contract, our procedure then also accelerates the outer loop in a simi-
lar fashion. Lastly, we note that our procedure requires exactly two iterations per loop
(in sum four): one to analyze the effects of the loop and a second to check whether
the constructed state is a loop invariant (as opposed to the nine iterations in sum men-
tioned earlier for the traditional acceleration). Similarly, our approach fails fast if the
constructed candidate invariant is unsound instead of requiring a second analysis phase
with many more analysis steps.

3 Preliminaries

We present our new techniques for a simple but standard setting that is described in the
following since it does not require any specific logic fragment or biabduction method.

3.1 Programming Language and Memory Model

Let Var be a countably infinite set of variables and Val be a countably infinite set of
values containing the value ⊤. Furthermore, let Fld be a finite set of field names and
Loc ⊆ Val be the set of memory locations such that NULL ∈ Loc.

Definition 1 (Programming Language). We base our description on a C-like pro-
gramming language. The language comprises standard expressions, statements for read-
ing (x1 = ∗x2.f ) and writing (∗x1.f = x2) through pointers (with the C-like syntactic
sugar of x->f for ∗x.f ), an additional non-determinism operator ?, as well as im-
plicit control flow statements ASSUME and ASSERT. Moreover, we include the C-like
commands for memory (de-)allocation ALLOC and FREE.

Functions have a function name f , a list of argument variables a1, . . . , an, n ≥ 0,
and a function body bodyf that consists of a control flow graph. We represent control
flow graphs (CFGs) as a tuple (V,E, entryf , exitf ) such that V is a set of program
locations with entryf , exitf ∈ V , and E ⊆ V × stmt × V is a set of edges between
program locations labeled with program statements. A trace t of a CFG is an alternating
sequence [v0, st1, v1, . . . , stn, vn], n ≥ 0, of vertices vi ∈ V and statements sti+1 ∈
stmt following edges (vi, sti+1, vi+1) ∈ E.

Note that CFGs as defined here can be used to model arbitrary branching and loop-
ing constructs (such as if-then-else and while). We will further assume:
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1. Each function f is either loop-free or consists of a single loop such that the loop
header is entryf ; i.e., we require that the CFG of f is either acyclic or all back-
edges of f (the edges returning to a loop header) return to entryf . This assumption
is w.l.o.g, as loops that are embedded in a bigger context can be represented by
calls to a function whose body is precisely the loop.8

2. The programs do not contain (mutually) recursive functions.
3. Each vertex v ∈ V has at most two outgoing edges in E.

Definition 2 (Program Configuration). A program configuration cnf ∈ Config is
either a pair (S,H) consisting of a stack S and a heap H or the dedicated err config-
uration. The stack S : Var ⇀ Val is a partial map from variables to values. The heap
H : (Loc ×Fld) ⇀fin Val partially maps finitely many pairs of memory locations and
field names into values.

The semantics of the programming language is standard (see [29, Appendix A]
for more details). We use the notation (cnf 1, st) ⇝ cnf2 to denote that a program
reaches a configuration cnf 2 from a configuration cnf 1 by executing a statement st. The
semantics of traces is defined as the transitive closure⇝∗ with regard to the statements
in the trace (cnf i ∈ Config):

(cnf 1, [v0]) ⇝
∗ cnf 1,

(cnf 1, [t, v1, st2, v2]) ⇝
∗ cnf 3 if (v1, st2, v2) ∈ E ∧ (cnf 1, [t, v1])⇝

∗ cnf 2

∧ (cnf 2, st2)⇝ cnf 3.

3.2 Separation Logic

Next, we introduce a simple separation logic (SL) fragment that is suited for biabduction-
based shape analysis. Even though most shape analyses in recent literature are based on
more sophisticated fragments, this simple fragment suffices to define our central contri-
butions, which can be easily lifted to more powerful separation logic fragments as well
(indeed, we use a more expressive fragment in our later presented experiments). The
formulas of SL are based on symbolic heaps [1].

We differentiate program variables in PVar that occur in the program (and are
uniquely identifiable for each function) and logical variables in LVar that only occur
in SL formulas. We enforce a normal form [19,13] where program variables only occur
once per formula (as part of ΠP in Figure 3), such that they are uniquely identified by a
single expression at any point. Further, the dedicated logical variable returnf denotes
the return value of a function f , if any.

Definition 3 (Separation Logic). The separation logic fragment SL contains the stan-
dard connectives of separation logic and an inductive predicate ls denoting a singly-
linked list segment. Figure 3 shows the full syntax of SL. Symbolic heaps φ distinguish
between spatial (Σ) and pure parts (Π), as well as program variable equalities ΠP ,
and are combined disjunctively (∆).

8 More complex cyclic control flow, e.g. describing the common break/continue/goto
statements can also be emulated by introducing auxiliary out parameters which are then used
to guide the control flow.
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ε := NULL | k ∈ N | ℓ ∈ LVar | unop ε

| ε1 binop ε2 | ⊤
⊕ := =|̸=|≤|≥|<|>
Σ := x.f 7→ ε | Σ1 ∗Σ2 | ls(x, ε) | emp
Π := Π1 ∧Π2 | true | ε1 ⊕ ε2

ΠP :=
∧

x∈PVar

x = ε φ := ΠP ∧Π : Σ

∆ :=φ ∨∆ | φ
Fig. 3: The syntax of SL

Based on this, we define contracts
for functions in the programming lan-
guage to be pairs of formulas from SL
where we call the parts of the pair a
pre-condition and a post-condition, re-
spectively, and denote them as c.pre and
c.post for a contract c. Basic contracts
for all statements in the language defined
in SL can be found in [29, Appendix B].
Formulas from SL are evaluated against
program configurations with the judge-
ment ⊨. We note that we chose the standard semantics for ∗ and 7→. Furthermore, we
also use SL’s entailment judgement, written P ⊢ Q.

We denote with P [x/y] the formula P with variable y ∈ LVar substituted with x
or, if y ∈ PVar , the formula updated with y = x as part of ΠP , respectively. We often
denote a formula ΠP ∧Π : Σ by only ΠP ∧Π or ΠP : Σ if Σ = emp or Π = true,
respectively. Also, we denote the composition of formulas φ1 = ΠP ∧ Π1 : Σ1 and
φ2 = ΠP ∧Π2 : Σ2 as φ1 ∗ φ2 := ΠP ∧Π1 ∧Π2 : Σ1 ∗Σ2.

Definition 4 (Abstraction). An abstraction function α : SL → SL takes a formula in
SL and returns a potentially different formula such that it abstracts a given formula P
such that P ⊢ α(P ).

