Faculty of Information Technology, BUT

Course details

Discrete Mathematics

IDA Acad. year 2016/2017 Winter semester 7 credits

The sets, relations and mappings. Equivalences and partitions. Posets. The structures with one and two operations. Lattices and Boolean algebras.The propositional calculus. The normal forms of formulas. Matrices and determinants. Vector spaces. Systems of linear equations.The elementary notions of the graph theory. Connectedness. Subgraphs and morphisms of graphs. Planarity. Trees and their properties. Simple graph algorithms.

Guarantor

Language of instruction

Czech

Completion

Examination (written)

Time span

52 hrs lectures, 12 hrs exercises, 4 hrs pc labs, 10 hrs projects

Assessment points

60 exam, 10 exercises, 30 projects

Department

Lecturer

Instructor

Demchenko Hanna, Mgr. (FEEC BUT)
Hliněná Dana, doc. RNDr., Ph.D. (DMAT FEEC BUT)
Kovár Martin, doc. RNDr., Ph.D. (DMAT FEEC BUT)
Rebenda Josef, Mgr., Ph.D. (CEITEC BUT)
Staněk David, Mgr. (FEEC BUT)

Subject specific learning outcomes and competences

The students will obtain the basic orientation in discrete mathematics and linear algebra, and an ability of orientation in related mathematical structures.

Learning objectives

The modern conception of the subject yields a fundamental mathematical knowledge which is necessary for a number of related courses. The student will be acquainted with basic facts and knowledge from the set theory, topology and especially the discrete mathematics with focus on the mathematical structures applicable in computer science.

Prerequisite kwnowledge and skills

Secondary school mathematics.

Study literature

  • Johnsonbaugh, R., Discrete mathematics, Macmillan Publ. Comp., New York, 1984.
  • Kolman B., Introductory Linear Algebra, Macmillan Publ. Comp., New York 1993.
  • Lipschutz, S., Lipson, M.L.,  Theory and Problems of Discrete Mathematics, McGraw-Hill, New York, 1997.
  • Lipschutz, S., Lipson, M.L., 2000 Solved Problems in Discrete Mathematics, McGraw-Hill, New York, 1992.
  • Matoušek J., Nešetřil J., Invitation to Discrete Mathematics, Oxford University Press, Oxford 2008.
  • O'Donnell, J., Hall C., Page R., Discrete Mathematics Using a Computer, Springer-Verlag, London 2006.
  • Rosen, K.H., Discrete Mathematics and its Applications, AT & T Information systems, New York 1988.

