
Bayesian Models in Machine Learning

Graphical Models and Inference

Lukáš Burget, Mireia Diez Sánchez

BAYa lectures, October 2024

Bayesian Networks (BN)
• The graph corresponds to a particular

factorization of a joint probability distribution
over a set of random variables

• Nodes are random variables, but the graph
does not say what are the distributions of the
variables

• The graph represents a set of distributions that
conform to the factorization

• It is recipe for building more complex models
out of simpler probability distributions

• Describes the generative process
– To generate a sample form the joint distribution,

sample variables for the nodes with no incoming arcs
first and then continue sampling variables conditioned
on already sampled values.

• Generally no closed form solutions for
inferences in such models (see later)

We follow (and use examples from) Chapter 8. of C.M.Bishop: Pattern Recognition and Machine Learning

Simple BN example

𝑃(𝐶 = 𝑇)

0.5

𝐶𝑙𝑜𝑢𝑑𝑦

𝑅𝑎𝑖𝑛

𝑊𝑒𝑡 𝑔𝑟𝑎𝑠𝑠

𝑆𝑝𝑟𝑖𝑛𝑘𝑙𝑒𝑟
𝑃(𝑅 = 𝑇 𝐶)

0.8 𝑇

0.2 𝐹

𝑃(𝑆 = 𝑇 𝐶)

0.1 𝑇

0.5 𝐹

𝑃(𝑊 = 𝑇 𝑆, 𝑅)

0.99 𝑇 𝑇

0.9 𝑇 𝐹

0.9 𝐹 𝑇

0.0 𝐹 𝐹

𝑃(𝑅 = 𝐹 𝐶)

0.2 𝑇

0.8 𝐹

⇒

• Simple example with discrete binary
random variable

• Distributions can be described by tables
with (conditional) probabilities

• More practical examples will come later

Example from: Russel, Norvig: AI –A modern approach

𝑃(𝐶, 𝑆, 𝑅,𝑊) = 𝑃 𝐶 𝑃(𝑆|𝐶)𝑃(𝑅|𝐶)𝑃(𝑊|𝑆, 𝑅)

Example 2: Am I out of fuel?

𝐵- Battery (0=flat, 1=fully charged)

𝐹 - Fuel Tank (0=empty, 1=full)

𝐺 - Fuel Gauge Reading (0=empty, 1=full)
and hence

Note that 𝑝 𝐵 and 𝑝 𝐹 are independent ⇒ 𝑝 𝐵, 𝐹 = 𝑝 𝐵 𝑝 𝐹

Example 2: Am I out of fuel?

where

𝑝 𝐺 𝐹 =෍

𝐵

𝑝 𝐺, 𝐵 𝐹 =෍

𝐵

𝑝 𝐺 𝐵, 𝐹 𝑝(𝐵)

Probability of an empty tank increased by observing 𝐺 = 0.

Let us make some simple

inference with this probabilistic
model:

Bayes ruleBayes rule

Example 2: Am I out of fuel?

Probability of an empty tank
reduced by observing 𝐵 = 0.
This referred to as “explaining

away”.

𝐹 is not conditionally independent of 𝐵 given 𝐺

𝑃 𝐹 𝐺, 𝐵 ≠ 𝑃 𝐹|𝐺

𝑃 𝐹, 𝐵 𝐺 ≠ 𝑃 𝐹|𝐺 𝑃 𝐵|𝐺

Conditional independence

• 𝑎 is statistically independent of 𝑏 ⇒

𝑃 𝑎, 𝑏 = 𝑃 𝑎 𝑃 𝑏

• 𝑎 is (conditionally) independent of 𝑏 given 𝑐 ⇒

𝑃 𝑎 𝑏, 𝑐 = 𝑃 𝑎|𝑐

or equivalently
𝑃 𝑎, 𝑏 𝑐 = 𝑃 𝑎|𝑏, 𝑐 𝑃 𝑏|𝑐

= 𝑃 𝑎|𝑐 𝑃 𝑏|𝑐

Conditional independence
• Bayesian Networks allow us to see conditional independence

properties.