Example 1. An abstraction procedure α as described by [8] abstracts consecutive pointer
chains into list segments, e.g., for PVar = {x}:

α(x = a ∧ a.next 7→ b ∗ b.next 7→ c) ≡ x = a ∧ ls(a, c).9

3.3 Biabduction-Based Shape Analysis

Definition 5 (Biabduction). Biabduction is the process of solving a query P ∗ M ⊢
Q ∗ F for given SL formulas P and Q by computing an antiframe (or missing part)
M and a frame F such that the entailment is valid.

We are only interested in solutions for M that do not contradict P , as otherwise, the
entailment would be trivially valid. A biabduction procedure is then an algorithm that,
given two formulas, either computes a fitting frame and anti-frame or fails. The steps to
compute a frame and anti-frame are called frame inference and abduction, respectively.

For the sake of saving space, we do not develop a full biabduction procedure here
but refer the reader to [6,5,13] for detailed descriptions.

Definition 6 (Analysis States). An analysis state s is an intermediate contract (P ∥Q)
where P ∈ φ and Q ∈ ∆. To distinguish these from finished contracts, we call P the
candidate pre-condition (s.pre) and Q the current post-condition (s.curr ). In analysis

9 As this step loses information about b, it is only applied in contexts in which b is not relevant
otherwise. See, e.g., [16]. This is the case here since b /∈ PVar and ∄y ∈ PVar . ΠP ⊢ y = b.
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states, each function argument ai ∈ PVar is associated with an anchor variable Ai ∈
AnchVar ⊆ LVar (in upper case) denoting its value at entryf . We omit equalities of
the form x = X from ΠP if they are not relevant. These anchor equalities also do not
appear in finished contracts.

Biabductive Symbolic Execution Step. Let there be an analysis state (P ∥ Q) at a
program location l for a statement st with contract (L ∥ R) and a location l′ such that
(l, st, l′) ∈ E. Then st can be symbolically executed by solving the biabduction query
Q ∗ M ⊢ L ∗ F resulting in the new analysis state (P ∗M ∥ R ∗F ). As in [6,5,13],
we require that (1) var(M) ⊆ LVar and that (2) P ∗ M is satisfiable. If such an M
does not exist, we say that the biabduction fails.

Definition 7 (Biabduction-based Shape Analysis). A basic biabduction-based shape
analysis AB,α uses a biabduction procedure B and an abstraction procedure α to ana-
lyze programs in our programming language. Thereby, it analyzes the functions bottom-
up along the call tree, starting from its leaves. In each step, the analysis takes an anal-
ysis state and symbolically executes the next statement from it by updating the state
accordingly. In the case of multiple contracts, the analysis has to determine the appli-
cable ones and continue from each of these.

Furthermore, the analysis runs for a function f until it reaches a fixed point, i.e.,
until no new analysis states are computed. A common way to check for this condition
is to check whether new analysis states entail already computed ones. To enforce ter-
mination, AB,α also applies α to abstract the analysis states at loop heads. Finally,
the pairs of candidate pre-conditions and current post-conditions forming the analysis
states that reached exitf become its contracts.

We now fix an arbitrary, but correct biabduction-based shape analysis AB,α , which
we extend in the following sections.

Definition 8 (Soundness of Analysis States). An analysis state s = (P ∥Q) is called
sound for a trace t, written as the Hoare triple {P} t {Q}, iff

∀cnf , cnf ′ ∈ Config . cnf ⊨ P ∧ (cnf , t)⇝∗ cnf ′ =⇒ cnf ′ ̸= err ∧ cnf ′ ⊨ Q.

Similarly, a function contract c = (P,Q) is sound for bodyf , written {P} bodyf {Q},
iff {P} t {Q} holds for all traces t = [entryf , . . . , exitf ] through bodyf .

The initial analysis state s0 for function f has s0.pre = true, s0.curr =
∧
{x =

X | x ∈ PVar ∧ X ∈ AnchVar}, which denotes that each program variable has a
fixed but initially unrestricted value (anchor) at the start of f .

Handling of ASSUME. Following the seminal work [6,5] and the more recent [13],
we define biabductive shape analysis to split its states at branching points according to
the branching condition. As the literature contains sufficient explanations of this mech-
anism (called assume-as-assume and assume-as-assert), we only give a brief intuition
here. If the branching condition can be expressed in terms of the function arguments,
i.e., if the branch taken can be statically determined purely from the function arguments,
the analysis includes the two cases into the pre-conditions of the resulting states. This
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treatment is equivalent to handling the branching condition’s ASSUME statements as if
they were ASSERT statements instead. Otherwise, the analysis states for the branches
have the same pre-condition, and the branching condition cases are only added to the
corresponding post-conditions.

4 Sound Branching Analysis with Shared Abduction

1 int nested(node *x, node *y,
node *z){

2 if (?) {
3 if (y != NULL) {
4 return y->data;
5 } else {
6 return z->data;
7 }
8 } else {
9 return x->data;

10 } }

Listing 4: Nested branching

As the example in Listing 1 is rather convo-
luted, we introduce the simpler Listing 4 to show
how exactly the technique works. There, the function
nested loads from one of the three pointer argu-
ments, depending on a non-deterministic condition ?
on Line 2 and a deterministic one on Line 3. Regard-
less of the values of the function arguments, an exe-
cution can either take the then or the else branch
of the outer if-then-else.

Therefore, the original analysis simply splits the analysis state without abducing
any pre-condition. In contrast, the branches of the inner if-then-else can be dis-
tinguished by whether the argument y is initially a null pointer, leading the analysis to
abduce different pre-conditions for each branch. Altogether, the classical biabduction-
based shape analysis will find three unsound contracts for the function, one for each
possible code path, similar to the following:

(x.data 7→ ℓ1 ∥ returnnested = ℓ1 : x.data 7→ ℓ1)

(y ̸= NULL : y.data 7→ ℓ2 ∥ y ̸= NULL ∧ returnnested = ℓ2 : y.data 7→ ℓ2)

(y = NULL : z.data 7→ ℓ3 ∥ y = NULL ∧ returnnested = ℓ3 : z.data 7→ ℓ3)

As introduced in Section 2.1, our new technique overcomes this unsoundness issue
and shares requirements abduced with related analysis states. To guarantee that the
requirements are only shared with actually related analysis states, we introduce so-
called extended analysis states or worlds for short.

Definition 9 (Worlds). Worlds comprise a shared pre-condition P and multiple cur-
rent post-conditions Qli

i at possibly different program locations li: (P ∥Ql0
0 ∨· · ·∨Qln

n )

We stress the seemingly small but crucial difference between the current post-
conditions used in our notion of worlds and the previously defined abstract states:
the latter are, in general, also allowed to use disjunctions but are missing the label-
ing by program locations (allowing the disjuncts to be associated with different pro-
gram paths). Moreover, worlds do not require the logic itself to contain disjunctions but
merely simulates them with its structure.