Fundamental literature

  • Anderson I., A First Course in Discrete Mathematics, Springer-Verlag, London 2001.
  • Acharjya D. P., Sreekumar, Fundamental Approach to Discrete Mathematics, New Age International Publishers, New Delhi, 2005.
  • Faure R., Heurgon E., Uspořádání a Booloeovy algebry, Academia, Praha 1984 (in Czech).
  • Gantmacher, F. R., The Theory of Matrices, Chelsea Publ. Comp., New York, 1960.
  • Garnier R.,  Taylor J., Discrete Mathematics for New Technology, Institute of Physics Publishing, Bristol and Philadelphia 2002.
  • Gratzer G., General Lattice Theory, Birkhauser Verlag, Berlin 2003.
  • Grimaldi R. P., Discrete and Combinatorial Mathematics, Pearson Addison Valley, Boston 2004.
  • Grossman P., Discrete mathematics for computing, Palgrave Macmillan, New York 2002.
  • Johnsonbaugh, R., Discrete mathematics, Macmillan Publ. Comp., New York, 1984. 
  • Kolář, J., Štěpánková, O., Chytil, M., Logika, algebry a grafy, STNL, Praha 1989 (in Czech).
  • Kolibiar, M. a kol., Algebra a príbuzné disciplíny, Alfa, Bratislava, 1992 (in Slovak).
  • Kolman B., Elementary Linear Algebra, Macmillan Publ. Comp., New York 1986.
  • Kolman B., Introductory Linear Algebra, Macmillan Publ. Comp., New York 1993.
  • Kolman B., Busby R. C., Ross S. C., Discrete Mathematical Structures, Pearson Education, Hong-Kong 2001.
  • Klazar M., Kratochvíl J, Loebl M., Matoušek J. Thomas R., Valtr P., Topics in Discrete Mathematics, Springer-Verlag, Berlin 2006.
  • Kučera, L., Kombinatorické algoritmy, SNTL, Praha 1983 (in Czech).
  • Lipschutz, S., Lipson, M.L.,  Theory and Problems of Discrete Mathematics, McGraw-Hill, New York, 1997.
  • Lovász L., Pelikán J., Vesztergombi, Discrete Mathematics, Springer-Verlag, New York 2003.
  • Mannucci M. A., Yanofsky N. S., Quantum Computing For Computer Scientists, Cambridge University Press, Cambridge 2008.
  • Mathews, K., Elementary Linear Algebra, University of Queensland, AU, 1991.
  • Matoušek J., Nešetřil J., Kapitoly z diskrétní matematiky, Karolinum, Praha 2000 (in Czech).
  • Matoušek J., Nešetřil J., Invitation to Discrete Mathematics, Oxford University Press, Oxford 2008.
  • Nahara M., Ohmi T., Qauntum Computing: From Linear Algebra to Physical Realizations, CRC Press, Boca Raton 2008.
  • O'Donnell, J., Hall C., Page R., Discrete Mathematics Using a Computer, Springer-Verlag, London 2006.
  • Preparata, F.P., Yeh, R.T., Úvod do teórie diskrétnych štruktúr, Alfa, Bratislava, 1982 (in Slovak).
  • Rosen, K.H., Discrete Mathematics and its Applications, AT & T Information systems, New York 1988.
  • Rosen, K. H. et al., Handbook of Discrete and Combinatorial Mathematics, CRC Press, Boca Raton 2000.
  • Ross, S. M. Topics in Finite and Discrete Mathematics, Cambridge University Press, Cambridge 2000.
  • Sochor, A., Klasická matematická logika, Karolinum, Praha 2001 (in Czech).
  • Švejdar, V., Logika, neúplnost, složitost a nutnost, Academia, Praha 2002 (in Czech).
  • Vickers S., Topology via Logic, Cambridge University Press, Cambridge 1990.

Syllabus of lectures

  1. The formal language of mathematics. A set intuitively. Basic set operations. The power set. Cardinality. The set of numbers. Combinatoric properties of sets. The principle of inclusion and exclusion. Proof techniques and their illustrations.
  2. Binary relations and mappings. The composition of a binary relation and mapping. Abstract spaces and their mappings. Real functions and their basic properties. Continuity and discontinuity. The functions defined by recursion.
  3. More advanced properties of binary relations. Reflective, symmetric and transitive closure. Equivalences and partitions. The partially ordered sets and lattices. The Hasse diagrams.
  4. Algebras with one and two operations. Morphisms. Groups and fields. The lattice as a set with two binary operations. Boolean algebras.
  5. The basic properties of Boolean algebras. The duality and the set representation of a finite Boolean algebra.
  6. Predicates, formulas and the semantics of the propositional calculus. Interpretation  and  classification of formulas. The structure of the algebra of non-equivalent formulas. The syntaxis of the propositional calculus. Prenex normal forms of formulas. 
  7. Matrices and matrix operations. Determinant. Inverse and adjoint matrices. Determinant calculation methods.
  8. The vector space. Subspaces. The basis and the dimension. The coordinates of a vector. The transformation of the coordinates and the change of the basis. Linear mappings of vector spaces.
  9. Systems of linear equations. The Gauss and Gauss-Jordan elimination. The Frobenius theorem. The Cramer's Rule.
  10. The inner product. Orthonormal systems of vectors.  The orthogonal projection on a vector subspace. The cross product and the triple product.
  11. The elementary notions of the graph theory. Various representations of a graph.The Shortest path algorithm. The connectivity of graphs.
  12. The subgraphs. The isomorphism and the homeomorphism of graphs. Eulerian and Hamiltonian graphs. Planar and non-planar graphs.
  13. The trees and the spanning trees and their properties. The searching of the binary tree. Selected searching algorithms. Flow in an oriented graph.

Syllabus of numerical exercises

  • Practising and modelling of selected items of lectures.

Syllabus - others, projects and individual work of students

Five individual home-tasks/works - an instructor will inform.

Progress assessment

Pass out the practices in the prescribed range.

Controlled instruction

Pass out the practices.

Course inclusion in study plans

  • Programme IT-BC-3, field BIT, 1st year of study, Compulsory
Back to top