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Abstract
The extremal index is an important characteristic measuring dependence of extreme
values in a stationary series. Several new estimators that are mostly based on interex-
ceedance times within the Peaks-over-Threshold model have been recently published.
Nevertheless, inmany cases these estimators rely on suitable choice of auxiliary param-
eters and/or are derived under assumptions that are related to validity of the local
dependence condition D(k)(un). Although the determination of the correct order k in
the D(k)(un) condition can have major effect on the extremal index estimates, there
are not many reliable methods available for this task. In this paper, we present vari-
ous approaches to assessing validity of the D(k)(un) condition including a graphical
diagnostics and propose several statistical tests. A simulation study is carried out to
determine performance of the statistical tests, particularly the type I and type II errors.

Keywords Local dependence · Extremal index · Extreme value theory · Clusters

AMS 2000 Subject Classifications 62G32 · 62N01 · 60G70 · 62M09 · 62N02

1 Introduction

Statistical inference for extreme events is usually based on extreme value theory. A
typical issue is to determine the frequency of occurrence of extremes. The analysis is
being conducted with one of two possible approaches, the block maxima model based
on the generalized extreme value distribution, or the Peaks-over-Threshold model
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(POT) based on the generalized Pareto (GP) distribution. The latter method is usually
preferable as it allows to conduct the analysis on samples of larger size than in the first
case, which is a typical problem of the extreme value inference.

It is known from the theory that when analysing extreme events of a stationary
series, the extremes tend to cluster. When the block maxima approach is used, the
dependence in the series can be under certain circumstances overcome. However,
in the POT model, presence of the dependence can cause serious troubles. If it is
neglected, then the marginal quantiles like the return level tend to be underestimated.
Solving this issue requires either (i) application of a declustering scheme leading to
further reduction of the sample size, or (ii) estimation of the dependence structure in the
series. Under some additional restrictions on the dependence of distant observations,
the cluster size can be described with a single parameter, the so-called extremal index.
The latter point then corresponds to finding a suitable estimator of this parameter.

Many extremal index estimators have been discussed in the literature. For example
the runs and blocks estimators (Smith and Weissman 1994), the maxima estimators
(Ancona-Navarrete and Tawn 2000; Gomes 1993; Northrop 2015), and the sliding
block estimator of Robert et al. (2009). Recently, attention has especially been paid to
estimators based on interexceedance times within the framework of the POT model.
Most of these estimators require, however, the selection of auxiliary parameters that
are related to the local dependence restriction, particularly given by the D(k)(un)
condition of Chernick et al. (1991) (cf. Section 2). Any unsuitable choice of auxiliary
parameters stemming from a false assumption on the dependence condition can have a
serious effect on the estimators quality. At the same time, there has recently been a lack
of reliable methods to determine the validity of the condition. In this paper, we turn
back to the studies of Holešovský and Fusek (2022), Holešovský and Fusek (2020)
and Süveges and Davison (2010), and discuss properties of their proposed extremal
index estimators under model misspecification. On this basis, we propose graphical
diagnostics and several statistical tests for the D(k)(un) condition.

Ferro and Segers (2003) derived the limit distribution of interexceedance times
and proposed the intervals estimator for extremal index, a moment estimator with
improvement on the finite-sample bias. They also showed, that direct application of
the likelihood method to the limit distribution is not suitable as it overestimates the
extremal index towards independence. Other advanced approaches followed, suggest-
ing differentways to solve this issue. Süveges andDavison (2010) proposed theK-gaps
estimator, Holešovský and Fusek (2020) introduced the censored estimator, and the
truncated estimator was derived in Holešovský and Fusek (2022). However, these
advanced estimators require the selection of auxiliary parameters K or D. They are of
similar nature and are related to the clustering tendency of the process given by the
D(k)(un) condition in Section 2. For the estimators to work properly, the choice of K
and D is of utmost importance.

When analyzing real data, it can be difficult to prove validity of the D(k)(un) condi-
tion. Several approaches have been proposed, for example, the graphical diagnostics
of anti-D(k)(un) events (Süveges 2007; Ferreira and Ferreira 2018). Nevertheless, the
graphical approach generally leads to subjective conclusions. Other two methods are
the information matrix test and its extensions (Süveges and Davison 2010; Fukutome
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et al. 2015, 2019; Ferreira 2018), and the stability analysis of the runs estimator (Cai
2023). Both of them are, however, based on estimators that are rather sensitive to the
selection of the auxiliary parameters, including the threshold itself.

In this paper, we derive the information matrix test for the censored estimator and
compare it with the test introduced in Süveges and Davison (2010). In addition, we
apply a graphical approach and propose statistical tests, that make use of the censored
and/or the truncated estimators. Both of these estimators have shown respectable prop-
erties and are in some sense more flexible that the K-gaps or the runs estimators.

The paper is organized as follows. In Section 2 we introduce the basic concepts.
Section 3 is devoted to the information matrix test. We modify it in the context of
the censored estimator for the purpose of testing the local dependence condition of a
general order. In Section 4 we derive the distribution of interexceedance times under
model misspecification and on this basis we propose graphical diagnostics on the
bias of extremal index estimators. Several goodness-of-fit tests for the misspecified
model are applied in Section 5 to assess validity of the local dependence condition.
We compared the tests in simulation study in terms of type I and II errors, the results
of which we summarize in final Section 6.