Definition 10 (Soundness of Worlds). A world w = (P ∥ Ql0
0 ∨ · · · ∨ Qln

n ) is sound
for a trace t = [v0, . . . , vn], written {P} t {Ql0

0 ∨ · · · ∨ Qln
n }, iff ∀conf , conf ′ ∈

Config . conf ⊨ P ∧ (conf , t)⇝∗ conf ′ =⇒ conf ′ ̸= err ∧∃i. li = vn ∧ conf ′ ⊨ Qi.
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Definition 11 (Shared Abduction). If the analysis finds a non-empty anti-frame for
any of the world’s current post-conditions Qi, it is added to the shared pre-condition
P and to all other current post-conditions. We call this shared abduction. This step
is motivated by the frame rule of separation logic and works as follows: If M and
F are the solution to the biabduction query Qi ∗ M ⊢ L ∗ F where (L ∥ R) is
the contract of the statement st that is the label of the edge (li, st , li′), then the world
(P ∥ Ql0

0 ∨ · · · ∨Qli
i ∨ · · · ∨Qln

n ) gets updated to:(
P ∗M ∥ (Q0 ∗M) l0 ∨ · · · ∨ (Qi ∗M) li ∨ · · · ∨ (Qn ∗M) ln ∨ (F ∗R)

li′
)
.

Analysis with Worlds. Whereas analysis states can be split at branching statements by
simply duplicating them and adding the respective assumptions, world splits need to
be treated differently. The two branches must share their abduced pre-conditions if the
branch taken cannot be determined from the initial program state. Therefore, such a
branching point with condition c at a location li with two successor locations lj and lk
for a current post-condition Qi leads to transforming the world from (P ∥ Ql0

0 ∨ · · · ∨
Qli

i ∨ · · · ∨Qln
n ) to (P ∥Ql0

0 ∨ · · · ∨Qli
i ∨ · · · ∨Qln

n ∨ (Qi ∧ c)lj ∨ (Qi ∧¬c)lk), where
two new post-conditions are added to the world.

In contrast, if the branch can be determined from the initial program state, the whole
world must be split into two to ensure shared abduction works correctly. This means that
the world at the branching point is exchanged with two new worlds:

(P ∧ c ∥ (Q0 ∧ c)l0 ∨ · · · ∨ (Qi ∧ c)li ∨ · · · ∨ (Qn ∧ c)ln ∨ (Qi ∧ c)lj ),

(P ∧ ¬c ∥ (Q0 ∧ ¬c)l0 ∨ · · · ∨ (Qi ∧ ¬c)li ∨ · · · ∨ (Qn ∧ ¬c)ln ∨ (Qi ∧ ¬c)lk).

Theorem 1 (Loop-free Soundness with Worlds). Let AB,α return only sound con-
tracts for functions without branching. Further, let A′B,α be the biabduction-based
shape analysis obtained by extending AB,α to use worlds as its analysis states and to
apply shared abduction. Then, the contracts computed by A′B,α for loop-free functions
are sound. Proof: See [29, Appendix D.1].

Example 2. With these ideas, the function in Listing 4 can be analyzed as follows. At
the start of the function, the world is equivalent to an initial analysis state:(

true ∥ (x = X ∧ y = Y ∧ z = Z)10
)

We denote program locations with their respective lines in the listing and only show
the current post-conditions with the highest line number for each branch. Furthermore,
we add subscripts to identify the different current post-conditions and worlds uniquely.
At the outer if-then-else, the current post-condition is split into two as the branch-
ing condition cannot be related to the function arguments due to non-determinism. We
further ignore the condition in the formula as it has no further relevance either way.(

true ∥ (x = X ∧ y = Y ∧ z = Z)30 ∨ (x = X ∧ y = Y ∧ z = Z)91
)

If the analysis chooses w.l.o.g. to first proceed with post-condition 1, it will abduce that
X.data needs to be allocated and share this information with the rest of the world:

(X.data 7→ ℓ1 ∥ (x = X ∧ y = Y ∧ z = Z : X.data 7→ ℓ1)
3
0

∨ (x = X ∧ y = Y ∧ z = Z ∧ returnnested = ℓ1 : X.data 7→ ℓ1)
11
1 )
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Thus, the current post-condition in the then branch now also requires as a pre-condition
that X.data is allocated and will not be unsound due to missing this information. The
analysis can then choose to proceed with the current post-condition 0 and find that it
can relate the branching condition with the function arguments. Therefore, the world
needs to be split, as the two cases of condition are expressed as part of the world’s pre-
condition. To be more precise, the world is split based on whether Y is NULL (with
omitted anchor equalities):

(Y ̸= NULL :X.data 7→ ℓ1 ∥ (· · · ∧ Y ̸= NULL : X.data 7→ ℓ1)
4
0

∨ (· · · ∧ returnnested = ℓ1 ∧ Y ̸= NULL : X.data 7→ ℓ1)
11
1 )0,

(Y = NULL :X.data 7→ ℓ1 ∥ (· · · ∧ Y = NULL : X.data 7→ ℓ1)
6
0

∨ (· · · ∧ returnnested = ℓ1 ∧ Y = NULL : X.data 7→ ℓ1)
11
1 )1.

The two worlds will then abduce different required pre-conditions in further steps and
finally result in the following (simplified) contracts for the function nested:

(y ̸= NULL : x.data 7→ ℓ1 ∗ y.data 7→ ℓ2 ∥
(y ̸= NULL ∧ returnnested = ℓ2 : x.data 7→ ℓ1 ∗ y.data 7→ ℓ2)

∨ (y ̸= NULL ∧ returnnested = ℓ1 : x.data 7→ ℓ1 ∗ y.data 7→ ℓ2)),

(y = NULL : x.data 7→ ℓ1 ∗ z.data 7→ ℓ3 ∥
(y = NULL ∧ returnnested = ℓ3 : x.data 7→ ℓ1 ∗ z.data 7→ ℓ3)

∨ (y = NULL ∧ returnnested = ℓ1 : x.data 7→ ℓ1 ∗ z.data 7→ ℓ3)).

4.1 Comparison with Disjunctive Domains

It may be tempting to consider shared abduction with worlds to be just a disjunctive
closure of conjunctive formulas used commonly in various abstract interpretation ap-
proaches. However, when using a disjunctive closure, the symbolic execution is typi-
cally performed independently for each disjunct, perhaps followed by attempts to join
some of the disjuncts or to prune them away using entailment checks—as done in
[10,6,13]. In contrast, our analysis with worlds differs in that (1) the worlds are, in fact,
not purely disjunctive due to a single precondition shared by all current post-conditions
in a world and due to working with sets of worlds, (2) state splits either result in two
new post-conditions or two new worlds, and (3) the symbolic execution from a single
disjunct can influence all other disjuncts in the same world via shared abduction.

