Faculty of Information Technology, BUT

Course details

Optics

OPD Acad. year 2017/2018 Winter semester

Electromagnetic waves and light. Fresnel's equations. Reflection at dielectric surfaces. Koherence, interference from thin films. Diffraction by 2D and 3D structures. Holography. Thermal radiation. Energy and light quantities. Image-forming systems. Analytical ray tracing, matrix concept. Photon. Stimulated and spontaneous emission. Lasers. Luminiscence, phosphors, fluorescence, phosphorescence. Scattering of light, Rayleygh's scattering.

Guarantor

Language of instruction

Czech

Completion

Examination (written+oral)

Time span

39 hrs lectures, 13 hrs projects

Assessment points

100 exam

Department

Lecturer

Instructor

Subject specific learning outcomes and competences

Students will learn theory of physical optics needed for computer graphics and general overview of other parts of optics.

Learning objectives

The goal of the course is to get the students acquainted with principles of physical optics needed for computer graphics and with aspects of modern optics.

Study literature

  • Hruška P.: Lecture 2012 notes
  • Malý P.: Optika, Karolinum 2008, ISBN 978-80-246-1342-0

Fundamental literature

  • Hecht E.: Optics, Addison-Wesley, London 2002, ISBN 0-321-18878-0
  • Goodman J. W.: Introduction to Fourier Optics, Roberts publishers, USA 2005, ISBN 0-9747077-2-4
  • Saleh B. E. A., Teich M. C,: Fundamentals of Photonics 2nd ed., Wiley, New York 2007, ISBN 0-471-83965-5
  • Smith F. G., King. T. A.:Optics and Photonics, Wiley, Chichester UK 2000, ISBN 0-471-48925-5
  • Schroeder G.: Technická optika, SNTL, Praha, ČR, 1981

Syllabus of lectures

  • Electromagnetic waves and light.
  • Light at the interface of two media, Fresnel's equations. Reflection at dielectric surfaces, linear and elliptical polarization. Polarizers.
  • Koherence. Interference from thin films. Interference filters. The Fabry-Perot interferometer.
  • Diffraction by edges, slits, gratings and 2D and 3D structures. Holography.
  • Thermal radiation. Energy and light quantities. Receptors, human eye. Spectral sensitivity of receptors. Filters and color dividers.
  • Elements of image-forming systems. Mirrors, prisms, lenses. The microscope, the telescope. The Fermat principle.
  • Analytical ray tracing. Matrix concept. Aperture and field stops. Magnification, resolving power.
  • Physical statistics. Photon. Stimulated and spontaneous emission. Inversion population. Lasers.
  • The essentials of luminiscence, phosphors, fluorescence, phosphorescence.
  • Scattering of light. Rayleigh's scattering.

Syllabus - others, projects and individual work of students

  • Individually assigned projects.

Course inclusion in study plans

Back to top