2 Preliminaries

Let X1, X2, . . . be a strictly stationary sequencewithmarginal cumulative distribution
function (cdf)F, tail function F = 1−F , and right end-point x∗ = sup{x : F(x) < 1}.
Let Mi, j = max{Xi+1, . . . , X j } where for i ≥ j we set Mi, j = −∞, and put
Mn = M0,n . We say X1, X2, . . . has extremal index θ ∈ (0, 1] if, for all τ > 0, there
is a sequence {un}n≥1 such that, as n → ∞,

nF(un) → τ

and
P(Mn ≤ un) → exp(−θτ),

see Leadbetter et al. (1983). When θ = 1, exceedances of a high threshold un occur in
an isolated way, similarly as if X1, X2, . . . were independent. In the case θ < 1, the
extremes tend to cluster in the limit. Moreover, the extremal index can be interpreted
as the reciprocal of the mean cluster size and it is a key parameter for assessing risks
resulting from extreme events in many application areas.

The assumptions in the previous paragraph are too general, and it is necessary to
restrict the dependence in the sequence. Leadbetter et al. (1983) assumed validity of
the D(un) condition which limits the long-range dependence at extreme levels. It is a
standardmixing condition that implies asymptotic independence of sufficiently distant
extreme observations (see Leadbetter et al. 1983, for more details). Nevertheless, it
is often required to restrict the dependence more locally. The following D(k)(un)
condition of Chernick et al. (1991) is usually considered.
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Condition 1 D(k)(un) condition is said to be satisfied for some positive integer k, if a
stationary series X1, . . . , Xn under the D(un) condition of Leadbetter et al. (1983)
also satisfies

nP(X1 > un, M1,k ≤ un < Mk,rn ) → 0 (1)

as n → ∞ with rn = o(n) and un as in D(un).

Clearly, if D(k0)(un) holds, then D(k)(un) also holds for all k ≥ k0. It means
that within a cluster, high-threshold exceedances are asymptotically almost surely
separated by at most k − 1 observations. The D(k)(un) condition plays a crucial role
in estimation of the extremal index θ . Most of available threshold-based estimators
of θ are derived under the assumption of validity of a particular D(k)(un) condition
or, alternatively, the order of the condition or some related quantity appear therein as
auxiliary parameters. From here on, let k0 ≥ 1 denote an integer such that X1, . . . , Xn

satisfies the D(k0)(un) condition, but the condition D(k0−1)(un) is not fulfilled.
Recently, attention has been paid to estimators that are based on times between two

successive threshold exceedances. Denote

T (un) = min{ j ≥ 1 : X j+1 > un | X1 > un} (2)

a random variable corresponding to interexceedance times in the underlying series.
For threshold un increasing with n, it holds for x > 0 that

P(F(un)T (un) ≤ x) → 1 − θ exp(−θx) =: Fθ (x) (3)

as n → ∞ (see Theorem 1 in Ferro and Segers 2003). It means that as un → x∗ for
n → ∞,

F(un)T (un)
d−→ Tθ , (4)

where
d−→ denotes the convergence in distribution and Tθ follows the mixture of the

degenerate distribution at 0 and the exponential distribution with expected value 1/θ .
The extremal index θ then determines both the proportion of intra- and inter-cluster
times, as well as the expected value of the normalized inter-cluster times.

3 Informationmatrix test for the censored estimator

One of available statistical tests for the D(k)(un) condition is the information matrix
test (IMT) proposed in Süveges and Davison (2010). The authors applied the test for
identification of a proper K in context of the K-gaps estimator of θ proposed in the
same paper. Later study has revealed (Holešovský and Fusek 2020), that such test
is appropriate for testing k0, but it is not suited for testing the D(k)(un) condition
in general. In this section we modify the IMT statistics in context of the censored
estimator that overcomes this limitation.

The K-gaps estimator ̂θSD of Süveges and Davison (2010) is based on the sample
of gaps S(K )(un) = max{T (un) − K ; 0} for some K ≥ 0 (see Appendix B for a brief
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overview). Their likelihood model for the gaps requires, however, a proper choice K0
of the parameter K. The IMT was originally developed byWhite (1982). It utilizes the
fact that for a well-specified model with a log-likelihood �(θ) the Fisher’s information

matrix I (θ) = −E
(

∂2�
∂θ2

)

equals the variance of the score vector J (θ) = Var
(

∂�
∂θ

)

.

In case the true model �0(θ) is not contained in the assumed model �(θ), i.e. there is
no θ0 such that �0 = �(θ0), the estimator of θ is consistent for the parameter value θ̃

minimizing the Kullback-Leibler divergence with the true distribution. In such case
its asymptotic variance is in the form I (θ̃)−1 J (θ̃)I (θ̃)−1. Let �(θ) = J (θ) − I (θ),
then the null hypothesis H0 : �(θ) = 0 is set against the alternative H1 : �(θ) �= 0.

Let us consider a stationary series X1, . . . , Xn with N observations exceeding a
sufficiently high threshold u, i.e. there are N −1 interexceedance times T1, . . . , TN−1.
The IMT statistics is of the form

IMT (θ) = (N − 1)�2 (θ) V−1 (θ) , (5)

where V (θ) denotes the variance of �(θ), and θ should be replaced by its estimatêθ .
Assuming independence of the interexceedance times, and under regularity conditions
from Theorem 4.1 of White (1982), the test statistic (5) has approximately χ2 distri-
bution with one degree of freedom. Süveges and Davison (2010) derived the form of
�(θ) and V (θ) in the context of their K-gaps estimator ̂θSD. In addition, Fukutome
et al. (2015, 2019) proposed an automated procedure for simultaneous selection of
the threshold and the parameter K based on the IMT and also provide corrections of
the original formulas.

From the discussion in Holešovský and Fusek (2020) it turns out that the proper
choice K0 is related to validity of the D(k0)(un) condition with K0 = k0 − 1. Hence,
the IMT can also be applied to assess validity of the D(k0)(un) condition. On the other
hand, themodel of Süveges andDavison (2010) ismisspecified for K > K0 and as such
it is inappropriate for testing any condition of order k > k0. We modify the test in the
context of the censored estimator ̂θC of Holešovský and Fusek (2020) (see Appendix
B for a brief overview). This estimator is derived on the basis of likelihood model that
is well specified for all D > D0 = k0 − 1. Moreover, the censored estimator often
exhibits more desirable properties than the K-gaps estimator. In case of the censored
estimator, the statistic (5) remains in the same form, where �(θ), V (θ) and details of
the derivation can be found in Appendix A.

