Detail předmětu

Ukládání a příprava dat

UPA Ak. rok 2019/2020 zimní semestr 5 kreditů

Předmět zavádí základní klasifikaci dat z pohledu získávání znalostí z dat a přibližuje v širší úrovni vybrané moderní databázové systémy s tím, že vybrané partie studuje i do hloubky --- jedná se o objektově-relační databáze, prostorové databáze včetně problematiky ukládání a indexace vícerozměrných dat, NoSQL databáze, XML a multimediální databáze, pokročilé možnosti dotazování nad relačními databázemi. Dále je vysvětlen proces získávání znalostí z dat a jeho jednotlivé kroky se zaměřením zejména na typické úlohy předzpracování dat před samotnou extrakcí potenciálně užitečných znalostí z dat. Proces získávání znalostí je ilustrován na případových studiích.

Garant předmětu

Zástupce garanta předmětu

Jazyk výuky

český

Zakončení

zkouška (písemná)

Rozsah

26 hod. přednášky, 6 hod. cvičení, 6 hod. pc laboratoře, 14 hod. projekty

Bodové hodnocení

60 zkouška, 20 půlsemestrální test, 20 projekty

Zajišťuje ústav

Přednášející

Cvičící

Aktuální informace

Vzhledem ke změnám v rozvrhu začne cvičení z UPA 20.11.201916:05

Získané dovednosti, znalosti a kompetence z předmětu

Studenti budou schopni klasifikovat data z pohledu získávání znalostí, ukládat a manipulovat data ve vhodných databázových systémech, rychle vyhledávat potřebné údaje, zkoumat vlastnosti dat a připravit je pro následnou extrakci znalostí.

Dovednosti, znalosti a kompetence obecné

- Student lépe zvládne práci s daty v různých situacích
- Student se zdokonalí v řešení malých projektů v malém týmu

Cíle předmětu

Vysvětlit základní klasifikaci dat a datových zdrojů, podat hlubší pohled na vybrané databázové systémy (objektově-relační, prostorové, NoSQL, XML a multimediální), včetně principů efektivních přístupových metod k datům, dále vysvětlit podstatu a jednotlivé kroky procesu získávání znalostí z dat se zaměřením na předzpracování dat a explorační analýzu.

Proč je předmět vyučován

Předmět si klade za cíl ukázat, jak na složitá data kolem nás, jak je uložit, jak se v nich orientovat, získat z nich užitečné charakteristiky a připravit je pro extrakci skrytých informací/znalostí aplikací metod strojového učení a jiných pokročilých metod analýzy.

Požadované prerekvizitní znalosti a dovednosti

Základy teorie relačního modelu dat. Formalizace návrhu relační databáze. Organizace dat na interní úrovni. Bezpečnost a integrita dat. Transakce. Konceptuální modelování a návrh relační databáze z konceptuálního modelu. Jazyk SQL. Základy počítačové grafiky. Základy výpočetní geometrie. Objektové paradigma. Základy statistiky a pravděpodobnosti.

Literatura studijní

  • Podklady k přednáškám (slajdy, skripty, apod.)
  • Lemahieu, W., Broucke, S., Baesens, B.: Principles of Database Management. Cambridge University Press. 2018, 780 p.
  • Kim, W. (ed.): Modern Database Systems, ACM Press, 1995, ISBN 0-201-59098-0
  • Melton, J.: Advanced SQL: 1999 - Understanding Object-Relational and Other Advanced. Morgan Kaufmann, 2002, p. 562, ISBN 1-558-60677-7
  • Shekhar, S., Chawla, S.: Spatial Databases: A Tour, Prentice Hall, 2002/2003, p. 262, ISBN 0-13-017480-7
  • Dunckley, L.: Multimedia Databases: An Object-Relational Approach. Pearson Education, 2003, p. 464, ISBN 0-201-78899-3
  • Han, J., Kamber, M.: Data Mining: Concepts and Techniques. Third Edition. Morgan Kaufmann Publishers, 2012, p. 703, ISBN 978-0-12-381479-1

Literatura referenční

  • Lemahieu, W., Broucke, S., Baesens, B.: Principles of Database Management. Cambridge University Press. 2018, 780 p.
  • Kim, W. (ed.): Modern Database Systems, ACM Press, 1995, ISBN 0-201-59098-0
  • Melton, J.: Advanced SQL: 1999 - Understanding Object-Relational and Other Advanced. Morgan Kaufmann, 2002, p. 562, ISBN 1-558-60677-7
  • Shekhar, S., Chawla, S.: Spatial Databases: A Tour, Prentice Hall, 2002/2003, p. 262, ISBN 0-13-017480-7
  • Dunckley, L.: Multimedia Databases: An Object-Relational Approach. Pearson Education, 2003, p. 464, ISBN 0-201-78899-3
  • Gaede, V., Günther, O.: Multidimensional Access Methods, ACM Computing Surveys, Vol. 30, No. 2, 1998, pp. 170-231. 
  • Han, J., Kamber, M.: Data Mining: Concepts and Techniques. Third Edition. Morgan Kaufmann Publishers, 2012, p. 703, ISBN 978-0-12-381479-1

