Midterm exam BAYa, group A - 16. 11. 2022,

- •	~
Login:	Signature:
208	51611d1 C

1. Let π_c be the probabilities of the categories c=1..C. The Maximum Likelihood estimates of these probabilities as parameters of the categorical distribution are: $\pi_c^{ML} = N_c/N$, where N_c is the number of training observations from category c and N is the total number of training observations. Outline how do we derive this formula? What is the objective function that we try to maximize? The full derivation will earn a bonus point.

2. Draw the Bayesian Networks for the Gaussian Mixture Model (GMM). Write the corresponding factorization for the joint distribution of the observed and hidden random variables x and z. Explain what distributions the individual factors correspond to. From this factorization, derive the equation for evaluating the GMM probability density function (i.e. the marginal probability density p(x)).

3. Expectation Maximization (EM) algorithm makes use of the following equality:

$$\ln p(\mathbf{X}|\boldsymbol{\eta}) = \sum_{\mathbf{Z}} q(\mathbf{Z}) \ln p(\mathbf{X}, \mathbf{Z}|\boldsymbol{\eta}) - \sum_{\mathbf{Z}} q(\mathbf{Z}) \ln q(\mathbf{Z}) - \sum_{\mathbf{Z}} q(\mathbf{Z}) \ln \frac{p(\mathbf{Z}|\mathbf{X}, \boldsymbol{\eta})}{q(\mathbf{Z})}$$

How is this equation used in the EM algorithm? What the symbols \mathbf{X}, \mathbf{Z} and $\boldsymbol{\eta}$ correspond to (in general, not just for GMM training)? What does the term $q(\mathbf{Z})$ represent? How is $q(\mathbf{Z})$ set in the E-step? How is $q(\mathbf{Z})$ used in the M-step? Which term from the equation is optimized in the M-step and how?

4. Write an equation expressing that variables a and b are conditionally independent given a variable c. Using basic rules of probability (product rule, sum rule, Bayes rule), provide proof that this equation holds for the Bayesian Network:

5. Draw the Markov Random Field graphical model for the distribution defined as

$$P(x_1, x_2, x_3, x_4, x_5) = \frac{1}{Z} \psi_a(x_1, x_2) \psi_b(x_1, x_3) \psi_c(x_2, x_4) \psi_d(x_3, x_4, x_5),$$

where ψ are some positive (potential) functions and Z is an appropriate normalizing constant.

- 6. For each of the following statements, say whether the statement holds true for the Markov Random Field from the previous questions and explain why.
 - (a) $p(x_1, x_5|x_3) = p(x_1|x_3)p(x_5|x_3)$
 - (b) $p(x_1, x_5|x_3, x_4) = p(x_1|x_3, x_4)p(x_5|x_3, x_4)$
 - (c) $p(x_3, x_4|x_1, x_5) = p(x_3|x_1, x_5)p(x_4|x_1, x_5)$
 - (d) $p(x_2, x_3|x_1, x_5) = p(x_2|x_1, x_5)p(x_3|x_1, x_5)$

7. What is sum-product message passing algorithm (or Belief Propagation)? What problems does it solve? What limitations does it have? What is the fundamental idea behind the sum-product message passing algorithm that makes it more efficient than the brute-force approach?

- 8. Consider the factorization $p(x_1, x_2, x_3, x_4, x_5) = p(x_1)p(x_2)p(x_3|x_1)p(x_4|x_1)p(x_5|x_4, x_2)$. Consider that all the random variables x_i are discrete and that we know all the distributions corresponding to the individual factors (i.e. we have the corresponding tables with probabilities). Let the symbol \sum_{x_i} represent the sum over all possible values of the random variable x_i . Using mathematical notation, express how can the following probabilities be inferred most efficiently (i.e. use the right order of sums and/or brackets). Notice that not all the factors (probability tables) are necessary to evaluate the following probabilities.
 - (a) $p(x_3)$
 - (b) $p(x_5)$
 - (c) $p(x_1|x_2)$
 - $(d) p(x_1|x_3)$
 - (e) $p(x_3, x_4)$
 - (f) $p(x_3, x_4|x_1)$