• Blue nodes corresponds to observed random variables and empty
nodes to latent (or hidden) random variables

But the opposite is true for:

𝑃 𝑎, 𝑏 ≠ 𝑃 𝑎 𝑃 𝑏
𝑃 𝑎, 𝑏 𝑐 = 𝑃 𝑎 𝑐 𝑃 𝑏 𝑐

Naturaly also

𝑃 𝑎 𝑏, 𝑐 = 𝑃 𝑎 𝑐
𝑃 𝑏 𝑎, 𝑐 = 𝑃 𝑏 𝑐

Conditional independence - proof
For example, Bayesian Network:

corresponds to factorization:

𝑃 𝑎, 𝑏, 𝑐 = 𝑃 𝑏 𝑐 𝑃 𝑐 𝑎 𝑃 𝑎

Using product rule

𝑃 𝑎, 𝑏, 𝑐 = 𝑃 𝑎, 𝑏 𝑐 𝑃 𝑐

therefore

𝑃 𝑎, 𝑏 𝑐 =
𝑃 𝑎, 𝑏, 𝑐

𝑃 𝑐
=
𝑃 𝑐 𝑎 𝑃 𝑏 𝑐 𝑃 𝑎

𝑃 𝑐
=
𝑃 𝑐 𝑎 𝑃 𝑎

𝑃 𝑐
𝑃 𝑏 𝑐

= 𝑃 𝑎 𝑐 𝑃 𝑏 𝑐

But

𝑃 𝑎, 𝑏 = 𝑃 𝑎 ෍

𝑐

𝑃 𝑐 𝑎 𝑃 𝑏 𝑐 = 𝑃 𝑎 𝑃 𝑏 𝑎 ≠ 𝑃 𝑎 𝑃 𝑏

𝑃 𝑎 𝑐 by

Bayes rule

“Explaining away” effect

But the opposite is true in this case:

𝑃 𝑎, 𝑏, 𝑐 = 𝑃 𝑎 𝑃 𝑏 𝑃 𝑐|𝑎, 𝑏

𝑃 𝑎, 𝑏 =෍

𝑐

𝑃 𝑎, 𝑏, 𝑐 = 𝑃 𝑎 𝑃 𝑏 ෍

𝑐

𝑃 𝑐|𝑎, 𝑏

1

= 𝑃 𝑎 𝑃 𝑏

but

𝑃 𝑎, 𝑏 𝑐 =
𝑃 𝑎, 𝑏, 𝑐

𝑃 𝑐
=
𝑃(𝑏)𝑃 𝑎 𝑃 𝑐 𝑎, 𝑏

𝑃 𝑐
≠ 𝑃 𝑎 𝑐 𝑃 𝑏 𝑐

d-separation

• Let 𝐴, 𝐵 and 𝐶 be disjoint subsets of nodes

• Any path from a node in 𝐴 to a node in 𝐵 is
blocked by 𝐶 if there are arrows on the path
meeting
– head-to-tail or tail-to-tail at a node from 𝐶, or

– head-to-head at a node not from 𝐶 that also
does not have any descendants from 𝐶

• If all the path are blocked this way, 𝐴 and 𝐵
are said to be d-separated by 𝐶 which
implies conditional independence:

𝑝 𝐴, 𝐵 𝐶 = 𝑝 𝐴 𝐶 𝑝 𝐵 𝐶

d-separation: Examples

All path between nodes 𝑥1, 𝑥7 are blocked

by observed nodes 𝑥4, 𝑥5 ⇒
𝑃 𝑥1, 𝑥7 𝑥4, 𝑥5 = 𝑃 𝑥1 𝑥4, 𝑥5 𝑃 𝑥7 𝑥4, 𝑥5

Path between nodes 𝑥1, 𝑥3 is

unblocked by observing node 𝑥7 ⇒
𝑃 𝑥1, 𝑥3 𝑥7 ≠ 𝑃 𝑥1 𝑥7 𝑃 𝑥3 𝑥7

d-separation: Examples II.
𝐶

𝑅

𝑊

𝑆

• 𝑆 and 𝑅 are not independent
– P 𝑆, 𝑅 ≠ 𝑃 𝑆 𝑃 𝑅

• … but are conditionally independent given (observed) 𝐶
– 𝑃 𝑆, 𝑅|𝐶 = 𝑃 𝑆|𝐶 𝑃 𝑅|𝐶

– Therefore, also 𝑃 𝑅|𝑆, 𝐶 =
𝑃 𝑆,𝑅|𝐶

𝑃 𝑆|𝐶
= 𝑃 𝑅|𝐶

• … but become again dependent when observing also 𝑊
– P 𝑆, 𝑅|𝐶,𝑊 ≠ 𝑃 𝑆|𝐶,𝑊 𝑃 𝑅|𝐶,𝑊

𝐶

𝑅

𝑊

𝑆

𝐶

𝑅

𝑊

𝑆

Example of inference in BN
• What is the probability that it rains given that sprinkler is on 𝑃(𝑅 =𝑇|𝑆 =𝑇)?

• We know how to evaluate joint distribution

𝑃(𝐶, 𝑆, 𝑅,𝑊) = 𝑃 𝐶 𝑃(𝑆|𝐶)𝑃(𝑅|𝐶)𝑃(𝑊|𝑆, 𝑅)

• Using Bayes rule:

• To calculate 𝑃 𝑅, 𝑆 we use sum rule to marginalize out (sum over all

values of) variables 𝑊 and 𝐶➔ brute force marginalization.

