Fakulta informačních technologií VUT v Brně

Detail předmětu

Stochastické procesy

SSP FSI VUT SSP Ak. rok 2019/2020 letní semestr 4 kredity

Předmět obsahuje úvod do teorie náhodných procesů: Typy a základní vlastnosti, kovarianční funkce, spektrální hustota, stacionarita a ergodicita, příklady typických procesů, časové řady a jejich vyhodnocení, parametrické a neparametrické metody, identifikace period, ARMA procesy. Aplikace metod pro vypracování projektu vyhodnocení a predikci časových řad s podporou statistického software Statistica a Minitab.

Garant předmětu

Jazyk výuky

česky

Zakončení

zápočet+zkouška (kombinovaná)

Rozsah

26 hod. přednášky, 13 hod. pc laboratoře

Bodové hodnocení

51 zkouška, 49 projekty

Zajišťuje ústav

UM OSO FSI VUT

Přednášející

Cvičící

Dovednosti, znalosti a kompetence obecné

Studenti získají potřebné znalosti z významných partií teorie náhodných procesů, které jim umožní posuzovat a vytvářet stochastické modely technických jevů a procesů založené na těchto metodách a realizovat je na počítači.

Cíle předmětu

Cílem předmětu je seznámit studenty se základy teorie stochastických procesů a s používanými pravděpodobnostními metodami pro popis jejich dynamiky. Pozornost bude věnována zejména markovským procesům a stacionárním procesům a statistickému zpracování naměřených časových řad. Ve cvičení se studenti naučí na simulovaných nebo reálných datech prakticky aplikovat získané teoretické poznatky, a to například v oblastech analýzy spolehlivosti, hromadné obsluhy, analýzy procesů růstu a zániku apod.

Požadované prerekvizitní znalosti a dovednosti

Základy teorie pravděpodobnosti a matematické statistiky.

Literatura studijní

  • Cipra, T.: Analýza časových řad s aplikacemi v ekonomii. 1. vyd. Praha: SNTL - Nakladatelství technické literatury, 1986. 246 s.
  • Brockwell, P.J., Davis, R.A.: Time series: Theory and Methods. 2nd edition 1991. Hardcover: Corr. 6th printing, 1998. Springer Series in Statistics. ISBN 0-387-97429-6.
  • Hamilton, J.D.: Time series analysis. Princeton University Press, 1994. xiv, 799 s. ISBN 0-691-04289-6.
  • Anděl, J.: Statistická analýza časových řad. Praha: SNTL, 1976.
  • Ljung, L.: System Identification-Theory For the User. 2nd ed., PTR Prentice Hall: Upper Saddle River, 1999.
  • Brockwell, P.J., Davis, R.A.: Introduction to time series and forecasting. 2nd ed., New York: Springer, 2002. xiv, 434 s. ISBN 0-387-95351-5.

Osnova přednášek

  1. Stochastický proces, trajektorie, příklady, klasifikace stochastických procesů.
  2. Konzistentní systém distribučních funkcí, striktní a slabá stacionarita.
  3. Momentové charakteristiky: střední hodnota, autokorelační a parciální autokorelační funkce, spektrální hustota.
  4. Poissonův proces.
  5. Statistická analýza Poissonova procesu.
  6. Markovské procesy.
  7. Procesy zrodu a zániku.
  8. Markovské řetězce, pravděpodobnosti přechodů, vlastnosti.
  9. Homogenní Markovovy řetězce, klasifikace stavů a stacionární pravděpodobnosti.
  10. Časové řady, stacionarita, ergodicita.
  11. Odhady trendu a metody predikce.
  12. AR a MA procesy.
  13. ARMA procesy.

Osnova počítačových cvičení

  1. Statistický software Statistica, Statgraphics, Matlab.
  2. Načítání a vizualizace dat. Simulace.
  3. Popisná statistika časové řady.
  4. Momentové charakteristiky stochastického procesu.
  5. Vybrané vlastností Poissonova procesu - praktické užití.
  6. Reálné úlohy na Poissonův proces, aplikace v teorii spolehlivosti, analýza poruchovosti.
  7. Markovský proces - příklady, modely hromadné obsluhy, hledání limitních pravděpodobností stavů.
  8. Yuleův proces růstu - výpočet pravděpodobností stavů, úlohy na aplikace procesu růstu a zániku
  9. Markovské řetězce - praktické příklady, sestavení matice pravděpodobností přechodu, výpočet pravděpodobností stavů pro homogenní řetězec.
  10. Praktické určení klasifikace stavů, výpočet stacionárních pravděpodobností.
  11. Metoda klouzavých součtů pro časovou řadu, exponenciální vyrovnávání, odhady trendu.
  12. Výpočet autokorelační funkce a parciální autokorelační, proces AR(1) a MA(1).
  13. Identifikace modelu, výpočet predikce s využitím výpočetního software.

Kontrolovaná výuka

Cvičení je kontrolované a o náhradě zameškané výuky rozhoduje učitel cvičení.

Podmínky zápočtu

Aktivní účast ve cvičení, referáty na cvičení, prokázání základních dovedností pro praktickou analýzu dat na PC, kvalita vypracování samostatného projektu.

Zařazení předmětu ve studijních plánech

Nahoru