
A. Draw a Bayesian Network with 3 nodes A, B, and C, where random
variables A and B are marginally independent, but they are conditionally
dependent given variable C (i.e. so-called ”explaining away”). Explain
intuitively (e.g. on an example) what and how causes the dependency.

B. Assume some arbitrary joint distribution of 6 random variables p(x1,
x2, x3, z1, z2, z3). What operation will give us (in general for any such
distribution) marginal joint probability p(x1, x2, x3)?

C. Consider the factorization
p(x1, x2, x3, x4, x5) = p(x1)p(x2)p(x3|x1)p(x4|x1)p(x5|x4,x2).

Consider that all the random variables xi are discrete and that we know
all the distributions corresponding to the individual factors (i.e. we have
the corresponding tables with probabilities).

Let the symbol represent the sum over all possible values of the
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random variable xi. Using mathematical notation, express how can the
following probabilities be inferred most efficiently (i.e. use the right order
of sums and/or brackets). Notice that not all the factors (probability
tables) are necessary to evaluate the following probabilities.
(a) p(x1)
(b) p(x3)
(c) p(x5)
(d) p(x1|x2)
(e) p(x3|x1)
(f) p(x1|x3)

D. Write an equation expressing that variables a and b are conditionally
independent given variable c.

E. Draw the Bayesian Network corresponding to the factorization:
p(x1, x2, x3, x4, x5) = p(x1)p(x2)p(x3|x2)p(x4|x1,x2)p(x5|x4)



F. For each of the following statements, say whether the statement
holds true for the factorization (and the Bayesian Network) from the
previous questions and explain why (e.g. using d-separation).
(a) p(x1, x2) = p(x1)p(x2)
(b) p(x1, x4) = p(x1)p(x4)
(c) p(x1, x5|x3) = p(x1|x3)p(x5|x3)
(d) p(x1, x5|x4) = p(x1|x4)p(x5|x4)
(e) p(x3, x5|x4) = p(x3|x4)p(x5|x4)
(f) p(x1, x2|x5) = p(x1|x5)p(x2|x5)