Süveges and Davison (2010) also discussed the regularity conditions of White
(1982) in the context of their likelihood model based on Eq. 3. It follows directly
that the same theory applies to the log-likelihood (B2) from Appendix B related
to the estimator ̂θC. The test is based on assumptions of mutual independence of
interexceedance times. As it was noted, for example, in Ferro and Segers (2003), the
first one is typically violated for the intra-cluster times, although different sets of
clusters are asymptotically independent. It was already discussed in Holešovský and
Fusek (2020) that the requirement of independence may be disregarded under validity
of suitable D(k)(un) condition. Moreover, the performance of the IMT can be harmed
by poor limit approximation of the distribution of times by Fθ from Eq. 3, usually at
low threshold levels. This generally applies also to alternative approaches we discuss
in Sections 4 and 5.
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4 Graphical diagnostics on the bias of the estimators

Another approach to assess validity of the D(k)(un) condition is based on graphical
diagnostics. Some suggestions were made in Süveges (2007) and Ferreira and Ferreira
(2018) using plots of anti-D(k) events, but the optimal settings of parameters in the plot
remains unclear, making it difficult to deal with. It is more convenient to build such
a diagnostics that is linked to the behaviour of the extremal index estimators. In this
section, we derive the distribution of interexceedance times truncated by D < D0, that
can be understood as a misspecification of a model on which the truncated estimator is
based. Using this result, we propose graphical inspection of estimates of θ to identify
k0 at which the model is well specified.

First proposal of the anti-D(2) plot to verify the D(2)(un) condition appeared in
Süveges (2007) and was later generalized for an arbitrary D(k)(un) in Ferreira and
Ferreira (2018). Given a threshold u and a block size r, the proportion pk(u, r) of
anti-D(k)(un) events is given by

pk(u, r) =
∑n−r+1

j=1 1[X j>u,X j+1≤u,...,X j+k−1≤u,Mj+k−1,r+ j−1>u]
∑n

j=1 1[X j>u]
. (6)

Süveges (2007) suggests to evaluate the proportion for a range of thresholds and
block sizes, whereas validity of the condition should result in a path (ui , r j ) with
ui → x∗ and r j → ∞ such that pk(ui , r j ) → 0.

This approach was extended in Ferreira and Ferreira (2018) by considering both u
and r depending on a sequence length n, specifically u = u(n) corresponding to the
sample quantile 1 − τ/n and r = r(n) = [n/(log n)s], s > 0. Moreover, for a given
sequence of thresholds and block sizes, they suggest to plot rather the difference

dk(u(n), r(n)) =
n−r(n)+1

∑

j=1

1[X j>u(n),Mj, j+k−1≤u(n)].

A suitable choice of k0 is accompanied by distant trajectories of dk0−1 and dk0
and close trajectories of dk0 and dk0+1. The idea is based on the fact that a series
X1, . . . , Xn under the D(k0)(un) condition satisfies also the D(k0+1)(un) condition but
not D(k0−1)(un) or any lower order condition. Nevertheless, the graphical diagnostics
can lead to subjective conclusions.

Holešovský and Fusek (2022) proposed the truncated estimator ̂θT = ̂θT(D) that
is based on the distribution of truncated interexceedance times. For brief details on
derivation of̂θT see Appendix B. Such an estimator overcomes the uncertainty of the
degenerate part in left tail of Fθ and is concentrated purely on the right tail. They
derived the relation

P
(

F(un)(T (un) − D) > x | T (un) > D
) → exp(−θx), (7)

for x > 0, un → x∗ for n → ∞, and some D ≥ 0. However, the convergence in Eq. 7
requires validity of the D(D+1)(un) condition or, alternatively, D ≥ D0 = k0 − 1.
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Specifically, in case D = 0, the relation (7) is valid under the D(1)(un) condition. Since
this is implied by the D′(un) condition of Leadbetter et al. (1983), it is necessarily
related to the case θ = 1.

Suppose the case D0 ≥ 1 such that there exists a D < D0. We may discuss the
convergence in Eq. 7 in the misspecified model where the parameter D is not chosen
adequately. We have

P
(

F(un)(T (un) − D) > x | T (un) > D
) = P

(

F(un)(T (un) − D) > x
)

P(T (un) > D)
. (8)

Holešovský and Fusek (2022) have shown that for a shifted time T (un) − D and
x > 0, it holds that

P
(

F(un)(T (un) − D) > x
) → θ exp(−θx).

The probability P(T (un) > D) can be alternatively rewritten using

P(T (un) > D) = P(M1,D+1 ≤ un | X1 > un). (9)

From Corollary 1.3 of Chernick et al. (1991) it follows that if D ≥ D0, the limit
of Eq. 9 for n → ∞ is θ , which yields (7). However, for D < D0 this result is not
applicable. Instead, we may follow the argumentation in Cai (2023). The function

λ(s) = lim
n→∞ P(M1,s ≤ un | X1 > un) (10)

is a non-increasing function in s, i.e. for D < D0 it holds

λ(D + 1) ≥ λ(D + 2) ≥ · · · ≥ λ(D0) > λ(D0 + 1)

= limn→∞ P(M1,rn ≤ un | X1 > un) = θ (11)

with rn = o(n). The strict inequality between λ(D0) and λ(D0 + 1) comes from the
fact that the underlying series satisfies the D(k0)(un) condition but not the D(k0−1)(un)
condition. Specifically, if D < D0 we have θ < limn→∞ P(M1,D+1 ≤ un | X1 >

un) ≤ 1. Notice that the relation (11), which was derived assuming D0 ≥ 1 (and
hence k0 ≥ 2), also implies θ < 1. This has already been mentioned in Cai (2023).

