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Abstract—Future 6G radio networks will heavily rely on
deep learning (DL) models for both signal and data processing.
DL-based solutions can be highly effective in classifying various
radio frequency (RF) signals influenced by noise or intentional
jamming as they are capable of recognizing patterns even under
challenging conditions. This paper focuses on the classification of
different RF signals using three DL-based models: CNN, GRU,
and CGDNN. For this purpose, a dataset containing RF signals
influenced by various impairments (e.g., I/Q-imbalance) and
transmission conditions (e.g., multipath propagation) was created
using MATLAB. Both the dataset and the source code have been
made publicly available to support further research in this area.
Preliminary results shown that the performance of DL-based
approaches depends not only on the RF impairments considered
but also on the preparation of the dataset.

Index Terms—Classification, Channel models, Dataset,
Deep learning, Neural networks, RF impairments, RF signals.

I. INTRODUCTION

Wireless communications is one of the fastest growing
fields. Recently, various mobile (such as 4G and 5G) and
wireless technologies (like Wi-Fi and LoRa) have expanded
the possibilities for achieving good coverage and seamless
connectivity [1]–[3]. Future generations of wireless technol-
ogy, often referred to collectively as 6G, present a new set of
challenges for engineers. These include the need for higher
data rates and spectral efficiency, improved reliability, and
safer information transmission [4]. To meet these goals, uncon-
ventional approaches, such as the integration of Deep Learning
(DL) architectures in signal processing and the development
of future radio networks, will be required [5]–[7].

DL-based automatic modulation classification (AMC) [8]
and radio frequency (RF) signal classification [9] are among
the hottest topics in wireless communication, as evidenced
by the growing number of studies in recent years. In [10],
the Convolutional Neural Network (CNN) and Convolutional
Long-Short-Term Deep Neural Network (CLDNN) with re-
duced number of parameters were introduced for AMC. The
potential of DL-based approaches compared to conventional
methods was shown [11]. Various DL-based architectures,
including CNN and Recurrent Neural Networks (RNN), have
been employed to propose AMC methods in [12] and [13].

Research described in this paper was financed by MEYS project LUC24141.

In both cases, the dataset was generated using GNU Radio
[14]. Simulation-based results confirmed the strong perfor-
mance of these DL-based architectures for AMC across differ-
ent signal-to-noise ratio (SNR) levels. In [15], a Convolutional
Gated Deep Neural Network (CGDNN) architecture was intro-
duced for AMC over a Rician fading channel, with the dataset
generated using MATLAB. The results demonstrated that the
CGDNN performed well under various Rician K-factors.

Shi et al. [16] explored the use of CNNs for signal (modula-
tion) classification, including scenarios with superimposed or
jammed signals. Their model achieved high accuracy in clas-
sifying RF signals within unknown spectrum environments.
In [17], a CNN-based framework called SigNet was proposed
for radio signal classification. This framework shown good
classification accuracy, even when using a very small training
set. Both studies primarily used the well-known dataset [14].
Another CNN-based method for RF signal detection was
presented in [18] and [19], further highlighting the capabilities
of DL-based methods in this domain. Additionally, in [20],
a DL-approach combining CNN and RNN architectures was
tested to classify coexisting Wi-Fi, Long-Term Evolution
(LTE), and 5G signals. The waveforms were generated using
MATLAB, and the results showed promising accuracy for
RF signal classification in various scenarios.

Contribution: This paper examines the classification accu-
racy of three different DL architectures, namely CNN, Gated
Recurrent Unit (GRU), and CGDNN, for RF signals influenced
by various imperfections. The dataset was entirely generated
using highly flexible MATLAB’s Wireless Waveform Genera-
tor. Unlike previous studies, this work also considers different
wireless standards, such as ZigBee and Bluetooth, which
have not received significant attention in earlier research.
To promote reproducibility, the dataset and the source code for
this simulation-based study are publicly available [21], [22].

The remainder of this paper is organized as follows.
The DL-based architectures used in this work are briefly
introduced in Section II. The dataset and the simulation-based
study are described in Section III. The obtained results are
evaluated in Section IV. This paper is concluded in Section V.



II. DL ARCHITECTURES FOR RF SIGNAL CLASSIFICATION

In this study, three DL-based architectures, originate from
works with focus on AMC, are evaluated for RF signal
classification. These models were initially tested on specific
RadioML datasets [14].

