Fakulta informačních technologií VUT v Brně

Detail předmětu

Neuronové sítě, adaptivní a optimální filtrace

QB4 Ak. rok 2019/2020 letní semestr

Předmět se v prvé části zabývá přehledem typů architektur neuronových sítí a podrobnou analýzou jejich vlastností. Součástí tohoto rozboru je využití neuronových sítí ve zpracování a rozpoznávání signálů a obrazů. Ve druhé části je předmět věnován teorii optimální detekce a restaurace signálu v klasické i zobecněné podobě, se zdůraznění společného základu této oblasti. Předmět upozorňuje na společná hlediska v oblasti neuronových sítí a v oblasti optimalizovaného zpracování signálu.

Okruhy otázek k SDZ

  1. Architektury a funkce neuronových sítí, řízené a neřízené učení, zobecňování znalostí
  2. Dopředné sítě, vícevrstvý perceptron, učení zpětným šířením chyby jako LMS problém
  3. Sítě s radiální bází
  4. Sitě se vzájemnými a zpětnými vazbami, Hopfieldovy sítě a Boltzmannův stroj
  5. Samoorganizující se systémy, Kohonenovy mapy
  6. Problém optimální detekce a restaurace signálů, modely zkreslení, dekonvoluce a nelin. filtrace
  7. Restaurace jako LMS problém, formulace a přístupy k řešení
  8. Klasická Wienerova filtrace, diskrétní Wiener-Levinsonova filtrace
  9. Kalmanova filtrace
  10. Adaptivní filtace, adaptační algoritmy

Garant předmětu

Jazyk výuky

česky

Zakončení

zkouška (ústní)

Rozsah

39 hod. přednášky

Bodové hodnocení

100 zkouška

Zajišťuje ústav

Přednášející

Získané dovednosti, znalosti a kompetence z předmětu

Teoretické znalosti z oblasti neuronových sítí a optimálního zpracování signálů, schopnost aplikace a příp. modifikace těchto metod pro konkrétní problémy.

Cíle předmětu

Získání znalostí z teorie neuronových sítí a teorie adaptivní a optimální filtrace, hledání společných hledisek obou oblastí

Požadované prerekvizitní znalosti a dovednosti

teorie signálu a systému, císlicové zpracování signálu (napr. predmety BCZA, MMZS)

Literatura studijní

  • J.Jan: Digital Signal Filtering, Analysis and Restoration. IEE Publishing, London, UK, 2000
  • B. Kosko (ed.): Neural Networks for signal processing. Prentice Hall 1992
  • Jan, J,: Číslicová filtrace, analýza a restaurace signálů. 2. rozš. vydání. VUTIUM Brno 2003

Literatura referenční

  • B. Kosko: Neural Networks and fuzzy systems. Prentice Hall 1992
  • B. Kosko (ed.): Neural Networks for signal processing. Prentice Hall 1992
  • S. Haykin: Neural Networks. Prentice Hall 1994
  • J.G.Proakis, et al.: Advanced digital signal processing. McMillan Publ. 1992
  • J.Jan: Digital Signal Filtering, Analysis and Restoration. IEE Publishing, London, UK, 2000
  • P.M.Clarkson: Optimal and Adaptive Signal Processing. CRC Press, 1993
  • S. Haykin: Adaptive Filter Theory. Prentice-Hall Int. 1991
  • V.K.Madisetti, D.B.Williams (eds.): The Digital Signal Processing Handbook. CRC Press & IEEE Press, 1998

Osnova přednášek

Výuka předmětu bude pouze formou samostudia doporučené literatury s ústni zkouškou na konci semestru (podrobné informace o látce a konkrétní literatuře budou zaslány přihlášeným studentům emailem).
  • Architektury a klasifikace neuronových sítí. Neuron jako procesor a klasifikátor, metody tréninku, nenaučitelné problémy
  • Dopředné sítě, jednoduchý a vícevrstvý perceptron. Učení - zpětné šíření chyby jako iterativní minimalizace střední kvadratické odchylky
  • Řízené a neřízené učení. Zobecňování znalostí a optimální stupeň tréninku
  • Sítě s vzájemnými vazbami. Hopfieldovy sítě, chování, stavový diagram, atraktory, učení. Sítě se skrytými uzly
  • Využití relaxační minimalizace "energie" pro optimalizační úlohy, využití sítě jako asociativní paměti. Stochastický neuron a simulované žíhání, Boltzmannův stroj
  • Rekursivní a Jordanovy sítě. Soutěživé učení
  • Kohonenovy mapy, asociativní učení, automatická lokální organizace, zjemnění klasifikace
  • Možnosti neuronových sítí jako signálových procesorů a analyzátorů, praktické aplikace ve zpracování a restauraci signálů a obrazů
  • Optimální detekce a restaurace signálu - přístupy. Nelineární "přizpůsobené" filtry
  • Model zkreslení, LMS-filtrace, diskretní Wienerův filtr v nestacionárním prostředí
  • Kálmánova filtrace ve skalární verzi, vektorové zobecnění ve stacionárním a nestacionárním prostředí
  • Adaptivní filtrace, adaptační algoritmy, rekursivní realizace adaptivní filtrace, filtrace metodou stochastického gradientu
  • Typické aplikace adaptivní filtrace. Srovnání konceptů optimální a adaptivní filtrace s neuronově orientovaným přístupem

Zařazení předmětu ve studijních plánech

  • Program VTI-DR-4, obor DVI4, libovolný ročník, volitelný
Nahoru