Osnova přednášek

  1. Úvod: obsah předmětu, charakter dat, úvod k získávání znalostí z dat, rekapitulace historického vývoje databázových technologií
  2. Objektově relační DB, objektově-relační mapování, pokročilé vlastnosti SQL
  3. Prostorové DB: problematika uložení a zpracování
  4. Prostorové DB: způsoby řešení ukládání
  5. Indexace v prostorových DB I - bodové útvary
  6. Indexace v prostorových DB II - vícerozměrné útvary
  7. Půlsemestrální zkouška
  8. Multimediální a XML databáze
  9. NoSQL databáze
  10. Proces získávání znalostí z dat, předzpracování dat v procesu získávání znalostí - charakteristiky dat, exploratorní analýza.
  11. Předzpracování dat v procesu získávání znalostí - metody předzpracování.
  12. Základní úlohy získávání znalostí z dat a příklady odpovídajících metod
  13. Programovací jazyky používané pro získávání znalostí z dat a ukázkové případové studie získávání znalostí z dat

Osnova numerických cvičení

DEMO cvičení
  1. Objektově-relační a prostorové databáze, práce v nich, zvláštnosti užití
  2. Multimediální a XML databáze, indexace dat
  3. NoSQL databáze

Osnova počítačových cvičení

  1. Aplikační vazby na objektově relační databáze, aplikace v prostorových databázích
  2. Multimediální a XML databáze, indexace dat
  3. NoSQL databáze v aplikacích

Osnova ostatní - projekty, práce

  1. Vytvoření aplikace a demonstrace vlastností práce s nestrukturovanými i strukturovanými daty různé povahy.

Průběžná kontrola studia

  • Půlsemestrální zkouška, u které neexistuje náhradní, či opravný termín.
  • Řešení 1 projektu v průběhu semestru a jeho odevzdání ve stanoveném termínu.

Kontrolovaná výuka

  • Půlsemestrální zkouška - písemně, formou otázek, kde odpovědi se tvoří celou větou, neexistuje náhradní/opravný termín. (20 bodů)
  • Vypracování projektů - 1 projekt (vytvoření programu, dle zadání) s příslušnou dokumentací. (20 bodů)
  • Závěrečná zkouška se skládá z otázek, kde odpovědi se tvoří celou větou. Maximální hodnocení zkoušky je 60 bodů, přičemž pro získání bodů ze zkoušky je nutné zkoušku vypracovat tak, aby byla hodnocena nejméně 25 body, v opačném případě bude zkouška hodnocena 0 body. Zkouška má jeden řádný a dva opravné termíny. Řádný termín zkoušky bude realizován písemnou formou, opravné termíny budou realizovány formou písemnou nebo kombinovanou (tedy písemně i ústně v jeden den - ráno písemná, odpoledne ústní část). Forma opravných termínů zkoušky bude oznámena vždy po vyhodnocení předchozího termínu zkoušky, přičemž kombinovaná forma zkoušky může být zvolena tehdy, pokud se daného termínu zkoušky bude moci zúčastnit nejvýše 16 studentů.

Podmínky zápočtu

Student musí během semestru získat alespoň 50% bodů z možného maxima, tj. 20 bodů ze 40.
Pokud bude odhaleno plagiátorství nebo nedovolená spolupráce na projektech, či u půlsemestrální zkoušky, zápočet nebude udělen a dále bude zváženo zahájení disciplinárního řízení.

Rozvrh

DenTypTýdnyMístn.OdDoPSKSkupInfo
Pozkouška2020-01-06 D0206 D105 08:0010:50 1MIT 2MIT řádná
Útpřednáškavýuky E104 E105 E112 08:0009:50 1MIT 2MIT xx
Útzkouška2020-01-28 D0206 09:0011:50 1MIT 2MIT 2. oprava
Útzkouška2020-01-21 D105 12:0014:50 1MIT 2MIT 1. oprava
Stzkouška2019-11-20 C228 09:0009:50 1MIT prohlídka opravených písemek
Stcvičení3., 4., 9. výuky D105 16:0017:50 1MIT 2MIT xx
Čtpoč. lab3., 4., 5. výuky N203 N204 N205 14:0015:50 1MIT 2MIT xx
ostatní13. výuky N205 10:0014:50obhajoby projektů
poč. lab3., 4., 5. výuky N203 N204 N205 10:0011:50 1MIT 2MIT xx
poč. lab3., 4., 5. výuky N203 N204 N205 12:0013:50 1MIT 2MIT xx

Zařazení předmětu ve studijních plánech

Nahoru