A. CNN
The used architecture of CNN model, introduced in [10],

was originally applied for AMC. The input layer, see Fig. 1,
accepts the input vector (I/Q-data1) one by one and its output is
framed with zeros at the zero-padding layer, enabling the ker-
nel of the following convolutional layers to access the border
regions of the data. There are three convolutional 1D layers,
meaning the kernel moves only across one dimension, produc-
ing only a 2D feature map (length and channel). The rectified
linear activation function (ReLU) is utilized in these layers.
Following each convolutional layer is max-pooling, with an
additional Dropout layer to randomly omit a subset of features
during training. The flatten layer convert the data dimensions
into a 1D vector. The first dense layer is activated by scaled
exponential linear unit function (SeLu), while the second is
activated by the Softmax function, transforming the neuron
weighs into 4 probabilities [22]. The setting of the CNN
architecture is listed in Table I.
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Fig. 1. Block scheme of the CNN model

TABLE I: Hyperparameter setting for CNN [10]

Layer Hyperparameters Output Shape
Input - 256× 2
Zero padding Padding 4 264× 2
Conv 1D Filters = 50, Kernel Size = 8, ReLu 257× 50
Max Pooling 1D Pool size = 2 128× 50
Conv 1D Filters = 50, Kernel Size = 8, ReLu 121× 50
Max Pooling 1D Pool size = 2 60× 50
Conv 1D Filters = 50, Kernel Size = 4, ReLu 57× 50
Dropout 0.6 57× 50
Max Pooling 1D Pool size = 2 28× 50
Flatten - 1400
Dense 70 Units, SeLu 70
Dense 4 Units, Softmax 4

B. GRU
The architecture of GRU (see Fig. 2), inspired by [12],

includes over 1,600,000 parameters, allowing it to learn a wide
range of features from the data. However, it requires significant
computational resources and is susceptible to overfitting. Each
GRU layer incorporates a ReLU activation function. Increasing
the number of units within the GRU layers leads to higher ac-
curacy and the model’s parameter count. In this work, 50 units
per layer are used to balance performance and complexity.
Dropout with a rate of 0.6 was introduced after each GRU
layer to mitigate overfitting.

1I - In-Phase, Q - Quadrature
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Fig. 2. Block scheme of the GRU model.

TABLE II: Hyperparameter setting for GRU [12]

Layer Hyperparameters Output Shape
Input - 256× 2
GRU Units = 50 256× 50
Dropout 0.6 256× 50
GRU Units = 50 256× 50
Dropout 0.6 256× 50
Flatten - 12800
Dense 128 Units, ReLu 128
Dropout 0.6 128
Dense 4 Units, Softmax 4

Similar to the CNN architecture, a flatten layer was added
to convert the multidimensional data into a 1D vector. Next,
a dense layer with more than 128 neurons was added, sig-
nificantly contributing to the high parameter count of this
model. Unlike in the CNN, the activation for this layer is
ReLu. The last Dense layer follows with softmax activation.
The setting of the GRU architecture is shown in Table II.

C. CGDNN

Two main concepts behind the CGDNN model focus on
leveraging the strengths of both CNNs and RNNs [15].
The model utilizes an RNN, specifically a GRU layer, to
process sequential data. Following the GRU layer, the archi-
tecture employs Convolutional 1D layers to capture additional
relevant features from the sequential output. This fusion is
shown in Fig. 3. The network includes standalone ReLU
activation functions to introduce nonlinearity, enhancing its
capacity to learn complex patterns. Batch normalization is
applied after each convolutional layer to mitigate potential
data distribution shifts, normalizing inputs to subsequent layers
and stabilizing the learning process, which increases network
efficiency. To reduce overfitting, dropout with a rate of 0.2 is
employed. The CGDNN architecture also includes an Average
Pooling layer after the first convolutional layer to reduce the
dimensionality of the feature maps. The configuration details,
including the number of filters and kernel sizes, are carefully
selected to maintain a low parameter count while still meeting
the design goals of the model. The setting of the CGDNN
architecture is summarized in Table III.
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Fig. 3. Block scheme of the CGDNN model.