If we put

θ∗(D) = θ

lim
n→∞ P(M1,D+1 ≤ un | X1 > un)

= θ

λ(D + 1)
,

it is easy to see that θ ≤ θ∗(D) < 1 for D < D0 and θ = θ∗(0) ≤ θ∗(1) ≤ · · · <

θ∗(D0) = 1. If we combine the results above into the relation (8), we obtain

P
(

F(un)(T (un) − D) > x | T (un) > D
) → θ∗(D) exp(−θx), (12)
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for x > 0. This means that for D < D0 the limiting distribution of the truncated
and normalized time is again a mixture of degenerate and exponential distributions
whereby the proportion of the intra-cluster times is determined by the value 1−θ∗(D).
On the other hand, in case the D(D+1)(un) condition is satisfied (i.e. if D ≥ D0),
θ∗(D) = 1 and the degenerate part is suppressed.

A natural requirement of an estimator of the extremal index is its stability with
respect to auxiliary parameters. This is, for example, usual technique applied for
threshold selection in the POTmodel (see Scarrott andMacDonald 2012). The relation
(12) offers possibility for graphical assessment of the D(k)(un) condition based on
the truncated estimator. Moreover, similar approach can be also utilized for the time
censor D which is being used by the censored estimator ̂θC. The simulation study in
Holešovský and Fusek (2020) confirmed that if D < D0 the censored estimator is
burdened with a significant bias, while for D ≥ D0 the bias is reduced.

5 Testing for presence of the degenerate part

A statistical test for the D(k)(un) condition can be based on identification of the
degenerate part in the sample distribution of truncated or censored interexceedance
times. In this section we discuss corresponding modifications of classical goodness-
of-fit tests, and we derive forms of their statistics.

As before, consider a series X1, . . . , Xn satisfying the D(k0)(un) condition and
related times T1, . . . , TN−1 corresponding to a given high threshold u, where T(1) ≤
· · · ≤ T(N−1) denote the order statistics of the times. From Eq. 7 it follows that
in case D ≥ D0 = k0 − 1, we can approximate the distribution of F(u)(Ti − D)

conditioned by Ti > D by the limit exponential distribution. If D < D0, the limit
distribution would be in the form of Eq. 12 including some degenerate part. Hence, the
inference on suitable D can be based on testing a conformity between the empirical
and the theoretical exponential distribution which offers a possibility to test the null
hypothesis H0 : D ≥ D0 against the alternative H : D < D0. In order to do so, we
can use goodness-of-fit tests based on the empirical distribution function.

Let {S1, . . . , SND } = {T(N−ND) −D, . . . , T(N−1) −D} be the set of truncated times
Ti for which it holds Ti > D. Let FE(x; θ) = 1− exp(−θx) for x > 0 denote the cdf
of the exponential distribution and ̂FT(x) denote the empirical cdf (ecdf) of the times
Si normalized by F(u), i.e.

̂FT(x) = 1

ND

ND
∑

i=1

1[F(u)Si≤x],

where F(u) can be replaced by its estimator N/n. We apply two commonly used test
statistics based on the ecdf, specifically the Kolmogorov–Smirnov (KS) statistic

KST = sup
x

∣

∣̂FT(x) − FE(x; θ)
∣

∣ , (13)
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and the Anderson–Darling (AD) statistic

ADT = ND

∫ ∞

−∞
[̂FT(x) − FE(x; θ)]2
FE(x; θ)[1 − FE(x; θ)] dFE(x; θ), (14)

where θ can be replaced by its ML estimate ̂θ . Since θ is the scale parameter, dis-
tributions of the ecdf test statistics do not depend on the true values of the unknown
parameter, and depend only on the tested distribution and on the sample size. On that
account, critical values of the test statistics are implemented in many softwares.

The ecdf statistics can be modified within the framework of censored interex-
ceedance times. Let us have a censor D ≥ D0 and assume there are NC largest
observed times D < T(N−NC ) ≤ · · · ≤ T(N−1) for a given D, while the rest of
times are taken as censored. From the likelihood (B2) in Appendix B we see, that the
observed times F(u)Ti > F(u)D should follow the exponential distribution, while the
times F(u)Ti ≤ F(u)D should correspond to mixture of degenerate and continuous
part of the distribution. The KS statistics for the censored sample takes the following
form

KSC = sup
x≥F(u)D

∣

∣̂FC(x) − Fθ (x; θ)
∣

∣ , (15)

where

̂FC = 1

N − 1

⎛

⎝(N − 1 − NC ) +
NC
∑

i=1

1[F(u)T(N−i)≤x]

⎞

⎠

is the ecdf corresponding to the censored sample, Fθ (x; θ) is the limit cdf (3) and θ

should be replaced by the censored estimator̂θC for the given D. The AD statistics for
the censored sample takes the following form

ADC = ND

∫ ∞

−∞
[̂FC(x) − Fθ (x; θ)]2
Fθ (x; θ)[1 − Fθ (x; θ)] dFθ (x; θ), (16)

where θ should again be replaced by the censored estimator ̂θC for the given D.
Alternative forms of statistics KSC and ̂FC, which are more suitable for computational
purposes, can be found in Fusek (2023). Critical values of the ecdf statistics can
be obtained by means of Monte Carlo simulations as quantiles of the test statistics
calculated from a large number of repetitions.

Here above we assume that Fθ is appropriate model for some possibly large D.
However, this approach can also result in rejection of the model due to other reasons,
particularly because of slow convergence of the cdf of F(u)Ti to Fθ .