𝐶

𝑅

𝑊

𝑆

𝑃 𝑅=𝑇 𝑆 = 𝑇 =
𝑃 𝑅=𝑇,𝑆 =𝑇

𝑃 𝑆=𝑇
=

𝑃 𝑅=𝑇,𝑆 =𝑇

𝑃 𝑅=𝑇,𝑆 =𝑇 + 𝑃 𝑅=𝐹,𝑆 =𝑇

𝑃 𝑅=𝑇,𝑆 =𝑇 =𝑃 𝐶 =𝑇 𝑃 𝑆=𝑇 𝐶 =𝑇 𝑃 𝑅=𝑇 𝐶 =𝑇 𝑃 𝑊=𝑇 𝑅=𝑇,𝑆 =𝑇
+𝑃 𝐶 =𝑇 𝑃 𝑆=𝑇 𝐶 =𝑇 𝑃 𝑅=𝑇 𝐶 =𝑇 𝑃 𝑊=𝐹 𝑅=𝑇,𝑆 =𝑇
+𝑃 𝐶 =𝐹 𝑃 𝑆=𝑇 𝐶 =𝐹 𝑃 𝑅=𝑇 𝐶 =𝐹 𝑃 𝑊=𝑇 𝑅=𝑇,𝑆 =𝑇
+𝑃 𝐶 =𝐹 𝑃 𝑆=𝑇 𝐶 =𝐹 𝑃 𝑅=𝑇 𝐶 =𝐹 𝑃 𝑊=𝐹 𝑅=𝑇,𝑆=𝑇

𝑃 𝑅=𝐹,𝑆 =𝑇 can bye calculated similarly

𝑃 𝑅=𝑇,𝑆=𝑇 =𝑃 𝐶=𝑇 𝑃 𝑆=𝑇 𝐶=𝑇 𝑃 𝑅=𝑇 𝐶=𝑇 𝑃 𝑊=𝑇 𝑅=𝑇,𝑆=𝑇
+𝑃 𝐶=𝑇 𝑃 𝑆=𝑇 𝐶=𝑇 𝑃 𝑅=𝑇 𝐶=𝑇 𝑃 𝑊=𝐹 𝑅=𝑇,𝑆=𝑇
+𝑃 𝐶=𝐹 𝑃 𝑆=𝑇 𝐶=𝐹 𝑃 𝑅=𝑇 𝐶=𝐹 𝑃 𝑊=𝑇𝑅=𝑇,𝑆=𝑇
+𝑃 𝐶=𝐹 𝑃 𝑆=𝑇 𝐶=𝐹 𝑃 𝑅=𝑇 𝐶=𝐹 𝑃 𝑊=𝐹 𝑅=𝑇,𝑆=𝑇
=0.5 ⋅ 0.1 ⋅ 0.8 ⋅ 0.99
+0.5 ⋅ 0.1 ⋅ 0.8 ⋅ 0.01
+0.5 ⋅ 0.5 ⋅ 0.2 ⋅ 0.99
+0.5 ⋅ 0.5 ⋅ 0.2 ⋅ 0.01 = 0.09

𝑃 𝑅=𝐹,𝑆=𝑇 =𝑃 𝐶=𝑇 𝑃 𝑆=𝑇 𝐶=𝑇 𝑃 𝑅=𝐹 𝐶=𝑇 𝑃 𝑊=𝑇 𝑅=𝐹,𝑆=𝑇
+𝑃 𝐶=𝑇 𝑃 𝑆=𝑇 𝐶=𝑇 𝑃 𝑅=𝐹 𝐶=𝑇 𝑃 𝑊=𝐹 𝑅=𝐹,𝑆=𝑇
+𝑃 𝐶=𝐹 𝑃 𝑆=𝑇 𝐶=𝐹 𝑃 𝑅=𝐹 𝐶=𝐹 𝑃 𝑊=𝑇 𝑅=𝐹,𝑆=𝑇
+𝑃 𝐶=𝐹 𝑃 𝑆=𝑇 𝐶=𝐹 𝑃 𝑅=𝐹 𝐶=𝐹 𝑃 𝑊=𝐹 𝑅=𝐹,𝑆=𝑇
=0.5 ⋅ 0.1 ⋅ 0.2 ⋅ 0.9
+0.5 ⋅ 0.1 ⋅ 0.2 ⋅ 0.1
+0.5 ⋅ 0.5 ⋅ 0.8 ⋅ 0.9
+0.5 ⋅ 0.5 ⋅ 0.8 ⋅ 0.1 = 0.21

𝑃 𝑅=𝑇 𝑆 = 𝑇 =
𝑃 𝑅=𝑇,𝑆=𝑇

𝑃 𝑅=𝑇,𝑆=𝑇 + 𝑃 𝑅=𝐹,𝑆=𝑇
=

0.09

0.09 + 0.21
= 0.3

Brute force inference in BN
• What is the probability that it rains given that sprinkler is on 𝑃(𝑅 =𝑇|𝑆 =𝑇)?