TABLE III: Hyperparameter setting for CGDNN [23]

Layer Hyperparameters Output Shape
Input - 256× 2
GRU Units = 80 256× 80
Batch Normalization - 256× 80
ReLu - 256× 80
Dropout 0.2 256× 80
Conv 1D Filters = 16, Kernel Size = 3, ReLu 254× 16
Batch Normalization - 254× 16
ReLu - 254× 16
Average Pooling - 127× 16
Dropout 0.2 127× 16
Conv 1D Filters = 4, Kernel Size = 3, ReLu 125× 4
Batch Normalization - 125× 4
ReLu - 125× 4
Global Average Pooling - 4
Batch Normalization - 4
Dense 4 Units, Softmax 4

III. DATASET AND SIMULATION SETTINGS

All DL models used in this study were implemented into
Google Colab, a free cloud-based platform that supports
Python programming and offers virtual hardware, used for
coding DL models. The dataset employed in the experimental
study was generated using app Wireless Waveform Generator
of MATLAB, which supports a wide range of waveform types,
modulations, and wireless standards. Additionally, it allows to
distort the waveform by adding different RF impairments. The
tool also provides an option to export generated scripts for
further customization (e.g., applying a fading channel model).

This study focuses on classifying data from distinct wireless
standards with added impairments, a practical approach for
scenarios like identifying unknown or jamming signals in
a given RF channel. For this purpose, two standards were
selected from each of the Wireless Personal Area Network
(WPAN) and Wireless Local Area Network (WLAN) families:
Bluetooth with Basic Rate/Enhanced Data Rate (BR/EDR)
and ZigBee (IEEE 802.15.4) from WPAN, and IEEE 802.11b
and IEEE 802.11ac from WLAN. The main parameters for
packet generation for these standards are listed in Table IV
and Table V, respectively. Other parameters available in the
MATLAB function were kept at their default settings.

The waveform for each signal was generated as a single
packet to ensure an accurate representation of the signal.
In DL, maintaining balanced data representation is important.
Due to the varying packet lengths among the generated signals,
data truncation was implemented. Each packet was down-
sampled to 2× 256 I/Q data points. This size was selected
to adequately represent each packet while avoiding excessive
dataset enlargement, which could slow down the uploading
and pre-processing phases. Each RF signal is represented by
1,500 packets for its respective SNR, varied across a range
from −10 dB to 20 dB.

A total of five datasets were generated: Dataset no. 1: Each
waveform in this dataset is influenced by Additive White
Gaussian Noise (AWGN), phase offset, and I/Q-imbalance.
The phase offset, randomly applied to each packet, was
selected from the following values: 10◦, 5◦, 0◦, -5◦, and
-10◦. Similarly, the I/Q-imbalance was applied with a random
selection from values -10%, -5%, 0%, 5% and 10%.

TABLE IV: Parameters for WPAN packet generation

Parameter Bluetooth BR/EDR 802.15.4 (ZigBee))
Mode BR -
Packet type DM1a -
Payload Length 17 bytes -
PSDUb Length - 63 bytes
Modulation GFSK O-QPSK
Modulation index 0.3 -
Samples per chip - 4
aData Medium Rate, bPhysical Layer Service Data Unit

TABLE V: Parameters for WLAN packet generation

Parameter IEEE 802.11b IEEE 802.11ac
Transmission format - Very High Throughput (VHT)
Channel Bandwidth 20 MHz 80 MHz
MCSa - 2 (QPSK)
Data rate 5.5 Mb/s -
Modulation technique DSSSb OFDMc

PSDU Length 1000 bytes 1050 bytes
aModulation Coding Scheme, bDirect Sequence Spread Spectrum
cOrthogonal Frequency Division Multiplexing

Dataset no. 2: This dataset builds on the Dataset no. 1 by
including Rician fading. The Rician channel model used
in this work is emulated by six paths. The path delays
range from 10 ns to 3700 ns, with no power loss in the
first path (K = 10) [24] and gradually increasing to a
24 dB loss in the last path. The maximum Doppler shift is
50Hz. Dataset no. 3: Similar to Dataset no. 2, this dataset uses
Rayleigh fading channel instead of Rician. The parameters for
the Rayleigh channel model are identical to the Rician channel,
only K = 0. Dataset no. 4: This dataset consists of only
IEEE 802.11ac waveforms, each varying in their Modulation
Coding Scheme (MCS). The MCS defines the coding and data
rates as well as the underlying modulation. Waveforms are
additionally influenced by phase offset, I/Q-imbalance, and
AWGN. Dataset no. 5: This dataset contains waveforms of
different wireless standards, categorized as follows: a) IEEE
802.11n/ac with BPSK (MCS set to 0), b) IEEE 802.11ac
with QPSK (MCS = 2 ), c) IEEE 802.11ac with 16-QAM
(MCS = 4 ), and d) IEEE 802.11ac with 256-QAM (MCS =
9 ). More systems parameters are provided in Table IV and
Table V. All datasets are publicly available on GitHub [21].