6 Simulations

To assess the performance of methods discussed in previous sections, we apply them
to four processes, three of them with known order k0 of the D(k0)(un) condition and
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one for which, as far as we know, the theoretical result has not been derived yet.
Specifically, we consider:

1. Max-autoregressive (maxAR) process Xi = max{αXi−1, (1 − α)Zi }, i =
2, . . . , n, X1 = Z1, with 0 ≤ α < 1 and Zi independent standard Fréchet,
with θ = 1 − α satisfying the D(2)(un) condition (Robinson and Tawn 2000).

2. Moving maxima (movMax) process Xi = max0≤ j≤m α j Zi− j , i = 1, . . . , n,
where α j ≥ 0 satisfy

∑m
j=0 α j = 1, and θ = max0≤ j≤m α j . We take into

account two variants of the movMax process. First, the coefficients are set to form
a non-increasing sequence leading to a process satisfying the D(2)(un) condition
(movMax-D(2)). In the second variant of the movMax process, three subsequent
zero elements are incorporated into the sequence of coefficients from the first vari-
ant leading to a process satisfying the D(5)(un) condition (movMax-D(5)). See
Ferreira and Ferreira (2018) for general conditions on the parameters under the
validity of a D(k)(un) condition.

3. AR(1) process with Gaussian marginals Xi = φXi−1 + εi , where εi are indepen-
dentN(0, 1−φ2)variables for i ≥ 2, and X1 has the standardGaussiandistribution,
with φ = 0.5 and θ = 1 satisfying the D(1)(un) condition (Ancona-Navarrete and
Tawn 2000).

4. Markov chain (MC) process with Gumbel margins and symmetric logistic depen-
dence structure, i.e. P(Xi ≤ x, Xi+1 ≤ y) = exp

[−(e−x/α + e−y/α)α
]

, with
α = 0.5 and θ ≈ 0.331 (Fawcett and Walshaw 2012). The order of the depen-
dence condition is unknown.

For all these processes, we take the estimators of θ discussed in previous sections
and explore the existing and newly proposed methods for assessment of the local
dependence condition D(k0)(un) and estimation of the order k0. Specifically, we con-
sider the censored estimator ̂θC, the truncated estimator ̂θT and the K -gaps estimator
̂θSD. Results will be graphically illustrated only for θ = 0.4 in case of maxAR process,
and for θ = 0.8 (α0 = 0.8, α1 = α2 = α3 = 0, α4 = α5 = 0.1) in case of movMax-
D(5). More results on other variants of maxAR or movMax processes can be found in
supplementary material provided to this paper (Holešovský and Fusek 2024).

Firstly, we may assess validity of the D(k)(un) condition by graphical inspection of
the anti-D(k)(un) events and stability of the extremal index estimators. In Fig. 1, there
are typical trajectories of the maxAR, movMax and AR(1) processes, where the k0
values are known. In addition, there are the proportions pk0(ui , r j ) of anti-D

(k0)(un)
from Eq. 6 as it was proposed by Süveges (2007). These illustrative plots are based
on single realizations of the processes and have been obtained for samples of size
n = 10 000. The values of pk0(ui , r j ) coloured in gray indicate the proportions below
given significance level 0.05. Based on our experience with the plots, we conclude
that Fig. 1 demonstrates very typical paths for the processes of interest.

For maxAR and movMax processes a path (ui , r j ) can be possibly identified such
that pk0(ui , r j ) → 0. In case of the AR(1), however, such path is only apparent for
thresholds above 99% quantile (not visible in Fig. 1). Hence, it may require a large
sample size to be identified. For the MC process in Fig. 2 we show typical plots of
anti-D(k)(un) events with k = 3, 4 and 5, whereas the value k = 4 was presumed
valid by Ferreira and Ferreira (2018). This is in accordance with the middle and right
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Fig. 1 Upper plots: example trajectories of the maxAR (θ = 0.4), movMax-D(5) (θ = 0.8), and AR(1)
processes. Dashed lines show 95% and 99% sample quantiles. Lower plots: proportions pk0 (u, r) of the

anti-D(k0)(un) events evaluated from a single trajectory. Dashed line around the box indicates the 0.05
level, gray parts of pk0 (ui , r j ) indicate values below this level

plots in Fig. 2. In contrast to that, the left plot also indicates some decrease of p2(u, r)
for large enough thresholds.

It is evident, that the inspection of the anti-D(k)(un) events can lead to unclear
and rather subjective results, since the conclusions made from these plots strongly
depend on the range of considered block sizes and thresholds. On the other hand,
simplicity of this approach makes it suitable for initial evaluation. The situation gets
more difficult if the goal is not the assessment of a given condition, but determination
of the minimal order k0. This requires comparisons of multiple plots, such as in Fig. 2,
and it turns out that an inspection of plots of differences discussed in Section 4 can be
more convenient. In this case, however, the threshold and the block size are connected
and their effects cannot be investigated separately.

We build our graphical diagnosis on stability of the estimators ̂θC and ̂θT with
respect to the choice of auxiliary parameterD. Suitable D0 = k0−1 should be chosen

Fig. 2 Upper plot: example trajectory of theMC process, dashed lines show 95% and 99% sample quantiles.
Lower plots: proportions pk (u, r) of the anti-D(k)(un) events evaluated from a single trajectory for k = 3
(left), k = 4 (middle) and k = 5 (right). Dashed line around the box indicates the 0.05 level, gray parts of
pk (ui , r j ) indicate values below this level
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such that a certain stability in estimation of θ for values D ≥ D0 is reached. The paths
of the estimators obtained for single realizations of considered processes are shown
in Fig. 3. We also include confidence intervals for ̂θC based on asymptotic normality
of this ML estimator using the asymptotic variance derived in Holešovský and Fusek
(2020). The paths are in accordance with the conclusions made in Holešovský and
Fusek (2020, 2022), who have shown through simulation that the estimators ̂θC and
̂θT are burdened with significant bias in case D < D0, while for D ≥ D0 the bias
is significantly reduced. The values of D, for which a stability of the estimators is
achieved and/or the confidence interval for ̂θC contains the true value of θ , satisfy
the theoretical k0 for maxAR and movMax processes. In case of the AR(1) process,
the stability plot leads to D = 1 instead of D = 0. For the MC process, the bias is
rather reduced for D = 1 and vanishes for D = 3. This could indicate that the process
does not exhibit significant differences from a process satisfying D(2)(un) or D(4)(un)
condition.