5 Biabductive Loop Acceleration via Shape Extrapolation

void free_list(node *x) {
while (x != NULL) {
node *aux = x;
x = x->next;
free(aux);

} }

Listing 5: Deallocating a list

We first introduce the central steps of our technique
for a simplified setting. In this setting, loops only have
loop conditions of the form x ̸= NULL where x is a
function parameter. Furthermore, we assume that loops
do not contain branching. We will show how to lift these
restrictions in Section 5.2.
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We will explain the steps of our biabductive loop acceleration with the help of the
example in Listing 5, which falls into the fragment of programs allowed in the simplified
setting. The example shows a simple loop that frees a given list node by node. As such,
the expected contract would be (ls(x,NULL) ∥ emp).

5.1 Basic Biabductive Loop Acceleration

Whereas Procedure 1 describes biabductive loop acceleration on a high level, the fol-
lowing paragraphs describe the main steps of the procedure in more detail.

Procedure 1 Biabductive loop acceleration
Input: A function f consisting of a loop l with body bodyl and

exit condition el
Output: A sound contract c for f or FAILURE

s0.pre ← true, s0.curr ←
∧
{x = X | x ∈ PVar}

Compute s1 ← AB,α(bodyl, s0)
(τpre ∗ ρpre ∥ τcurr ∗ ρcurr )← PARTITION(s1)

P,Q ← SHAPEEXTRAPOLATION(τpre , τcurr )
Construct sinv from P ,Q, ρpre , and ρcurr

s2 ← AB,α(bodyl, sinv )
Check that s2.curr ⊢ sinv .curr

Construct sfinal from P ,Q, ρpre , and ρcurr

return c← sfinal

Our algorithm first analyzes a sin-
gle loop iteration starting from the ini-
tial analysis state s0. If this analysis
run ends in a state s1, the algorithm
then continues by determining which
parts of s1 describe the shape of the
traversed data structure, i.e., the tra-
versed singly-linked lists in our sim-
plified setting. To this end, the al-
gorithm partitions the candidate pre-
condition as well as the current post-
condition of the state s1 into subfor-
mulas τpre/curr and ρpre/curr such
that the τ formulas contain the transformed10 parts of the state that should be related
to the shape, whereas the remaining parts of the state are collected in the subformulas
ρ, which comprise both completely unchanged predicates as well as changed memory
locations that are not part of the shape. This separation is done for both the pre- and
current post-condition of the state s1 to capture changes to the shape of the data struc-
ture. Some more technical details of the partitioning, which are not needed now, will be
presented in Section 5.3.

Example 3. For Listing 5, the analysis finds the state s1 := (X.next 7→ ℓ1 ∥ x = ℓ1)
after one loop iteration. There, the partition of s1 is trivially τpre := s1.pre and τcurr :=
s1.curr as this simple loop does not affect anything except the traversed list. On the
other hand, the inner loop of Listing 2 does not change the shape of the traversed list
but accesses and changes further parts of the program state. As a result, the partitions
are τpre = τcurr := I.next 7→ ℓ1 ∗ I.elem 7→ ℓ2 and i = I or i = ℓ1, respectively,
for the predicates that relate to the list and ρpre = o.wgt 7→ ℓ3 ∗ sum 7→ ℓ4 and
ρcurr = o.wgt 7→ ℓ3 ∗ sum 7→ (ℓ4 + ℓ3 · ℓ2) for the ones relating to the context.

The main step of our procedure is the construction of the candidate loop invariant
sinv . For that, we first need to find an abstract description of the shape of the involved
data structures. The abstraction must satisfy specific properties described below that are
needed to ensure the soundness of the approach. We call this step shape extrapolation
and provide a minimum viable heuristic implementing it in Section 5.3. However, we
stress that this algorithm can be changed as long as the properties in Figure 4 hold.
10 Here “transformed” means the changed value of the loop variable x and the shape that is

described in between the old and the new value of x.
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1. τpre ⊢ P and τcurr ⊢ Q,
2. Q∧X = x ⊢ emp,
3. P[a/X, b/x] ∗ P[b/X, c/x] ⊢ P[a/X, c/x]

Fig. 4: Extrapolation properties

In general, we need shape ex-
trapolation to abstract the two
subformulas τpre and τcurr to
list-segment shapes P(X,x) and
Q(X,x) where the parameter X
denotes the first node of the list segment and x denotes the current position in the seg-
ment; we omit the parameters X and x and simply write P and Q when there is no
danger of confusion. We require P and Q to satisfy the three properties given in Fig-
ure 4. These conditions are generalized in Figure 5, and the proof of soundness (see
[29, Appendix D.2]) shows that they allow to establish a loop invariant.

Intuitively, Point (1) of Figure 4 simply ensures that P and Q are actual abstractions
of τpre and τcurr , respectively. In addition, Property (2) ensures that Q only describes
the so-far traversed and transformed part of the list. Thereby, if X = x, i.e., at the start
of the loop, the so-far traversed and transformed part of the list must be empty. Finally,
(3) states that consecutive list segments may always be composed into one list segment.

Example 4. In the example in Listing 5, the shape τpre obtained after one loop iteration
is extrapolated (see Procedure 2) to the formula ls(X, ℓ1). Since x = ℓ1, the shape
P becomes ls(X,x). On the other hand, τcurr = emp does not contain any spatial
predicates, and so the extrapolation produces emp as Q, since the transformation of the
list consists in deleting it – if the list was just traversed, we would obtain ls(X,x). It is
easy to verify that all properties of Figure 4 are satisfied.

In contrast to previous analyses, we explicitly construct a candidate loop invariant
from the abstract shapes P and Q and subsequently check whether it is sound. The
candidate loop invariant sinv is meant to describe an intermediate state of the loop:

sinv := (ρpre ∗ P ∗ P [x/X,NULL/x] ∥ ρcurr ∗ Q ∗ P[x/X,NULL/x]) .

The pre-condition of this state contains two (sub-)shapes P and P[x/X,NULL/x]
where the first describes the already traversed list segment starting in X and ending
in the current value of x, whereas the latter denotes the not yet traversed part of the list
starting at x and ending in NULL. Due to the extrapolation Property (3), the two sub-
shapes together form the full extrapolated shape ls(X,NULL). In contrast, the post-
condition also takes into account the effects of the loop on the already traversed list
segment and, thus, contains Q instead of P .

To prove that sinv is a loop invariant, the analysis also needs to check whether the
post-condition’s memory footprint is sufficient for another loop iteration and whether it
also holds after this iteration. This is proven by analyzing another loop iteration starting
from sinv in which the abduction of new pre-condition predicates is disallowed, thus
forcing the analysis to fail if the shapes describe an insufficient memory footprint.

