Fakulta informačních technologií VUT v Brně

Detail předmětu

Složitost

SLO Ak. rok 2014/2015 letní semestr 5 kreditů

Turingovy stroje jako základní výpočetní model pro analýzu výpočetní složitosti, časová a prostorová složitost výpočtů na Turingových strojích. Alternativní modely výpočtů, skeletový jazyk, stroje RAM a RASP a jejich vztah k Turingovým strojům z hlediska výpočetní složitosti. Asymptotické odhady složitosti, pojem tříd složitosti založených na časově a prostorově zkonstruovatelných funkcích, typické příklady tříd složitosti. Vlastnosti tříd složitosti: význam determinismu a nedeterminismu v oblasti výpočetní složitosti, Savitchův teorém, vztah prostoru a času, uzavřenost tříd složitosti vůči doplňku, ostrost vztahů mezi třídami. Některé pokročilé vlastnosti tříd složitosti: Blumův teorém, gap theorem (a jeho vztah k definici tříd složitosti na základě časově a prostorově zkonstruovatelných funkcí). Redukovatelnost a pojem úplnosti tříd složitosti. Příklady problémů úplných pro různé třídy složitosti. Hlubší diskuse tříd P a NP s důrazem na NP-úplné problémy (problém splnitelnosti apod.). Vztah rozhodovacích a optimalizačních problémů. Metody řešení výpočetně složitých optimalizačních problémů: deterministické přístupy, aproximace, pravděpodobnostní algoritmy. Vztah výpočetní složitosti a kryptografie. Hlubší diskuse PSPACE-úplných problémů, výpočetní složitost typických problémů z oblasti formální verifikace.

Garant předmětu

Jazyk výuky

česky

Zakončení

zkouška (kombinovaná)

Rozsah

26 hod. přednášky, 26 hod. projekty

Bodové hodnocení

68 zkouška, 32 projekty

Zajišťuje ústav

Přednášející

Cvičící

Získané dovednosti, znalosti a kompetence z předmětu

Znalost teoretických i praktických mezí použitelnosti výpočetních systémů. Schopnost použít vybrané přístupy k řešení výpočetně složitých problémů.

Cíle předmětu

Seznámit studenty s teorií výpočetní složitosti, nutnou k pochopení praktických možností algoritmického řešení problémů na fyzikálně realizovatelných výpočetních systémech. Seznámit studenty s vybranými přístupy k řešení výpočetně složitých problémů.

Požadované prerekvizitní znalosti a dovednosti

Teorie formálních jazyků a rozhodnutelnosti na magisterské úrovni.

Literatura studijní

  • Gruska, J.: Foundations of Computing, International Thomson Computer Press, 1997, ISBN 1-85032-243-0
  • Bovet, D.P., Crescenzi, P.: Introduction to the Theory of Complexity, Prentice Hall International Series in Computer Science, 1994, ISBN 0-13915-380-2
  • Hopcroft, J.E. et al: Introduction to Automata Theory, Languages, and Computation, Addison Wesley, 2001, ISBN 0-201-44124-1
  • Goldreich, O.: Computational Complexity: A Conceptual Perspective, Cambridge University Press, 2008, ISBN 0-521-88473-X
  • Kozen, D.C.: Theory of Computation, Springer, 2006, ISBN 1-846-28297-7

Literatura referenční

  • Gruska, J.: Foundations of Computing, International Thomson Computer Press, 1997, ISBN 1-85032-243-0
  • Bovet, D.P., Crescenzi, P.: Introduction to the Theory of Complexity, Prentice Hall International Series in Computer Science, 1994, ISBN 0-13915-380-2
  • Hopcroft, J.E. et al: Introduction to Automata Theory, Languages, and Computation, Addison Wesley, 2001, ISBN 0-201-44124-1

Osnova přednášek

  1. Úvod, Turingovy stroje, složitost časová a prostorová.
  2. Alternativní modely výpočtů, skeletový jazyk, stroje typu RAM, RASP a jejich vztah k Turingovým strojům.
  3. Asymptotické odhady složitosti, třídy složitosti, determinismus a nedeterminismus z pohledu složitosti.
  4. Souvislosti prostoru a času z pohledu složitosti, uzavřenost tříd složitosti vůči doplňku, ostrost inkluzí mezi třídami složitosti.
  5. Blumův teorém. Gap theorem.
  6. Redukovatelnost, pojem úplnosti tříd složitosti, nejběžnější případy úplnosti.
  7. Třídy P a NP a jejich vlastnosti. NP-úplné problémy, problém splnitelnosti a jeho varianty.
  8. Problém obchodního cestujícího, problém batohu a další významné NP-úplné problémy.
  9. NP optimalizační problémy a jejich deterministické řešení: pseudo-polynomiální algoritmy, parametrizovaná složitost.
  10. Aproximační algoritmy, neaproximovatelnost.
  11. Pravděpodobnostní algoritmy a pravděpodobnostní třídy složitosti.
  12. Složitost a kryptografie.
  13. PSPACE-úplné problémy. Složitost a formální verifikace.

Osnova ostatní - projekty, práce

Čtyři dílčí domácí úlohy zaměřené na různé aspekty probírané látky.

Průběžná kontrola studia

  • Čtyři projekty - každý za 8 bodů.
  • Závěrečná zkouška: 68 bodů.

Podmínky zápočtu

Celkový zisk minimálně 15 bodů z domácích úloh.

Zařazení předmětu ve studijních plánech

  • Program IT-MGR-2, obor MBI, MBS, MGM, MMI, MPV, MSK, libovolný ročník, volitelný
  • Program IT-MGR-2, obor MIN, libovolný ročník, povinně volitelný skupina B
  • Program IT-MGR-2, obor MIS, 1. ročník, volitelný
  • Program IT-MGR-2, obor MMM, libovolný ročník, povinně volitelný skupina L
Nahoru