Faculty of Information Technology, BUT

Course details

Practical Aspects of Software Design

IVS Acad. year 2019/2020 Summer semester 5 credits

Fundamentals of Unix philosophy and their use in programming, the role of code testing and the test-driven development, component-oriented code, performance issues, profiling, distributed version management, parallel computing, big data, practical experience of software teams.

Guarantor

Deputy Guarantor

Language of instruction

Czech

Completion

Classified Credit (written)

Time span

26 hrs lectures, 26 hrs projects

Assessment points

30 half-term test, 70 projects

Department

Lecturer

Dytrych Jaroslav, Ing., Ph.D. (DCGM FIT BUT)
Grochol David, Ing. (DCSY FIT BUT)
Smrž Pavel, doc. RNDr., Ph.D. (DCGM FIT BUT)
Vaverka Filip, Ing. (DCSY FIT BUT)
Wiglasz Michal, Ing. (DCSY FIT BUT)

Instructor

Bartl Vojtěch, Ing. (DCGM FIT BUT)
Dytrych Jaroslav, Ing., Ph.D. (DCGM FIT BUT)
Grochol David, Ing. (DCSY FIT BUT)
Špaňhel Jakub, Ing. (DCGM FIT BUT)
Vaverka Filip, Ing. (DCSY FIT BUT)
Wiglasz Michal, Ing. (DCSY FIT BUT)

Course Web Pages

Subject specific learning outcomes and competences

Students will get acquainted with modern approaches to software development, having successfully completed the course, students will be able to take part in teams developing shared code, will know the tools helping the development of efficient and well-documented code as well as applications better reflecting the user's needs.

Generic learning outcomes and competences

Students will learn to work on projects. They will also improve their knowledge of modern development and documenting tools.

Learning objectives

To understand the process of software development in teams and to get acquainted with real applications that help to create and documenting component-based projects, to learn how to easily prototype graphical user interfaces, what are preconditions of successful free software and usability measurement.

Why is the course taught

The course IVS was established as a preparatory course for student collaboration on research at the FIT. It provides students with insight into the entire process of SW development from planning, design, implementation and testing to final product deployment in the customer's company. The graduate will know what each stage of SW development involves and what tools are used in it, which will allow him/her to be better oriented when choosing his / her specialization and other elective courses. An essential part of the course is the preparation of students for teamwork on SW development and familiarization with version control systems, as these are basic knowledge and skills for developing any larger SW.

Prerequisites

Study literature

  • Ken Schwaber and Mike Beedle Agile Software Development with Scrum Addision-Wesley, 2002
  • S. A. Babkin The Practice of Parallel Programming Create Space, 2010. https://www.createspace.com/3438465
  • BATH, Graham a Judy MCKAY. The software test engineer's handbook. Santa Barbara: Rocky Nook, 2008, xviii, 397 s. ISBN 978-1-933952-24-6.
  • STEPHENS, Matt a Doug, ROSENBERG. Design Driven Testing. 2010. ISBN 978-1-4302-2944-5.

Fundamental literature

Syllabus of lectures

  1. Introduction, practical rules for the writing of sustainable code and effective usage of IDE
  2. Software testing, TDD (Test-Driven Development) and its usage in team development
  3. Teamwork, communication, team data sharing, basics of project design and planning
  4. Distributed version control, GIT
  5. Documentation types, system documentation generated from the code, Component-based development and cross-platform libraries
  6. Code assembling, Make, Cmake a Qmake.
  7. User interfaces
  8. Issue tracking, debugging, bug tracking and QA
  9. Mid-term test
  10. Program deployment
  11. Algorithm optimization, parallelization and profiling
  12. Programming languages and paradigms, SWIG and integration of legacy code
  13. Invited experts from companies

Syllabus - others, projects and individual work of students

  1. Test definition (18 points)
  2. The project focused on team development (52 points)

Progress assessment

  • Mid-term test (30 points)
  • Projects (70 points in total)

Exam prerequisites

At least 50 points.

Schedule

DayTypeWeeksRoomStartEndLect.grpGroupsInfo
Tuelecturelectures D105 08:0009:50 1BIA 1BIB 2BIA 2BIB 3BIT xx

Course inclusion in study plans

  • Programme BIT, 1st year of study, Elective
  • Programme IT-BC-3, field BIT, 1st year of study, Elective
Back to top