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Freqguentist vs. Bayesian

* Frequentist point of view:

— Probability is the frequency of an event occurring in a
large (infinite) number of trials

— E.g. When flipping a coin many times, what is the
proportion of heads?

« Bayesian
— Inferring probabilities for events that have never
occurred or believes which are not directly observed

— Prior believes are specified in terms of prior
probabilities

— Taking into account uncertainty (posterior distribution)
of the estimated parameters or hidden variables in
our probabilistic model.



Simple classification problem —I.

- Simple example of learning a probabilistic model for maximum
a-posteriori classification
— to introduce classification as a basic problem from machine learning field

— to understand frequentist’s view of “probability” and to show its limitations as
compared to the Bayesian approaches

— to refresh basics from probability theory

- The task is to classify an object (grenade or apple) given an
observation (discrete weight category)
— Itis heavy. Is it grenade or apple?

« Let's have 150 observations as training data
— Table of observation counts for each class and weight category

1 |6 |12 |15 |12 | 2 | 2 |4

'iz} 22 |50 |14 | 6 | 3 | 1 [0

lightest | lighter light middle heavy heavier | heaviest
00-01{01-02({02-03(03-04|04-05|05-06|0.6-0.7 [kq]




Simple classification problem — Il.

« Let's estimate joint probabilities P(class, observation)

— normalizing the counts by the total count gives Maximum likelihood (ML)

estimates (see later): P(grenade, heavy) = %

— We need many observations to obtain robust estimates this way.
— How certain can we be about correctness of these estimates?

« Maximum a-posteriori classification rule:
— given an observation select the most likely class

— l.e. select class with highest posterior probability P(class|observation)

12

— ML estimate: P(grenade|heavy) = ——

1 6 12 15 12 2 2 S0
150 150 150 150 150 150 150 150

i 4 22 50 14 6 3 1 100
150 150 150 150 150 150 150 | 150

lightest | lighter light middle heavy heavier | heaviest
00-01/01-02|02-03({03-04|04-05|05-0.6|0.6-0.7 [kd]




Basic rules of probability theory — 1.

Sum rule:

PC) = ), P(y)

Product rule:
P(x,y) = P(x|y)P(y) = P(y|x)P(x)

Bayes rule:
P(x|y)P(y)

P(x)

P(ylx) =



Basic rules of probabillity theory — II.

e Sum rule;

 Product rule:

A

12 6 18
P(heavy) = P(grenade, heavy) + P(apple, heavy) = 50 + 150 = 150
P(grenade) = Z p de,x) = =
grenade) = ) (grenade, x) = 150
P de, h =P de|h YP(h _le 181
(grenade, heavy) = P(grenade|heavy)P (heavy) = 18150 ~ 150
P( de, h )=P(h de)P( d)—1250—12
grenade, heavy) = eavy|grenade)P(grenade) = 20150 — 150
1 6 12 15 12 2 2 50
150 150 150 150 150 150 150 150
4 22 50 14 6 3 1 100
150 150 150 150 150 150 150 150
lightest | lighter light middle heavy heavier | heaviest
0.0-0.101-02|02-03|03-04|04-05|05-0.6|0.6-0.7 [kg]




Basic rules of probability theory — llI.

« Bayes rule:

Posterior probability Likelihood Prior probability

N, I \V g

P(heavy|grenade)P(grenade
P(grenade|heavy) = ( Y19 )P(g )

« The evidence can be evaluated using the sum and product rules in
terms of likelihoods and priors:

P(heavy) = P(heavy|grenade)P(grenade) + P(heavy|apple)P(apple)

- Bayes rule for calculating the class posterior may not seem very useful
now, but it will be useful in case continuous valued observations.



Continuous random variables

* P(X) —probability
* p(X) —probability density function

b
P(x € (a,b)) = f p(x) dx

p(X)

Sum rule:

p(x) = fp(x,y) dy




Classification with continuous
observations

grenade apple

> p(observation|class)

> observation (e. g.weight)

Maximum a-posteriori classification rule says: select the more likely class

p(observation|class)P(class)

P(cl b ti =
(class|observation) > (observation)

P(observation) = z p(observation|class)P(class)

class



Multivariate observations

From now, univariate observations will be denoted as x and
multivariate as X = [xq, x5, ... Xxp| = [weight, diameter, ...]