Suppose the invariant checking step successfully finishes the symbolic execution of
the loop body in some state s2. In that case, this implies that the loop body can be safely
executed from the state sinv . Next, we check whether s2.curr ⊢ sinv .curr , i.e. whether
sinv is actually a loop invariant. If the check succeeds, the shapes are sound for all loop
iterations, and the loop acceleration procedure can continue with the final step.
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Example 5. It trivially holds that the following state is invariant for the loop in Listing 5,
i.e., it is sound before and after each loop iteration.

sinv := (ls(X, ℓ1) ∗ ls(ℓ1,NULL) ∥ x = ℓ1 : ls(ℓ1,NULL))

As the state depicts the program at an arbitrary point of the iteration, it contains both
the already traversed shape ls(X, ℓ1) in the pre-condition (which has been freed in the
post-condition) and the unchanged, still-to-traverse shape ls(ℓ1,NULL).

Finalizing. Lastly, the loop analysis is finalized by constructing the final state reached
after finishing the loop from the shapes P and Q as

sfinal := (ρpre ∗ P[NULL/x] ∥ x = NULL ∗ ρcurr ∗ Q ∗ P[x/X,NULL/x])

This state is simply obtained from sinv by adding the negated loop condition x =
NULL and using extrapolation Property (3) to simplify the pre-condition. If the extrap-
olated shape additionally satisfies the property P(x/X,NULL/x)∧x = NULL ⊢ emp
(we call this Property (3.5)), which is natural for traversing linked lists until the end,
the final state can be simplified even further.

Example 6. For the loop in Listing 5, the freed list is represented by the shape Q being
empty, making the final state sfinal := (ls(X,NULL) ∥ x = NULL ∗ ls(x,NULL)).
Since the list segment to NULL satisfies Property (3.5), we obtain the expected final
state. In addition, this state is also the contract of the function free_list, and thus
the analysis reaches its end for this function.

5.2 Lifting Restrictions on Biabductive Loop Acceleration

We now explore how the restrictions introduced above can be lifted to make biabductive
loop acceleration more applicable in practice. We write x for an ordered list of elements
xi with 0 ≤ i ≤ n for some n. We denote by f(x) the ordered list y where yi = f(xi)
for 0 ≤ i ≤ n.

void either_list(node *x) {
node *head = x;
while (x != NULL
&& x->next != head)

{...} }

Listing 6: Cyclic/to-null lists

Extension: General Loop Conditions. The first restric-
tion that we lift concerns the loop condition. We assume
that the loop condition el is of the form el =

∧
i ei with

single atomic conjuncts ei of arbitrary form. An exam-
ple of such a loop can be seen in Listing 6, which han-

dles both cyclic and null-terminated lists equally. Handling such a more general loop
condition requires further adjustments to the loop acceleration procedure. To be able to
express multiple exit conditions that relate to multiple different variables, the algorithm
needs to be able to describe the traversed shape relative to these variables. Hence, the
shapes P and Q are now parameterized over all program variables changed throughout
the loop—namely, all variables x for which s1.curr .Π ⊬ x = X . We call the set of
these variables χ and re-define the P and Q shapes as P(X,x) and Q(X,x), respec-
tively, where x is the ordered list of the variables from χ that occur in P and Q, and X
is the ordered list of the corresponding anchor variables. Below, we will use P(a, b) to
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denote the predicate P(X,x)[a/X, b/x], i.e., the predicate obtained from P(X,x) by
simultaneously substituting the variables X with a, and x with b (we will use the same
notation for Q). Note that for lists, this is equal to setting the two parameters of the list
segment predicate to a and b, respectively.

1. τpre ⊢ P(X,x)∧τcurr ⊢ Q(X,x),
2. Q(X,x) ∧

∧
x∈χ X = x ⊢ emp,

3. P(a, b) ∗ P(b, c) ⊢ P(a, c).
Fig. 5: General extrapolation properties

With this notation, we re-define the prop-
erties of extrapolation to consider the new
parameters in Figure 5. We further define a
mapping EXIT(x) of variables x ∈ χ to the
values they can have at a loop exit. As these values can be challenging to determine from
the loop condition alone, we restrict the map to hold only logically constant values, i.e.,
NULL or other program variables outside of χ (as their values stay constant throughout
the loop), and define the other entries to map to fresh logical variables instead.

Furthermore, the post-condition of the final state has to encode that any of the loop
conditions can be unsatisfied for the program to leave the loop. This is done by taking
the disjunction of the previous final state post-condition combined with one dissatisfied
loop condition (note that the disjunction represents the world’s current post-conditions):

sfinal .curr :=
∨
i

(
¬ei ∗ ρcurr ∗ Q(X,x) ∗ P(x, EXIT(x))

)
.

Extension: Branching Loop Body. Branching in loop bodies can be handled by col-
lecting all states s1 after the first loop iteration analysis, extrapolating their shapes, and
combining them if possible into one compound shape via a join operation akin to the
ones described in [10] or [26]. Because such an operation is mostly orthogonal to the
central ideas of shape extrapolation, we refer to the literature for more details.

Extension: Overlapping Shape Changes. The extension to allow for more general loop
conditions can lead to problems with shape extrapolation if the involved shapes overlap,
i.e., if the new and old memory locations to which program variables point to are the
same. This can, e.g., happen if a list is reversed (see [29, Appendix F.2]). Such cases
can be detected if the new value of a program variable in χ is the anchor of another
variable. In the example of list reversal, the program variable tracking the reversed list
will be set to the initial value of the original list as that list’s first node becomes the last
node in the reversed one. Such an overlap would cause problems in the implementation
of SHAPEEXTRAPOLATION presented as Procedure 2. To circumvent this problem, the
analysis symbolically executes further additional loop iterations to find a program state
in which there is no overlap anymore, and only then performs the extrapolation.

Extension: Further Loop Effects. As depicted in Listing 2, loops can not only traverse
data structures but also change the program state in arbitrary ways. In such cases, the
candidate invariant sinv might not be an actual invariant, i.e. s2.curr ⊬ sinv .curr .
To handle such cases, we apply a join in the corresponding pure value domain of the
analysis. In the simplest case, this step exchanges the values of variables and memory
locations that are the cause of s2 ⊬ sinv with the value ⊤. In the example Listing 2, the
value stored at sum after the first iteration is ℓsum + ℓ1 · ℓw, resulting in the points-to
predicate sum 7→ ℓsum + ℓ1 · ℓw being a part of sinv . After the second iteration, the
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predicate changes to sum 7→ ℓsum+ℓ1 ·ℓw+ℓ2 ·ℓw, which does not entail its counterpart
in sinv . However, by joining the two values of the memory location to sum 7→ ⊤, the
entailment is ensured. The same problem actually occurs if the initial value of a variable
does not entail its representation in the invariant, e.g., because it is set to a constant in
the loop (see [29, Appendix F.4]). In this case, we also need to abstract the variable’s
values in sinv .curr to ⊤, thus guaranteeing that sinv also holds before the first iteration.