In Fig. 3, paths of the estimator̂θSD are also visualized. As it was already addressed
in Section 3, it can be observed that any deviation of the auxiliary parameter K from
proper K0 = k0−1 could result in increase of̂θSD bias. This is mostly apparent for the
movMax-D(5) process in Fig. 3 (top right), where increasing the auxiliary parameter
above K0 results in a significant underestimation of θ . We may conclude, based on
our experience, that this instability is mainly emphasized for moderate to large values
of θ irrespective of any specific process.

Besides the graphical diagnostics, we deal with statistical tests presented in Sec-
tions 3 and 5 and study their properties via simulations. We consider the following
statistics: IMT for the censored sample (Eq. A1 in Appendix A), KST (13) and ADT
(14) tests for truncated times, andKSC (15) andADC (16) for censored times.We draw
1000 samples of size n = 10 000 from each process and perform all the tests with a
given significance level α = 0.05. Critical values for KSC and ADC tests are obtained

Fig. 3 Examples of stability plots of the extremal index estimators for maxAR (top left), movMax-D(5) (top
right), AR(1) (bottom left), andMCprocess (bottom right). The estimates were obtained for u corresponding
to 95% sample quantile, or 99% quantile for AR(1). Confidence interval (CI) for ̂θC is based on the
asymptotic normality of the ML estimator. True value of θ is indicated by the horizontal line. Vertical lines
indicate expected values D0 or K0 (zero for AR(1))
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Fig. 4 Estimated probabilities of type I (left) and II (right) errors obtained for maxAR process (θ = 0.4) at
a significance level of α = 0.05. From top to bottom: IMT, KST, ADT, KSC and ADC test

bymeans ofMonte Carlomethod based on 10000 samples. The interexceedance times
are determined by thresholds corresponding to sample quantiles ranging from 0.9 to
0.97, i.e. from 1000 to 300 threshold exceedances. For AR(1) we choose the quantiles
up to 0.99 as discussed below. Effect of the threshold selection is of particular interest.
The auxiliary parameter D is selected in the range from 0 up to D0 + 3, some of them
being unsuitable with respect to models (7) or (B2) (in Appendix B). The probabilities
of type I and type II errors are estimated as the proportions of cases in which the null
hypothesis of D being suitable is or is not rejected, respectively.

For a reliable assessment of the local dependence condition D(k)(un), or itsminimal
order k0, it is desirable to reject the null hypothesis for all k < k0 and not to reject
it for k ≥ k0. This means to obtain small probabilities of the type I error (below the
significance level) for D ≥ D0 and of the type II error for D < D0, respectively.

The estimated probabilities of errors for all processes under consideration with the
exception of movMax-D(2) process are shown in Figs. 4–7. Results for the movMax-
D(2) process are similar to those for the maxAR process and can be found in the
supplementary material. In case of the maxAR process, all the tests are capable to
identify the closest inappropriate value D = D0 − 1 with a high probability (small
estimated probability of type II error) for all values of θ (see Fig. 4 for the case θ = 0.4)
with the exception of IMT, which shows a rapid increase of probability of type II error
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Fig. 5 Estimated probabilities of type I (left) and II (right) errors obtained for movMax-D(5) process
(θ = 0.8) at a significance level of α = 0.05. From top to bottom: IMT, KST, ADT, KSC and ADC test

for θ = 0.9 (not shown in figures).Moreover, KSC andADC tests outperform the other
alternatives with respect to the probabilities of type I errors which fall below the given
significance level for all θ and high thresholds. On the other hand, the probabilities of

Fig. 6 Estimated probabilities of type I errors (any D being suitable) obtained for AR(1) process at a
significance level of α = 0.05: IMT (top left), KST (top right), ADT (middle left), KSC (middle right) and
ADC test (bottom left)
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the type I error are well below the 0.05 level, which indicates that the tests could be
better calibrated. In general, the ADC test performs the best. The KST and ADT tests
perform reasonably well for high thresholds, especially if θ ≤ 0.4.

In case of the movMax-D(5) process, the estimated probability of type II error starts
to grow for IMT andADC tests and θ ≥ 0.6. For example, Fig. 5 shows for θ = 0.8 that
the IMT is reasonably able to detect the invalidity of the local dependence condition
only when the difference between D and D0 is large. All the other tests show a slow
increase of the probability of type II error for high thresholds and high values of θ .
On that account, neither the IMT nor the ADC test could be recommended. Regarding
the probability of type I error, KSC and ADC tests outperform the other alternatives
as the significance level of 0.05 is met for all θ and high thresholds. Nevertheless,
the probabilities of type I error are again well below the required limit for both tests.
This implies the poor performance of KSC and ADC in identifying any unsuitable D,
especially when it is close to D0. For a sufficiently large sample size, the KST and
ADT represent a better option at high threshold levels.

