Faculty of Information Technology, BUT

Course details

Intelligent Sensors

SEN Acad. year 2008/2009 Winter semester 5 credits

Elementary sensors, types of sensors, their parameters. Conductance, electronic components and production of the sensors. Measurement of physical quantities. Acquirement, transmission, and processing of the sensor data. Definition of the intelligent sensors. Sensor networks - communication, centralised and decentralised system of the mesurement chains, multiagent systems. Practical examples and future trends - nanosensors and biosensors.

Guarantor

Language of instruction

Czech, English

Completion

Credit+Examination (written)

Time span

26 hrs lectures, 4 hrs exercises, 4 hrs laboratories, 18 hrs projects

Assessment points

50 exam, 20 half-term test, 4 exercises, 4 labs, 22 projects

Department

Lecturer

Instructor

Subject specific learning outcomes and competences

To acquaint with the measurement of physical quantities. To learn how to convert physical quantities to electronic form using sensors. To learn how to transmit, process, and use acquired data.

Learning objectives

To inform about the measurement of the physical quantities. To learn how the physical quantities are converted to an electronic form using sensors. To learn how to transmit, process and use data.

Prerequisites

Prerequisite kwnowledge and skills

Valid schooling of Edict No. 50 (work with electrical devices) is needed.

Study literature

  1. Martinek, R.: Senzory v průmyslové praxi, BEN - technická literatura, 2004, ISBN 80-7300-114-4
  2. Fraden, J.: Handbook of Modern Sensors: Physics, Designs, and Applications, AIP Press, 2003, ISBN 0387007504
  3. Frank, R.: Understanding Smart Sensors, Artech House Publishers, 2000, ISBN 0890063117

Fundamental literature

  1. Martinek, R.: Senzory v průmyslové praxi, BEN - technická literatura, 2004, ISBN 80-7300-114-4
  2. Švec, J.: Příručka automatizační a výpočetní techniky, SNTL, 1975
  3. Fraden, J.: Handbook of Modern Sensors: Physics, Designs, and Applications, AIP Press, 2003, ISBN 0387007504
  4. Frank, R.: Understanding Smart Sensors, Artech House Publishers, 2000, ISBN 0890063117
  5. Brignell, J., White, N.: Intelligent Sensor Systems (Sensors), Institute of Physics Publishing, 1994, ISBN 0750302976
  6. Ristic, L.: Sensor Technology and Devices, Artech House Publishers, 1994, ISBN 0890065322

Syllabus of lectures

  1. Introduction - sensors, types of sensors, their parameters. Microelektronic and microelectromechanic systems.
  2. Electrical conductibility in different materials and components for the sensor production (semi-conductors, diodes, trsnsistors, ...), brief introduction to the sensor production.
  3. Selected types of the measurement of the physical quantities (position estimation, measurement of the pressure, flow, temperature, optical, electrical, chemical, and magnetical quantities).
  4. Basic sensing principles (function and physical principles) - how do the sensors work?
  5. Sensor data acquirement. Basic principles of the acquirement and transmition of the data (signals and busses).
  6. Data processing. Pattern recognition and classification.
  7. Intelligent sensors I. Definitions, examples.
  8. Intelligent sensors II. Complex sensors, biometric sensors (fingerprint scanners, retina scanners, etc.).
  9. Soft-Computing (fuzzy logic, neural networks, agents), use in the intelligent sensors.
  10. Sonsor networks I. Centralised and decentralised system of the measurement chains. Communication (IEEE 1415), distributed systems.
  11. Sensor networks II. Sensor networks as a multiagent systems.
  12. Practical examples of the intelligent sensors.
  13. Future of the intelligent sensors, trends (nanosensors, biosensors).

Syllabus of numerical exercises

  1. Theoretical calculations - measurement, errors.
  2. Theoretical calculations - selected measurement processes.

Syllabus - others, projects and individual work of students

  1. Processing of a project from the selected part of the course.

Progress assessment

  1. Written midterm test
  2. Participation and active work in laboratories + exercises
  3. Project

Exam prerequisites

Student must gain at least 15 points during the term.

Back to top