Theorem 2 (Soundness of Shape Extrapolation). Let AB,α compute only sound con-
tracts for loop-free functions. If Procedure 1 uses AB,α , then Procedure 1 with all ex-
tensions described in this section applied to a loop l either fails or returns a contract
(P,Q) such that {P} l {Q}. Proof: See [29, Appendix D.2].

5.3 Shape Extrapolation

We now propose a concrete shape extrapolation procedure based on the principles pre-
sented above. This procedure is supposed to be the easiest possible heuristic that suffices
to find reasonable loop invaraiants. To this end, it follows the original idea of obtaining
inductive shapes through abstraction, but in a “smarter” way.

The initial partitioning is one of the most crucial steps for our shape extrapolation
procedure. The τ formulas are built by collecting all predicates that describe the shape
traversed, i.e., the shape between the anchors and the new values of the variables in χ.
These shapes contain all transitively reachable predicates, where reachability is defined
spatially. Thereby, a predicate is reachable if there exists a sequence of points-to and
list predicates that pairwise overlap in their source/drain variables, modulo variable
equalities. For example, if x ∈ χ, then ℓ1 = ℓ4 : X 7→ ℓ1 ∗ ls(ℓ1, ℓ2) ∗ ℓ4.data 7→ ℓ3
contains only predicates reachable from the anchor X .

In addition to the partitioning of variables, our concrete shape extrapolation algo-
rithm also needs to know the new value of the variables in χ. We encapsulate this
information in the transformation map µ which maps x ∈ χ to ℓx ∈ LVar such that
s1.curr .ΠP ⊢ x = ℓx. Recall that, due to the normal form of SL, every program vari-
able only occurs in a single equality such as x = ℓ1, and so µ can be computed by
simply comparing their values before and after the loop.

Procedure 2 ShapeExtrapolation
Input: τpre , τcurr
Output: Parametric extrapolated shapes P andQ

Compute the maps χ and µ as described in the text
// i ∈ {pre, curr}, x′ fresh
τ1
i ← τi[x

′/µ(x) | x ∈ χ]

τ2
i ← τi[x

′/X | x ∈ χ]

θi ← α(τ1
i ∗ τ

2
i )

P(x1, x2)← θpre
[
x1/X, x2/µ(x)

]
Q(x1, x2)← θcurr

[
x1/X, x2/µ(x)

]
return P,Q

Procedure 2 gives a detailed description
of our concrete shape extrapolation proce-
dure. It computes P (and Q) by first extrap-
olating the corresponding τi into two copies
τ1i and τ2i . These two copies are supposed
to represent the shape accessed by two con-
secutive loop iterations via an intermediate,
fresh auxiliary location. The resulting formu-
las are then combined via separating conjunc-
tions and abstracted by the abstraction func-
tion α to form the abstract shapes θ, which
in turn get parameterized by renaming schemas to the final P and Q. The use of two
copies is a heuristic that has proven to be reliable in making the abstraction find bet-
ter abstract shapes. Note that, in Procedure 2, we omit additional renamings of logical
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variables for clarity, as these only help to guide the abstraction but do not affect the
resulting shapes any further.

Example 7. In the example from Listing 2, the inner loop can be extrapolated as fol-
lows: The procedure takes the effect τpre := I.elem 7→ ℓ1 ∗ I.next 7→ ℓ2 from
the transformation and introduces the two auxiliary formulas τ1pre := I.elem 7→
ℓ1 ∗ I.next 7→ i′ and τ2pre := i′.elem 7→ ℓ1 ∗ i′.next 7→ ℓ2 where i′ is the auxiliary
location representing the intermediate value of i. From these formulas, the abstraction
then finds the abstract shape θpre := ls(I, i). This abstracted shape is then the basis for
the extrapolated shape P . Similarly, Q is computed to be ls(I, i), too.

5.4 Limitations

We note that shape extrapolation is a heuristic, which is sound (see Theorem 2) but
inherently incomplete. The extrapolation step can fail if the partitioned information
does not suffice to find a reasonable shape, e.g., if the abstraction function cannot find
a fitting inductive shape predicate. However, since our shape extrapolation procedure
imitates the loop acceleration procedure of the original analysis, it is guaranteed to be
applicable for at least the same programs but in a fundamentally sound (and oftentimes
faster) way. Furthermore, we note that shape extrapolation is currently limited to list-
like data structures that are traversed linearly. List manipulation is, however, by far the
most frequent data structure pattern in low-level code, and so we have focused our ef-
forts on this kind of data structures, in accordance with prior work [6,13]. Nonetheless,
we believe that shape extrapolation, which is based on the intuition of locality, can be
extended toward tree-like data structures in future work.

6 Implementation and Experimental Evaluation

6.1 Prototype Implementation

We have implemented our techniques as a proof-of-concept in the prototype analyzer
Broom [13] written in OCaml and call the resulting tool Brush. It is available as an ar-
tifact on Zenodo [28]. The original Broom implements a biabduction-based shape anal-
ysis with a focus on low-level primitives and byte-precise memory management and is
sound for functions without branching [13, see Theorem 3]. However, since Broom is
also still a prototype that focuses more on exact handling of complex memory manipu-
lation than on scalability, neither Broom nor Brush are able to handle large-scale code
bases yet. Our new techniques, especially shape extrapolation, improve scalability, but
Brush still shares most of its code with Broom and is thus not as mature as industrial-
strength tools such as Infer.

6.2 Implementation Limitations

As Brush is largely based on the source code of Broom and does not differ much from it
apart from our new techniques, they share mostly the same limitations. On the one hand,
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neither tool supports recursive functions. Similarly, they can handle neither stack allo-
cations nor switch-case statements. On the other hand, the logic both tools are based on
contains only inductive predicates for linked lists with parameters describing the shape
of single nodes. Therefore, the tools can, in general, not analyze programs containing
other inductive data structures.

Furthermore, we remark that the running times of Broom and Brush are much higher
than for comparable tools, which in part is due to the need for precise pointer arithmetic.
This precision is achieved, among other things, by calling an SMT solver, which is more
costly for simpler cases than using native solvers, such as in Infer.

6.3 Case Study

We have conducted experiments with two research questions in mind: (1) whether
Brush can handle new use cases that existing tools cannot handle; (2) whether Brush is
also at least as efficient as Broom or would even improve scalability.