A special case is the AR(1) process that satisfies the D(1)(un) condition, hence any
choice of parameterD should be suitable. The value D = 0 is, however,mostly rejected
by all tests unless the threshold is set enormously high. Similarly, the probabilities of
type I errors of KST and ADT tests exhibit very slow decrease for any other D, see
Fig. 6. It follows from Leadbetter et al. (1983) that validity of the D(1)(un) condition

Fig. 7 Estimated probabilities of type I (left) and II (right) errors obtained for MC process at a significance
level of α = 0.05 under assumption k0 = 4. From top to bottom: IMT, KST, ADT, KSC and ADC test
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necessarily implies θ = 1. The difficulty of estimating θ at the boundary of its domain
is awell-known problemof all current estimators, and it also affects the performance of
the tests, which is possibly supported by a slower convergence of the interexceedance
times in Eq. 3.

In case of the MC process, the proper order k0 of the dependence condition is
unknown. From the stability plot in Fig. 3 we observed that the process exhibits only a
small deviation from both k0 = 2 and k0 = 4.We assume k0 = 4 (and hence D0 = 3),
which is also based on results from Ferreira and Ferreira (2018). Probabilities of type
I and II errors under such assumption are plotted in Fig. 7. Because D ≥ D0 does
not violate any of the considered models (B2) or (12), possible misspecification in
selected k0 = 4 against the alternative k0 < 4 does not harm the probabilities of type
I errors (left figures). It may be, however, misleading in terms of probability of the
type II error, since some of the values of parameter D are incorrectly classified as
inappropriate. For such D the tests would indicate large proportion of cases in which
the null hypothesis is not rejected. This is evidently the case of D = 2 in Fig. 7, while
the probabilities of type II errors for D = 1 correspond rather to the results obtained
for maxAR and movMax processes.

7 Conclusion

We proposed several approaches for assessment of the local dependence condition
D(k)(un) and identification of its minimal order k0. The first approach was based
on assessing stability of the extremal index estimators with respect to choice of the
auxiliary parameter D (K respectively). Our experience with commonly considered
processes indicates that this approach may work for estimators ̂θC and ̂θT, which
show certain stability with respect to an appropriate choice of auxiliary parameters.
Nevertheless, the stability plot is not suited for estimators which are heavily dependent
on the choice of auxiliary parameters including choice of the threshold, for example
̂θSD. It is also necessary to distinguish whether the aim is the determination of a
suitable D for the purpose of extremal index estimation (bŷθC or̂θT, for example), or
the estimation of the minimal order k0 itself. A wrong determination of k0 or D0 does
not have to necessarily lead to a significant deterioration of the estimate of θ .

The second approach was based on five statistical tests. It was found out that in
case of maxAR and movMax processes, the KSC and ADC tests outperform the other
alternatives with respect to the probabilities of type I errors which fall below the given
significance level for all θ and high thresholds. The ADC test performs the best for
maxAR and movMax-D(2) (see the supplementary material) processes, and the KSC
test performs the best for the movMax-D(5) process. Nevertheless, probabilities of
the type I error well below the significance level imply a poor performance of KSC
and ADC in identifying any unsuitable D. For large sample sizes and high thresholds,
the KST and ADT represent a better option, because their type I error probabilities
approach the given significance level and their type II error probabilities remain low.

In case of the AR(1) process, the proper k0 = 1 in the D(k0)(un) condition is mostly
rejected by all tests unless the threshold is set enormously high, which could be caused
by a slower convergence of the interexceedance times to the limiting distribution. In
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this case, the test results are also affected by the quality of the θ = 1 estimate at the
boundary of its domain, which is problematic for all estimators. If we assume that
the MC process satisfies the D(4)(un) condition, the best probability of type I error is
obtained in case of the ADC test. Nevertheless, all tests can be misleading in terms of
type II error.

Supplementary information

We provide supplementary material to this paper in Holešovský and Fusek (2024). In
this supplement we give additional results of estimated probabilities of type I and II
errors obtained for statistical tests proposed in the paper on validity of the D(k)(un)
condition of Chernick et al. (1991). Particularly, we provide the results for various
setting of parameters for maxAR and movMax processes.

Appendix A: Informationmatrix test for the censored estimator

Assume that X1, . . . , Xn is a stationary series satisfying the D(un) condition of
Leadbetter et al. (1983). For a high enough threshold u, consider that there are
interexceedance times T1, . . . , TN−1, where N = ∑n

i=1 1[Xi>u] is the number of
exceedances. Assume the normalized times F(u)Ti , i = 1, . . . , N − 1, are i.i.d. vari-
ables drawn from the distribution with cdf Fθ in Eq. 3.

For a given time censor D ≥ 0 treat the time Ti ≤ D as censored while the time
Ti > D is observed. For the censored estimator of the extremal index we have the
log-likelihood function

�(θ) =
N−1
∑

i=1

�i (θ),

where

�i (θ) = log κ + 1[F(u)Ti≤d] log Fθ (d) + 1[F(u)Ti>d]
(

2 log θ − θF(u)Ti
)

is a single i-th observation contribution, κ = (N−1)!/(N−1−NC )! and d = F(u)D.
We derive the following derivatives

�′
i (θ) = 1[F(u)Ti≤d]

−e−θd + dθe−θd

1 − θe−θd
+ 1[F(u)Ti>d]

(

2

θ
− F(u)Ti

)

,

�′′
i (θ) = 1[F(u)Ti≤d]

(

2d − d2θ
)

e−θd
(

1 − θe−θd
) − (dθ − 1)2 e−2θd

(

1 − θe−θd
)2 − 1[F(u)Ti>d]

2

θ2
.

The score function for the i-th observation is

ji (θ) = [

�′
i (θ)

]2 = 1[F(u)Ti≤d]
e−2θd (dθ − 1)2
(

1 − θe−θd
)2 + 1[F(u)Ti>d]

(

2

θ
− F(u)Ti

)2

,
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and the Fisher’s information is

ii (θ) = −�′′
i (θ)

= 1[F(u)Ti>d]
2

θ2
− 1[F(u)Ti≤d]

(

2d − d2θ
)

e−θd
(

1 − θe−θd
) − (dθ − 1)2 e−2θd

(

1 − θe−θd
)2 .