2> p(X|class)




Estimation of parameters

» Usually, we do not know the true distributions p(x|class)

> p(x|class)




> p(x|class)

Estimation of parameters

... we only see some training examples.

Let’s decide for some parametric model for p(x|class)
(e.g. Gaussian distribution) and estimate its parameters from the
data.

silence unvoiced voiced

> X

* Here, we are using the frequentist approach: Estimated
distributions tell us that observation X will be more likely as we see
more similar observations in the training data.

« From now, lets forget about classes. We will concentrate just on
estimating probability density functions (e.g. one for each class).



Gaussian distribution (univariate)

p(x) = N(x;p,0%) =

99.7% of the data are within
3 standard deviations of the mean
95% within
2 standard deviations
68% within
<— 1 standard —>

deviation

-

1 _(x—p)*
e 202
\V2mo?

ML estimates of parameters




Why Gaussian distribution?

« Simple and easy to deal with
— Just a quadratic function in log domain

log(2ma?) 1 1 u u?
log]\f(x;,u,cz)z— 5 —ZT‘_Z(X—,M)ZZ—T‘_Z +§X—T‘_2+K

— Log likelihood of observed sequence x = [xq, x5, X3, ... Xy ] IS

log p(xlu, 2)—1og]_[N<xn,u, 2)—zlogw<xn,u, 2)

=_ﬁ2 Z ‘N(m”)

Sufficient statistics
(second, first and zero order)




Why Gaussian distribution?

Naturally occurring

Central limit theorem: Summing values of many

independently generated random variables gives

Gaussian distributed observations

Examples:
— Summing outcome of N dices

— Galton’s board
https://www.youtube.com/watch?v=03tx4v0i7MA
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Gaussian distribution (multivariate)

p(x1,...,Xp) = " .
N ) = p 2 I (x—p)
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Maximum likelihood estimation
of parameters

Let’'s choose a parametric distribution p(x|n) with parameters n
— Gaussian distribution with parameters p, o2

... and let’s have some observed training data X = [x4, X5, ..., Xy ],
which we assume to be i.i.d. generated from this distribution.

We might obtain maximum likelihood estimates of the parameters
™ML by maximizing the likelihood of the observed data

N
Mt = arg maxp(X|n) = arg maxnp(xnln)
n T h=1

Later, we will see that, under some assumptions, this estimates gives
us the most likely parameters.



ML estimate for Gaussian

arg maxp(x|u, 0?) = arg maxlog p(x|u, 0%) = arg maxz log NV (x,,; 1, 02)
w02 n,o2 o
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Categorical distribution

-,
i 4 22 50 14 6 3 1 [uo
lightest | lighter light middle heavy heavier | heaviest
00-01  01-02 02-03 03-04 04-05 05-06 06-0.7] [kq]
p(x|m) = Cat(x|m) = m,

* Also referred to as Discrete distribution
« Special binary case is Bernoulli distribution

e x € {lightest,lighter, light, middle, heavy, heavier, heaviest}
or x can be simply the index of a category x € {1,2, ..., C}

e m=|m,m,,.., Tc] - probabilities of the categories are the parameters
» Likelihood of an observed training set x = [x4, x5, ...

P(Xln)=1_[Cat(xn|1t)_1_[nxn 1_[ me

where m, is number of observations from category C.
— (e.g. the numbers from the table)



ML estimate for Categorical

N
arg max p(x|m) = arg max log p(x|m) = arg max log 1_[ Cat(x,|m)
T T w

n=1
me
= arg max log T, ¢ = arg max m,logm,
Y [A w
c c

We need to use Lagrange multiplier A to enforce the constraint )., 7, = 1

0 m,
aT[C kalogﬂk—ﬂ Zﬂk—l :T[_C_A:O
k k
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