𝐶

𝑅

𝑊

𝑆

𝑃(𝐶 = 𝑇)

0.5

𝑃(𝑆 = 𝑇 𝐶)

0.1 𝑇

0.5 𝐹

𝑃(𝑊 = 𝑇 𝑆, 𝑅)

0.99 𝑇 𝑇

0.9 𝑇 𝐹

0.9 𝐹 𝑇

0.0 𝐹 𝐹

𝑃(𝑅 = 𝑇 𝐶)

0.8 𝑇

0.2 𝐹

Optimized inference in BN
• What is the probability of rain given a known state of the sprinkler 𝑃(𝑅|𝑆)?

• Using a more general and compact notation in terms of random variables:

𝑃 𝑅, 𝑆 =෍

𝐶

෍

𝑊

𝑃 𝐶 𝑃 𝑆 𝐶 𝑃 𝑅 𝐶 𝑃 𝑊 𝑅, 𝑆

• This can be simplified using distributive property of multiplication:

𝑃 𝑅, 𝑆 =෍

𝐶

𝑃 𝐶 𝑃 𝑆 𝐶 𝑃 𝑅 𝐶 ෍

𝑊

𝑃 𝑊 𝑅, 𝑆

1

𝑃 𝑅 𝑆 =
𝑃 𝑅, 𝑆

σ𝑅 𝑃 𝑅, 𝑆
=

σ𝐶 𝑃 𝐶 𝑃 𝑆 𝐶 𝑃 𝑅 𝐶

σ𝑅σ𝐶 𝑃 𝐶 𝑃 𝑆 𝐶 𝑃 𝑅 𝐶
=

σ𝐶 𝑃 𝐶 𝑃 𝑆 𝐶 𝑃 𝑅 𝐶

σ𝐶 𝑃 𝐶 𝑃 𝑆 𝐶 σ𝑅 𝑃 𝑅 𝐶

1
• To evaluate 𝑃 𝑅 𝑆 , we need only 6 multiplication, 2 additions and 1 division

as compared to brute force 24 multiplications, 7 additions and 1 division

• We do not need table 𝑃 𝑊 𝑅, 𝑆 at all to infer 𝑃 𝑅 𝑆

Summing over all

possible values of 𝐶
(i.e. True, False)

Example II.
• Probability of rain given that it is cloudy, and sprinkler is on 𝑃 𝑅|𝐶, 𝑆 ?

𝑅 and 𝑆 are conditionally independent given 𝐶 and therefore 𝑃 𝑅|𝑆, 𝐶 = 𝑃 𝑅|𝐶
as analyzed on slide d-separation: Examples II.

𝐶

𝑅

𝑊

𝑆

𝑃 𝑅, 𝑆, 𝐶 =෍

𝑊

𝑃 𝐶 𝑃 𝑆 𝐶 𝑃 𝑅 𝐶 𝑃 𝑊 𝑅, 𝑆

= 𝑃 𝐶 𝑃 𝑆 𝐶 𝑃 𝑅 𝐶 ෍

𝑊

𝑃 𝑊 𝑅, 𝑆

1

𝑃 𝑅 𝑆, 𝐶 =
𝑃 𝑅, 𝑆, 𝐶

𝑃 𝑆, 𝐶
=

𝑃 𝑅, 𝑆, 𝐶

σ𝑅𝑃 𝑅, 𝑆, 𝐶
=

𝑃 𝐶 𝑃 𝑆 𝐶 𝑃 𝑅 𝐶

𝑃 𝐶 𝑃 𝑆 𝐶 σ𝑅𝑃 𝑅 𝐶

1

= 𝑃 𝑅 𝐶

𝑃(𝑅 = 𝑇 𝐶)

0.8 𝑇

0.2 𝐹

Example III.
Probability of rain given being cloudy, sprinkler on and wet grass 𝑃 𝑅|𝐶, 𝑆,𝑊 ?