The difference between the score function and the Fisher’s information together
with its derivative is

δi (θ) = ji (θ) − ii (θ)

=1[F(u)Ti>d]

(

2

θ2
− 4F(u)Ti

θ
+ (F(u)Ti )

2

)

+ 1[F(u)Ti≤d]

(

2d − d2θ
)

e−θd

(

1 − θe−θd
) ,

δ′
i (θ) = 1[F(u)Ti>d]

(

4F(u)Ti
θ2

− 4

θ3

)

+ 1[F(u)Ti≤d]

(

θd3 − 3d2
)

e−θd
(

1 − θe−θd
) + (

θ2d3 − 3θd2 + 2d
)

e−2θd

(

1 − θe−θd
)2 .

Denote the sample means

�(θ) = 1

N − 1

N−1
∑

i=1

δi (θ), �′(θ) = 1

N − 1

N−1
∑

i=1

δ′
i (θ), I (θ) = 1

N − 1

N−1
∑

i=1

ii (θ).

The sample variance of �(θ) is of the form

V (θ) = 1

N − 1

N−1
∑

k=1

[

δk(θ) − �′(θ)I−1(θ)�
′
k(θ)

]2
,

and the information matrix test statistic is

IMT(θ) = (N − 1)�2(θ)V−1(θ), (A1)

where θ should be replaced by its estimatêθ .

Appendix B: Extremal index estimators based on interexceedance
times

Here belowwe provide a brief overview of extremal index estimators based on interex-
ceedance times that are discussed in Sections 3, 4, and 5. The methods are covered for
completeness, and more details can be found in the papers mentioned below.
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Consider a sequence of interexceedance times T1, . . . , TN−1 and assume the times
are independent. Denote T(1) ≤ · · · ≤ T(N−1) the ordered statistics of the times.

K -gaps estimator
The K-gaps estimator ̂θSD of Süveges and Davison (2010) is based on the sample of
gaps S(K )

i = max{Ti − K ; 0}, i = 1, . . . , N − 1, for some K ≥ 0. Süveges and
Davison (2010) have shown that the limit distribution of the gaps remains in the form
of Eq. 3 with T (un) replaced by S(K )(un). Under some additional assumptions on the
local dependence, the corresponding log-likelihood function is of the form

�SD (θ) = (N − 1 − NC ) log(1 − θ) + 2NC log θ − θ

N−1
∑

i=1

F(u)S(K )
i ,

where NC = ∑N−1
i=1 1[Ti>K ] is the number of interexceedance times exceeding the

value of K. The K-gaps estimator is obtained by maximizing the log-likelihood func-
tion, i.e.

̂θSD = argmax
0≤θ≤1

�SD (θ) .

The adequateness of the likelihood model, however, requires a suitable value K0
of the parameter K. Süveges (2007) assumes K0 = 1 in case the D(2)(un) condition
holds. The discussion in Holešovský and Fusek (2020) leads to K0 = k0 − 1 for the
D(k0)(un) condition. A deviation of K from K0 brings a bias into the estimator̂θSD as
the times corresponding to the degenerate part of Fθ are assigned to the exponential
part or vice versa.

Censored estimator
Consider a time censor D ≥ 0. The censored estimator ̂θC of Holešovský and Fusek
(2020) is based on division of T1, . . . , TN−1 into two sets. The NC largest times greater
than D are considered observed (uncensored), while the times less than or equal to
D are treated as censored. Assuming independence of the interexceedance times, the
log-likelihood function of the censored sample can be written in the form of

�(θ) =
N−1
∑

i=1

{

log κ + 1[F(u)Ti≤d] log Fθ (d) +1[F(u)Ti>d] log
[

θ2e−θF(u)Ti
]}

, (B2)

where 1[ · ] is the indicator function and κ = (N − 1)!/(N − 1 − NC )! is a constant
with NC = ∑N−1

i=1 1[Ti>D]. The normalized time F(u)Ti is considered to be a random
variable drawn from Fθ and d = F(u)D is the normalized censor, whereas the value
F(u) can be estimated by N/n. The censored estimator ̂θC = ̂θC(D) of the extremal
index is obtained by maximizing of the log-likelihood function (B2). The observed
times Ti > D in Eq. B2 are assigned purely to the non-degenerate part of Fθ , from
which follows the restriction D ≥ D0 = k0 − 1 for the model to be valid (see
Holešovský and Fusek 2020, for more details).
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Truncated estimator
The truncated estimator̂θT of Holešovský and Fusek (2022) is based on limit distribu-
tion (7) of truncated interexceedance times that exceed some suitable truncation point
D. Given interexceedance times, let {S1, . . . , SND } = {T(N−ND)−D, . . . , T(N−1)−D}
be the set of times above the truncation point D, i.e. with T(N−ND−1) ≤ D. A simple
ML estimator̂θ of θ could be derived from Eq. 7 as the reciprocal of the sample mean

̂θ = ND
∑ND

i=1 F(u)Si
. (B3)

The application of a bias correction and a penultimate approximation P(T > n) =
θ pnθ , n = 1, 2, . . . , of the limiting distribution leads to the so-called truncated esti-
mator

̂θT = ̂θBC − F(u)

2(N − 1)

[

1 + ̂θBC(N − 4) −
(

̂θBC
)2

(N − 1)

]

,

where F(u) should be replaced by its estimator N/n,

̂θBC = (N − 1)̂θ − 1

N − 1 + F(u)D
,

and ̂θ is given in Eq. B3.

Supplementary Information The online version contains supplementary material available at https://doi.
org/10.1007/s10687-025-00513-8.
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