Detail předmětu

Zpracování přirozeného jazyka (v angličtině)

ZPJa Ak. rok 2019/2020 zimní semestr 5 kreditů

Východiska počítačového zpracování přirozeného jazyka, historická perspektiva, statistické metody zpracování přirozeného jazyka a aktuální přístupy založené na strojovému učení, zejména na modelech umělých neuronových sítí. Význam jednotlivých slov, lexikologie a lexikografie, slovníkové významy a neuronové modely pro výpočet vektorové reprezentace slov, klasifikace významů slov a jejich automatická inference. Složková a závislostní syntaxe, syntaktická víceznačnost, neuronové parsery vytvářející závislostní stromy. Jazykové modelování a jeho využití v obecných architekturách. Strojový překlad, historický pohled na statistické modely překladu, překladače založené na neuronových sítích a způsoby jejich vyhodnocování. Modely typu seq2seq a mechanismy pozornosti v neuronových modelech. Odpovídání na otázky v přirozeném jazyce s využitím neuronových modelů, komponenty pro vyhledávání informací v textu, porozumění textu, učení modelů z obecných textů. Klasifikace textů a její moderní aplikace, konvoluční neuronové sítě pro klasifikaci vět. Jazykově nezávislé reprezentace, texty ze sociálních sítí vymykající se normě, reprezentace částí slov, modely reprezentující informace z částí slov. Kontextuální reprezentace a předtrénování kontextuálně-závislých jazykových modulů. Sítě typu transformer a self-attention pro generativní modely. Komunikační agenti a generování přirozeného jazyka. Koreference a její automatické zpracování, souvislost s dalšími komponentami porozumění textu.

Garant předmětu

Zástupce garanta předmětu

Fajčík Martin, Ing. (UPGM FIT VUT)

Jazyk výuky

anglický

Zakončení

zkouška (písemná)

Rozsah

26 hod. přednášky, 26 hod. projekty

Bodové hodnocení

51 zkouška, 9 půlsemestrální test, 40 projekty

Zajišťuje ústav

Přednášející

Získané dovednosti, znalosti a kompetence z předmětu

Studenti se v rámci předmětu seznámí s problematikou počítačového zpracování přirozeného jazyka a porozumí celé škále modelů neuronových sítí, které jsou v oblasti NLP běžně aplikovány. Pochopí rovněž základní principy neuronových realizací mechanismů pozornosti a modelů pro reprezentaci významu promluv a tomu, jak mohou být tyto modulární komponenty kombinovány při tvorbě současných systémů NLP. Budou schopni implementovat a vyhodnocovat běžné neuronové modely pro různé aplikace NLP.

Dovednosti, znalosti a kompetence obecné

Studenti se zdokonalí v praktickém užívání nástrojů pro práci s modely hlubokých neuronových sítí a se zpracováním textových dat.

Cíle předmětu

Porozumět počítačovému zpracování přirozeného jazyka a naučit se aplikovat moderní metody strojového učení v této oblasti. Seznámit se s pokročilými architekturami hlubokých neuronových sítí, které jsou úspěšně používány v rozličných úkolech zpracování přirozeného jazyka. Porozumět použití neuronových sítí pro sekvenční jazykové modelování, jejich použití pro podmíněné jazykové modely a porozumění přístupů kombinujících tyto techniky s jinými mechanismy v pokročilých aplikacích.

Proč je předmět vyučován

Čím dál více lidí používá ve svém každodenním životě aplikace zpracování přirozeného jazyka (NLP) - překladače, virtuální asistenty apod. V posledních letech je většina úkolů NLP realizována prostřednictvím hlubokých neuronových sítí. V tomto kurzu se studenti mohou dozvědět, jak je počítač schopen překládat texty z jednoho jazyka do druhého, jak může rozpoznat, co se pisateli nějaké recenze líbí na novém produktu a co jej naopak zklamalo, jak mohou virtuální asistenti odpovídat na otázky na základě textu Wikipedie atd.

Požadované prerekvizitní znalosti a dovednosti

Dobrá znalost modelů umělých neuronových sítí a programování v jazyce Python.

Literatura studijní

  • Géron, Aurélien. Hands-on machine learning with Scikit-Learn and TensorFlow: concepts, tools, and techniques to build intelligent systems. " O'Reilly Media, Inc.", 2017.
  • Raaijmakers, Stephan. Deep Learning for Natural Language Processing. Manning, 2019.

Literatura referenční

  • Goldberg, Yoav. "Neural network methods for natural language processing." Synthesis Lectures on Human Language Technologies 10, no. 1 (2017): 1-309.
  • Deng, Li, and Yang Liu, eds. Deep Learning in Natural Language Processing. Springer, 2018.

Osnova přednášek

  1. Úvod, historie oboru, aplikace a moderní přístupy založené na hlubokém učení
  2. Významy slov a jejich vektorová reprezentace
  3. Závislostní syntaxe
  4. Jazykové modely
  5. Strojový překlad
  6. Modely typu seq2seq a pozornost (attention)
  7. Odpovídání na otázky v přirozeném jazyce
  8. Konvoluční neuronové sítě pro klasifikaci vět
  9. Informace z částí slov: modely typu subword
  10. Modelování kontextů použití: kontextuální reprezentace a předtrénování
  11. Sítě typu transformer a self-attention pro generativní modely
  12. Generování přirozeného jazyka
  13. Koreference a její automatické zpracování

Osnova ostatní - projekty, práce

  • Individuálně zadávaný projekt

Průběžná kontrola studia

  • Půlsemestrální test - až 9 bodů
  • Individuální projekt - až 40 bodů
  • Závěrečná písemná zkouška - až 51 bodů

Kontrolovaná výuka

Kontrolovaná výuka zahrnuje půlsemestrální test, individuální projekt a písemnou zkoušku. Půlsemestrální test nemá náhradní termín, závěrečná zkouška má dva možné náhradní termíny.

Podmínky zápočtu

  • Zpracování individuálního projektu

Rozvrh

DenTypTýdnyMístn.OdDoPSKSkupInfo
zkouška2020-01-17 E104 09:0010:50 1EIT 1MIT 2EIT 2MIT INTE 2nd term
přednáškavýuky N104 N105 09:0010:50 1EIT 1MIT 2EIT 2MIT INTE xx
zkouška2020-01-24 N104 12:0013:50 1EIT 1MIT 2EIT 2MIT INTE 3rd term
zkouška2020-01-10 E105 16:0017:50 1EIT 1MIT 2EIT 2MIT INTE 1st term

Zařazení předmětu ve studijních plánech

Nahoru