𝐶

𝑅

𝑊

𝑆

𝑃(𝑅 = 𝑇 𝐶)

0.8 𝑇

0.2 𝐹

𝑃(𝑊 𝑆, 𝑅)

0.99 𝑇 𝑇

0.9 𝑇 𝐹

0.9 𝐹 𝑇

0.0 𝐹 𝐹

• As analyzed before, variables 𝑅 and 𝑆 are conditionally dependent given 𝐶 and 𝑊,

and therefore 𝑃 𝑅|𝑆, 𝐶,𝑊 depends on all the other variables

𝑃 𝐶, 𝑆, 𝑅,𝑊 = 𝑃 𝐶 𝑃 𝑆 𝐶 𝑃 𝑅 𝐶 𝑃 𝑊 𝑆, 𝑅

𝑃 𝑅 𝑆, 𝐶,𝑊 =
𝑃 𝑅, 𝑆, 𝐶,𝑊

𝑃 𝑆, 𝐶,𝑊
=

𝑃 𝑅, 𝑆, 𝐶,𝑊

σ𝑅𝑃 𝑅, 𝑆, 𝐶,𝑊

=
𝑃 𝐶 𝑃 𝑆 𝐶 𝑃 𝑅 𝐶 𝑃 𝑊 𝑆, 𝑅

𝑃 𝐶 𝑃 𝑆 𝐶 σ𝑅 𝑃 𝑅 𝐶 𝑃 𝑊 𝑆, 𝑅
=

𝑃 𝑅 𝐶 𝑃 𝑊 𝑆, 𝑅

σ𝑅𝑃 𝑅 𝐶 𝑃 𝑊 𝑆, 𝑅

Examples of Bayesian Networks

• Some practical examples of BN (see the following slides)

– Gaussian Mixture Model

• Simple probability density model with discrete latent variable

– Hidden Markov Model

• Dynamic BN (DBN) modeling distribution of sequences

– Probabilistic Linear Discriminant Analysis

• Example of BN with continuous latent variables

Gaussian Mixture Model (GMM)

where

𝑝 𝑥|𝜼 =෍
𝑐
𝒩 𝑥; 𝜇𝑐 , 𝜎𝑐

2 𝜋𝑐

𝜼 = {𝜋𝑐 , 𝜇𝑐 , 𝜎𝑐
2}

෍
𝑐
𝜋𝑐 = 1

• We can see the sum above just as a function defining
the shape of the probability density function

• or …

→
p
(x

)

→ x

Multivariate GMM

where

𝑝 𝐱|𝜼 =෍
𝑐
𝒩 𝐱;𝝁𝑐 , 𝚺𝑐 𝜋𝑐

𝜼 = {𝜋𝑐 , 𝝁𝑐 , 𝚺𝑐}

෍
𝑐
𝜋𝑐 = 1

• We can see the sum above just as a function defining
the shape of the probability density function

• or …

Bayesian Networks for GMM

• or we can see it as a generative probabilistic model described by
Bayesian network with Categorical latent random variable 𝑧 identifying
Gaussian distribution generating the observation 𝑥

• Observations are assumed to be generated as follows:
– randomly select Gaussian component according probabilities 𝑃(𝑧)
– generate observation 𝑥 form the selected Gaussian distribution

• To evaluate 𝑝 𝑥 , we marginalize out 𝑧
• No close form solution for training parameters 𝜇𝑐 , 𝜎𝑐

2, 𝝅

𝑝 𝑥 =෍
𝑧
𝑝 𝑥 𝑧 𝑃(𝑧) =෍

𝑐
𝒩 𝑥; 𝜇𝑐 , 𝜎𝑐

2 Cat 𝑧 = 𝑐 𝝅

𝑧

𝑥

𝑝 𝑥, 𝑧 = 𝑝 𝑥 𝑧 𝑃(𝑧)

Bayesian Networks for GMM - II

• Multiple observations:

z1 z2 zN-1 zN

x1 x2 xN-1 xN

𝑝 𝑥1, 𝑥2, … , 𝑥N, 𝑧1, 𝑧2, … 𝑧N =ෑ
𝑖=1

𝑁

𝑝 𝑥i 𝑧i 𝑃(𝑧𝑖)

or

zi

xi

𝑖 = 1. . 𝑁

(Dynamic) BN for HMM

• In BN, 𝑧𝑖 nodes are not “HMM states”, these are random variables (one for

each frame) with values saying which state we are in for a particular frame 𝑖

𝑝 𝑥1, 𝑥2, … , 𝑥N, 𝑧1, 𝑧2, … 𝑧N = 𝑃(𝑧1)ෑ
𝑖=2

𝑁

𝑝 𝑧i 𝑧i−1 ෑ
𝑖=1

𝑁

𝑝 𝑥i 𝑧i

z1 z2 zN-1 zN

x1 x2 xN-1 xN

• For each time frame, Hidden Markov Model moves from state 𝑗 to state
𝑘 according to a transition probability ajk = 𝑝 𝑘 𝑗) and generates observation