Qualitative Experiments. To answer research question (1), we ran all four analyzers
on selected examples that are either presented in [13, Table 1], are a part of the test suite
for Broom, or are hand-crafted test cases for shared abduction and shape extrapolation.
The results of our case study are depicted in Table 1. All test files are included in
the accompanying material. We primarily investigated whether the analyzers found the
expected bugs and sound contracts or whether they report other spurious errors.

We note that the biabduction-based shape analysis that Infer was based on is dep-
recated nowadays, and Infer’s focus has shifted from over-approximation to under-
approx-imation (see [23,18]). Due to this, we not only compare Brush with the release
v1.1.011 which was also used for comparison in [13], but also with its predecessor tool
Abductor.12 We excluded the second-order biabduction tool S2 from our experiments
since it is quite limited and cannot be applied to most of our benchmark programs.13

The ten tests from [13, Table 1] are program fragments of 30–200 LOC. Each test
consists of a set of library functions, including creation of a linked-list, insertion and
deletion of an element from the list. Moreover, 8 of the tests also contain a top-level test
harness performing a concrete manipulation of the particular list. There are three types
of lists: (i) circular doubly-linked lists, (ii) linux-lists taken from the Linux kernel, and
(iii) intrusive lists.14 The 43 tests from broom/tests are regression tests of Broom.
Each one is usually up to 10 LOC and tests the analysis of a particular kind of statement.

11 Available at https://github.com/facebook/infer/releases/tag/v1.1.0.
12 Available at http://www0.cs.ucl.ac.uk/staff/p.ohearn/abductor.html.
13 Of the 73 programs in Table 1, the tool reported internal errors for 56 cases while causing

segmentation faults for nine further cases. If we only compare the 52 programs without loops,
it fails for 43 instances and causes segmentation faults in 4 further cases. The internal errors
range from unsupported language features such as pointer arithmetic (3 programs) to linker
errors with unknown symbols (13 cases/6 cases without loops) and unsupported type casts
(35/30 cases). All of these cases are correctly handled and accepted by standard C compilers
as utilized as frontends by Broom and Brush.

14 Described by [31] and implemented in https://github.com/robbiev/
coh-linkedlist.

https://github.com/facebook/infer/releases/tag/v1.1.0
http://www0.cs.ucl.ac.uk/staff/p.ohearn/abductor.html
https://github.com/robbiev/coh-linkedlist
https://github.com/robbiev/coh-linkedlist


Shared Abduction and Biabductive Loop Acceleration 251

Table 1: Examples handled correctly (✓) and incorrectly (×) by the analyzers
Class of inputs # of test cases Broom Infer Abductor Brush
[13, table 1] 10 10✓/0× 0✓/10× 0✓/10× 10✓/0×
tests from broom/tests 47 47✓/0× 34✓/14× 12✓/35× 47✓/0×
*_branches.c 2 0✓/2× 0✓/2× 0✓/2× 2✓/0×
nested_*.c 3 1✓/2× 3✓/0× 3✓/0× 3✓/0×
motivation*.c 3 0✓/3× 0✓/3× 0✓/3× 3✓/0×
sll*.c 3 3✓/0× 0✓/3× 0✓/3× 3✓/0×
other 5 3✓/2× 0✓/5× 3✓/2× 5✓/0×
overall 73 64✓/9× 47✓/26× 18✓/55× 73✓/0×

The newly added hand-crafted use cases are small-scale programs (10–70 LOC),
which are, however, rather challenging for the existing analyzers. In particular, the
*_branches test cases contain multiple cases of non-determinable branching, which
can lead to the unsoundness described in Section 2.1. The nested_* programs con-
tain multiple examples of nested loops and nested lists. The sll_* test cases contain
whole programs that create, iterate and destroy singly-linked lists. The motivation
programs are as described in Section 2. Lastly, the other test cases contain programs
with more complex list allocation, deallocation, and transformation.

We specifically note that we have not used common benchmark sets such as the
SV-COMP memory-safety benchmark, as these consist primarily of closed programs
and focus on data structures that cannot be described by the logic of Broom and Brush.
Thus, these benchmark sets lie outside the scope of this work, and we have instead used
test cases that allow us to evaluate our research questions explicitly.

In the table, we use ✓to denote that at least one (sound) contract was computed for
each function within the particular example and that the expected errors were reported
without false positives. On the other hand, we use × to denote that either no contract
could be computed (for a function that would have a sound contract) or the respective
tool reported a false positive.

We conclude that shared abduction and shape extrapolation enable Brush to work
for strictly more programs than Broom or any of the other tools. This is especially im-
portant, as these small but challenging test cases are mostly based on realistic iteration
patterns that can be found in code bases such as the Linux kernel.

Quantitative Experiments. In another series of experiments, we also evaluated the
runtime of Brush versus Broom15 on test cases that both tools can handle. Some test
cases were split to survey the runtime of single, interesting functions without their call-
ing context. All experiments were run ten times on an Intel Core i7-1260P CPU with
32GiB RAM, and we took the mean over all runs. A plot of the results can be found in
Figure 6, the raw data is displayed in [29, Appendix E]. The overall means for programs
with loops are 1.85s for Brush to 38.2s for Broom, whereas the means for loop-free
branching programs are 22.3s for Brush and 24.8s for Broom. The overall means are
7.24s for Brush to 14.0s for Broom. These numbers show that Brush provides a signif-

15 We used the commit a361d01badf45c420b57158f2e6d738cb45d1dd9 found at https://
pajda.fit.vutbr.cz/rogalew/broom with small additional bug fixes.

https://pajda.fit.vutbr.cz/rogalew/broom
https://pajda.fit.vutbr.cz/rogalew/broom
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Table 2: Loop iterations analyzed by the analyzers (Brush/Broom) until a fixed point was
reached, as well as how many loops were present in the programs (in brackets)

copy_alloc dll-as-sll-traverse reversal nested_lists2

2/6 (1) 2/6 (1) 3/8 (1) 6/14 (3)
sll-fst-shared sll-fst-shared-alloc sll-fst-shared-iter sll

4/12 (2) 2/8 (1) 2/6 (1) 6/20 (3)
sll-alloc sll-shared-sll-after sll-shared-sll-after-alloc overall

2/6 (1) 6/21 (3) 4/14 (2) 39/121 (19)

icant speedup over Broom. For the examples with branching but without loops, we at
least find a tendency towards faster runtime for Brush.
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Fig. 6: Runtime of Broom and Brush in sec. for
tests from Table 1 that both tools handled

We directly relate the time im-
provements of Brush with the number
loop iterations analyzed. As seen in
Table 2, Brush only requires a frac-
tion of loop iterations due to shape ex-
trapolation for all examples from Ta-
ble 1, that both Broom and Brush can
handle and which contain loops. The
mean over all examples is 3.55 itera-
tions for Brush and 11 for Broom. We
note that in most cases, Brush requires
exactly two iterations per loop, which
corresponds to the initial analysis and
the invariant checking iteration as de-
scribed in Section 5. Only the case
reversal (see [29, Appendix F.2]) requires 3 iterations, as it reverses a list such
that the new and old shapes partially overlap. As described in the paragraph about Ex-
tension: Overlapping Shape Changes, the analysis requires an additional iteration to
reach a state in which this overlap has been removed.