IV. RESULTS

The results were obtained using the test data, which com-
prised 15% of the total dataset. More precisely, 70% and
15% of the data were used to train and validate the DL-
models, respectively. These processes were primarily executed
on Google Colab, utilizing a free virtual T4 GPU, which pro-
vides significantly faster performance for DL-based algorithms
compared to a standard CPU. All datasets had an input vector
size 2× 256. The accuracy of the DL models for each SNR
value is shown in Figs. 4 and 5 while confusion matrices for all
DL models at a specific SNR value are shown in Figs. 6 – 10.

As shown in Fig. 4 (a), all the DL models studied achieve
good accuracy in the classification of RF signals when these
signals are influenced by the AWGN channel completed by
phase offset and I/Q-imbalance. This is also reflected in
the confusion matrices (see Fig. 6), which show promising
classification accuracy SNR=2.6 dB.
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(c) Dataset no. 3

Fig. 4. Accuracy of DL models across all SNR values for
Dataset no. 1–no. 3.

The primary challenge for all tested DL models lies in
classifying ZigBee signal. However, for SNR≥ 6 dB, the DL
models achieve nearly 100% classification accuracy.

Accuracy versus SNR for Dataset no. 3 and 4 contain-
ing waveforms among others influenced by Rician/Rayleigh
fading channels are plotted in Figs. 4 (b) – 4 (c), respectively.
The results indicate limited accuracy across all DL models
for fading channels. This is particularly evident for Rayleigh
channel, where the CNN architecture has the poorest perfor-
mance, achieving accuracy around 24% for all SNR values.
Learning from sequences under the tested conditions, enabled
by the RNN layers in CGDNN and GRU, appears to be more
advantageous than relying predominantly on spatial data.
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Fig. 5. Accuracy of DL models across all SNR values for
Dataset no. 4 and no. 5.

Furthermore, the CGDNN achieves higher accuracy at lower
SNR values compared to the GRU. Interestingly, for the
Rician fading channel, the CNN outperforms the other models,
achieving the best results under these conditions.

The results for the classification of IEEE 802.11ac wave-
forms with differing MCS are captured in Fig. 5 (a) and Fig. 9.
Compared to the results for Dateset no. 1, see Fig. 4 (a),
the classification accuracy of 802.11ac waveforms at lower
SNR values is slightly worse. On the other hand, the in-
crease in accuracy across higher SNR values in less step,
stabilizing around 95%. Among the models, CGDNN has the
best performance for this task. 16-QAM and 256-QAM digital
modulations proved easier for the DL models to classify.

The classification accuracy of the DL models for
Dataset no. 5, which contains the mixture of the wave-
forms of the generated RF signals, is shown Fig. 5 (b) and
Fig. 10. These signal waveforms were constructed by com-
bining packets from the corresponding wireless standards
under the same impairment conditions as in the previous
datasets. The tested DL models showed limited accuracy in
predicting mixed signals, such as Bluetooth + IEEE 802.11b
and Bluetooth + IEEE 802.11ac, often favoring predictions
of standalone signals or ZigBee mixed with 802.11b.
This limitation stems from the dataset structure, where mixed
signal packets often resembled those of independent signals,
making classification ambiguous.
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Fig. 6. Dataset no. 1: Confusion matrices for CNN, GRU, and CGDNN models at SNR=0dB.
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Fig. 7. Dataset no. 2: Confusion matrices for CNN, GRU, and CGDNN models at SNR=16dB.
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Fig. 8. Dataset no. 3: Confusion matrices for CNN, GRU, and CGDNN models at SNR=20dB.
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Fig. 9. Dataset no. 4: Confusion matrices for CNN, GRU, and CGDNN models at SNR=14dB.
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Fig. 10. Dataset no. 5: Confusion matrices for CNN, GRU, and CGDNN models at SNR=6dB.

While the DL models struggled to distinguish between mixed
and individual signal classes, they successfully recognized
ZigBee + 802.11b combinations as uniform ZigBee signals,
suggesting pattern similarities between these classes.

V. CONCLUSION

This paper examined the classification of RF signals using
DL-based approaches, specifically CNN, GRU, and CGDNN
architectures. The results showed an increasing difficulty for
each DL model to correctly classify the RF signals that
are gradually influenced by impairments [25]. The CGDNN
architecture provided the best results for most of the datasets.
However, CNN performed best when Rician fading was con-
sidered, but it did not fit the data for Rayleigh fading. All
results confirmed that further research in this area is very
important. More details can be found in [21] and [22].
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