𝐱 from probability distribution bk x = 𝑝 𝐱 𝑘) associated with the entered
state. More details on this model for modeling sequences are in SUR class.

b1 𝐱 b2 𝐱 b3 𝐱

a11 a22 a33

a12 a3exita23

PLDA model for speaker verification
• Let each speech utterance be represented by speaker embedding vector 𝐱

• e.g. 512 dim. output of hidden layer of neural network trained for speaker classification

• We assume, that the distribution of the embeddings can be modeled as

follows:

• We assume the same factorization as for GMM, but with continuous laten variable 𝐳

𝑝 𝐳 = 𝓝 𝐳 𝝁, 𝚺𝑎𝑐 - distribution of speaker means

𝑝 𝐱 𝐳 = 𝓝(𝐱|𝒛, 𝚺𝑤𝑐) - within class (channel) variability

• Observations (embeddings) are assumed to be generated as follows:
• Latent (speaker mean) vector 𝐳𝑠 is generated for each speaker s from gaussian

distribution 𝑝 𝐳
• All embeddings of speaker s are generated

from Gaussian distribution 𝑝 𝐱si 𝐳s

𝐳1

x11 x12 x1N1…

𝐳S

xS1 xS2 xSN1…

…

𝐳𝑠

xSi

Same speaker hypothesis model:

𝑝 𝐱1, 𝐱2 ℋ𝑠 = ∫ 𝑝 𝐱1 𝐳 𝑝 𝐱2 𝐳 𝑝 𝐳 d𝐳

Different speaker hypothesis model:

𝑝 𝐱1, 𝒙2 ℋ𝑑 = 𝑝 𝐱1 𝑝 𝐱2
= ∫ 𝑝 𝐱1 𝐳1 𝑝 𝐳1 d𝐳1∫ 𝑝 𝐱2 𝐳2 𝑝 𝐳2 d𝐳2

Probability that 𝐱1, 𝒙2 comes from the same speaker:

𝑝 ℋ𝑠 𝐱1, 𝐱2 =
𝑝 𝐱1, 𝐱2 ℋ𝑠 𝑃 ℋ𝑠

𝑝 𝐱1, 𝐱2 ℋ𝑠 𝑃 ℋ𝑠 + 𝑝 𝐱1, 𝐱2 ℋ𝑑 𝑃 ℋ𝑑

where 𝑃 ℋ𝑠 = 1 − 𝑃 ℋd is prior probability same speaker hypothesis

Usually, log likelihood ratio verification score is used

• More positive more likely 𝐱1, 𝐱2 are from the same speaker

PLDA model for speaker verification II

𝑠 = log
𝑝 𝐱1, 𝐱2 ℋ𝑠

𝑝 𝐱1, 𝐱2 ℋ𝑑

𝒛

𝐱1 𝐱2
𝐳1

𝐱1 𝐱2

𝐳2

Markov Random Fields
• Undirected graphical model

• Directly describe the conditional independence property

– On the example: 𝑃 𝑥1, 𝑥4 𝑥2, 𝑥3) = 𝑃 𝑥1 𝑥2, 𝑥3) 𝑃 𝑥4 𝑥2, 𝑥3)

– 𝑥1and 𝑥4 are independent given 𝑥2 and 𝑥3 as there is no path

from 𝑥1 to 𝑥4 not leading through either 𝑥2 or 𝑥3.

• Subsets of nodes where all nodes are
connected with each other are called
cliques (see green and blue examples)

• The outline in blue is Maximal clique,
where no more nodes can be added

• When factorizing distribution described
by MRF, variables not

• connected by link must not appear in the
same factor ⇒ lets make factors
corresponding to (Maximal) cliques.

𝑥1

𝑥3

𝑥2

𝑥4

MRF - factorization

• Joint probability distribution over all random variables x can be
expressed as normalized product of potential functions 𝜓𝐶(𝐱𝑐),
which are positive valued functions of subsets of variables 𝐱𝑐
corresponding to maximal cliques 𝐶

• It is useful to express the potential functions in terms of energy
functions 𝐸(𝐱𝐶)➔ sum of 𝐸(𝐱𝐶) terms instead of product of 𝜓𝐶(𝐱𝑐)
terms.