We conclude that shared abduction improves both the precision and the perfor-
mance of the analysis compared to Broom, while biabductive loop acceleration consid-
erably improves the performance of the analysis for the benchmarks.

7 Related Work

Biabduction-based Shape Analysis. Our work builds on biabduction-based shape anal-
ysis introduced by Calcagno et al. [6,5] and later implemented in Infer [4]. Our new
techniques avoid the unsoundness issues of the first phase of the analysis and constitute
significant theoretical and practical advancements as demonstrated in Sections 4 to 6.

The approach of [6,5] was extended in the Broom analyzer [13] by ways of han-
dling low-level primitives and byte-precise memory handling. Since these extensions
are orthogonal to the problems of unsoundness, our techniques are equally effective for
improving Broom as depicted in Section 6.
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Another related work is the second-order biabduction by Le et al. [17]. Their ap-
proach does not consider a fixed class of inductive predicates, but discovers them as part
of the analysis by instantiating second-order variables with a technique called shape
inference. The analysis first collects the unknown predicates with corresponding rela-
tional assumptions and synthesizes fitting shapes in a second step. Their computation
method ensures that these shapes make the resulting contracts sound. Albeit this makes
their technique similar to shape extrapolation, the approach of [17] can handle more
complex shapes of dynamic data structures. On the other hand, it requires solving the
complex predicate inference problem for which their tool uses a relatively simple algo-
rithm. In our experience, this algorithm can easily fail even for programs with simple
data structures if they are not compatible with the shape inference procedure. Further-
more, their implementation is rather limited, as described in Section 6.

Very recently, Spies et al. [30] combined biabductive reasoning with auto-active,
foundational program verification. Their tool Quiver takes C programs and specification
sketches as annotations as input, translates them into a representation in the Caesium
C semantics [27], and finally infers and proves full function specifications in the proof
assistant Coq. The central reasoning mechanism of Quiver is called abductive deduc-
tive verification, which is closely related to biabduction. As Quiver does not only work
with predicates for memory safety but also with a refinement type system for C, it has
a broader focus than our work. However, Quiver requires the user to provide specifi-
cation sketches, refinement types, and loop invariants, while our work focuses on fully
automated, biabductive shape analysis.

Other Shape Analyses. There are many different shape analysis methods not based
on biabduction in literature. Of these, the Predator analyzer [10] based on symbolic
memory graphs is quite successful with regard to the Competition on Software Verifi-
cation (SV-COMP), see [2,3]. Their approach handles abstraction, entailment, and state
pruning as special cases of a general graph joining procedure. They focus on closed
programs, and their approach uses function summaries that are computed in a top-down
fashion, following the call tree (whereas biabduction-based shape analysis works from
the bottom up). This top-down fashion requires a re-analysis of functions for different
contexts but can ignore irrelevant code paths. As Predator implements a classic forward
analysis that does not compute contracts with pre-conditions, Predator circumvents the
problem of unsoundness. On the other hand, Predator only works on closed programs
and can thus not be used for modular and incremental analysis.

Another approach to shape analysis has been recently introduced by Illous et al.
[15,14]. They utilize transformers to describe the effects of functions and compute these
with regard to the calling context in a top-down fashion, as in Predator. The transformer-
based analysis is built around a transformer abstract domain and is based on abstract
interpretation. We note that the use of transformers has partially motivated the inner
workings of our shape analysis procedure. The authors noted that biabduction might be
applicable for transformers as well, and we strengthen this point by showing how our
shape extrapolation procedure combines both ideas to some degree.

We also like to mention the work [9], where the authors consider overlaid data struc-
tures. Their technique is based on a fragment of separation logic that differentiates per
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object and per field separation. Note that the separation logic fragment we base our work
on uses per field separation, while per-object separation is only enforced implicitly.

Other Related Analyses. Recent work about Incorrectness (Separation) Logic (ISL)
[23,24,18] has introduced a different approach to program analysis. This line of work
does not focus on verifying the absence of memory bugs in an over-approximating way
but instead tries to find bugs in an under-approximative way. Although the bug-finding
ability of incorrectness logics makes them very useful in practice, over-approximating
analyses are still relevant for certification and low-level systems software.

Lastly, the emergence of incorrectness logic has also motivated the development of
combined logic systems that inherit the benefits of both over- and under-approximating
logics. Recent work in this direction includes Exact Separation Logic [20] as well as
Outcome (Separation) Logic [32,33]. In particular, tri-abduction, introduced in [33], of-
fers an alternative solution to the branching problem we address with shared abduction.
By solving the abduction problem for the pre-conditions required by both branches,
the tri-abduction operation can potentially compute better contracts than the (greedy)
techniques proposed in this paper, which will first solve the abduction problem for one
branch and then for the other. This increased precision, however, comes with the burden
of implementing a new operator, whereas we can simply lift existing implementations
of biabduction operators to shared abduction. We believe that the increased precision of
the triabduction operation is rarely needed, and thus the more lightweight solution of
shared abduction is preferable in practice. For our experiments, the precision of shared
abduction was sufficient. At the same time, the approach from [33] has not yet been
implemented into a tool that could be used for experimental comparison.

8 Conclusion and Future Work

This work introduces the two novel techniques of shared abduction and biabductive
loop acceleration with shape extrapolation. We provide soundness proofs for both tech-
niques and implement them in our prototype analyzer Brush, which is based on the
state-of-the-art analyzer Broom. We experimentally demonstrate that these techniques
enable our biabduction-based shape analysis to find sound contracts in a single analy-
sis phase. In particular, we show that shared abduction and shape extrapolation enable
Brush to analyze strictly more programs than Broom or any of the Infer versions, and
to considerably improve the performance compared to Broom.

While our work is limited to non-recursive programs, we believe that shape extrap-
olation can easily be extended to recursive programs (e.g., tree traversals) and that this
direction constitutes an exciting avenue for future work. We also hope to incorporate
techniques that track the content of data structures, i.e., the data values stored in the data
structure. Specifically, we would like to enrich the logic and biabduction procedure to
track data values, e.g., for tracking the value of sum in the example of Listing 2. For
this, we plan to take inspiration from prior work that combines shape domains and data
domains, such as the product domain studied in [11]. Another interesting direction for
future research is whether the idea underlying shape extrapolation has application in the
synthesis of heap-manipulating programs, e.g., as studied in [21].
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