𝑝 𝐱 =
1

𝑍
ෑ

𝐶

𝜓𝐶(𝐱𝑐)

𝑍 =෍

𝐱

ෑ

𝐶

𝜓𝐶(𝐱𝑐)

𝜓𝐶 𝐱𝑐 = exp −𝐸 𝐱C

𝑥1

𝑥3

𝑥2

𝑥4

For our example:

𝑃 𝑥1, 𝑥2, 𝑥3, 𝑥4 =
1

Z
𝜓1,2,3 𝑥1, 𝑥2, 𝑥3 𝜓2,3,4 𝑥2, 𝑥3, 𝑥4

=
1

Z
exp −𝐸 𝑥1, 𝑥2, 𝑥3 − 𝐸 𝑥2, 𝑥3, 𝑥4

Checking the conditional

independence

𝑃 𝑥1, 𝑥2, 𝑥3, 𝑥4 =
1

𝑍
𝜓1,2,3 𝑥1, 𝑥2, 𝑥3 𝜓2,3,4 𝑥2, 𝑥3, 𝑥4

𝑃 𝑥2, 𝑥3 = ෍

𝑥1,𝑥4

1

𝑍
𝜓1,2,3 𝑥1, 𝑥2, 𝑥3 𝜓2,3,4 𝑥2, 𝑥3, 𝑥4

𝑃 𝑥1, 𝑥4 𝑥2, 𝑥3 =
𝑃 𝑥1, 𝑥2, 𝑥3, 𝑥4

𝑃 𝑥2, 𝑥3

=

1
𝑍
𝜓1,2,3 𝑥1, 𝑥2, 𝑥3 𝜓2,3,4 𝑥2, 𝑥3, 𝑥4

σ𝑥1,𝑥4

1
𝑍
𝜓1,2,3 𝑥1, 𝑥2, 𝑥3 𝜓2,3,4 𝑥2, 𝑥3, 𝑥4

=
𝜓1,2,3 𝑥1, 𝑥2, 𝑥3

σ𝑥1𝜓1,2,3 𝑥1, 𝑥2, 𝑥3

𝜓2,3,4 𝑥2, 𝑥3, 𝑥4
σ𝑥4𝜓2,3,4 𝑥2, 𝑥3, 𝑥4

= 𝑃 𝑥1 𝑥2, 𝑥3 𝑃 𝑥4 𝑥2, 𝑥3

𝑥1

𝑥3

𝑥2

𝑥4

BN vs MRF
• Some of the probability distributions that can be represented using

Bayesian Network cannot be fully represented as Markov Random

Field and vice versa

• But often we can convert one to the other – see next side

• We mainly introduce MRF (and later Factor Graph) to present more

general class of inference algorithm (see later)

𝑥1

𝑥3

𝑥2

𝑥4

MRF whose statistical

independence property

cannot be represented by BN

BN whose (explain away)

statistical independence property

cannot be represented by MRF

Example: HMM as MRF

𝑝 𝑥1, 𝑥2, … , 𝑥N, 𝑧1, 𝑧2, … 𝑧N =
1

𝑍
ෑ

𝑖=2

𝑁
෨𝜓 𝑧i, 𝑧i−1 ෑ

𝑖=1

𝑁

𝜓 𝑥i, 𝑧i

For

𝑍 = 1
෨𝜓 𝑧2, 𝑧1 = 𝑝 𝑧2 𝑧1 𝑝 𝑧1

෨𝜓 𝑧i, 𝑧i−1 = 𝑝 𝑧i 𝑧i−1
𝜓 𝑥i, 𝑧i = 𝑝 𝑥i 𝑧i

We recover the factorization for HMM:

𝑝 𝑥1, 𝑥2, … , 𝑥N, 𝑧1, 𝑧2, … 𝑧N = 𝑃(𝑧1)ෑ
𝑖=2

𝑁

𝑝 𝑧i 𝑧i−1 ෑ
𝑖=1

𝑁

𝑝 𝑥i 𝑧i

z1 z2 zN-1 zN

x1 x2 xN-1 xN

Flashback: (Dynamic) BN for HMM
(slide from SUR class)

• In BN, 𝑧𝑖 nodes are not “HMM states”, these are random variables (one for

each frame) with values saying which state we are in for a particular frame 𝑖

𝑝 𝑥1, 𝑥2, … , 𝑥N, 𝑧1, 𝑧2, … 𝑧N = 𝑃(𝑧1)ෑ
𝑖=2

𝑁

𝑝 𝑧i 𝑧i−1 ෑ
𝑖=1

𝑁

𝑝 𝑥i 𝑧i

z1 z2 zN-1 zN

x1 x2 xN-1 xN

• For each time frame, Hidden Markov Model moves from state 𝑗 to state
𝑘 according to a transition probability ajk = 𝑝 𝑘 𝑗) and generates observation

𝐱 from probability distribution bk x = 𝑝 𝐱 𝑘) associated with the entered
state. More details on this model for modeling sequences are in SUR class.

b1 𝐱 b2 𝐱 b3 𝐱

a11 a22 a33

a12 a3exita23

• Now, we will be interested in carrying out efficient inference in MRFs

• As a first example, we consider simple MRF with chain topology

• Let all 𝑁 variables 𝑥𝑖 are discrete with 𝐾 states

• Each 𝜓𝑖,𝑗 𝑥𝑖 , 𝑥𝑗 is represented by 𝐾 × 𝐾 table ⇒ 𝑁 − 1 𝐾2 parameters

• We would like to find marginal probability of variable 𝑥𝑛

Inference on a chain

Brute force marginalization has complexity 𝑂(𝐾𝑁)

𝑃 𝐱 = 𝑃 𝑥1, 𝑥2, … , 𝑥𝑁 =
1

𝑍
𝜓1,2 𝑥1, 𝑥2 𝜓2,3 𝑥2, 𝑥3 …𝜓𝑁−1,𝑁 𝑥𝑁−1, 𝑥𝑁

𝑃 𝑥𝑛 =෍

𝑥1

… ෍

𝑥𝑛−1

෍

𝑥𝑛+1

…෍

𝑥𝑁

𝑃 𝒙

𝑥𝑁−1 𝑥𝑁𝑥2𝑥1

Inference on a chain II.

Complexity can be reduced to 𝑂(𝑁𝐾2) by rearranging the sums using

distributive property of multiplication.

𝑃 𝑥𝑛 =෍

𝑥1

… ෍

𝑥𝑛−1

෍

𝑥𝑛+1

…෍

𝑥𝑁

1

𝑍
𝜓1,2 𝑥1, 𝑥2 𝜓2,3 𝑥2, 𝑥3 …𝜓𝑁−1,𝑁 𝑥𝑁−1, 𝑥𝑁

𝑃 𝑥𝑛 =
1

𝑍
෍

𝑥𝑛−1

𝜓𝑛−1,𝑛 𝑥𝑛−1, 𝑥𝑛 … ෍

𝑥2

𝜓2,3 𝑥2, 𝑥3 ෍

𝑥1

𝜓1,2 𝑥1, 𝑥2 …

෍

𝑥𝑛+1

𝜓𝑛,𝑛+1 𝑥𝑛, 𝑥𝑛+1 … ෍

𝑥𝑁

𝜓𝑁−1,𝑁 𝑥𝑁−1, 𝑥𝑁 …

Inference on a chain III.

Recursive formulas:

𝑃 𝑥𝑛 =
1

𝑍
෍

𝑥𝑛−1

𝜓𝑛−1,𝑛 𝑥𝑛−1, 𝑥𝑛 … ෍

𝑥2

𝜓2,3 𝑥2, 𝑥3 ෍

𝑥1

𝜓1,2 𝑥1, 𝑥2

𝛼 𝑥2

𝛼 𝑥3

…

𝛼 𝑥𝑛

෍

𝑥𝑛+1

𝜓𝑛,𝑛+1 𝑥𝑛, 𝑥𝑛+1 … ෍

𝑥𝑁

𝜓𝑁−1,𝑁 𝑥𝑁−1, 𝑥𝑁

𝛽 𝑥𝑁−1

…

𝛽 𝑥𝑛

𝑃 𝑥𝑛 =
1

𝑍
𝛼 𝑥𝑛 𝛽 𝑥𝑛

𝛼 𝑥𝑛 = ෍

𝑥𝑛−1

𝜓𝑛−1,𝑛 𝑥𝑛−1, 𝑥𝑛 𝛼 𝑥𝑛−1

𝛽 𝑥𝑛 = ෍

𝑥𝑛+1

𝜓𝑛,𝑛+1 𝑥𝑛, 𝑥𝑛+1 𝛽 𝑥𝑛+1

𝛼 𝑥1 = 𝛽(𝑥𝑁) = 1

Inference on a chain IV.

𝑃 𝑥𝑛 =
1

𝑍
𝛼 𝑥𝑛 𝛽 𝑥𝑛

• Marginals for ALL variables can be obtained at once with the

same 𝑂(𝑁𝐾2) complexity, by recursively calculating all 𝛼(𝑥𝑛) and

𝛽(𝑥𝑛) for all the nodes (i.e. for all 𝑛 = 1. . 𝑁) and then calculating

• Vectors 𝛼 𝑥𝑛 and 𝛽 𝑥𝑛 can be thought as messages passed

from node to node. We will use this abstraction later

• Same inference could be done for continuous random variables

just by replacing sums with integrals (if the integrals are tractable).

𝑥𝑛−1 𝑥𝑛𝑥1 𝑥𝑛+1 𝑥𝑁

𝛽 𝑥𝑛+1𝛽 𝑥𝑛𝛼 𝑥𝑛𝛼 𝑥𝑛−1

Factor graphs (FG)

𝑃 𝐱 = 𝑃 𝑥1, 𝑥2, 𝑥3 =
1

𝑍
𝑓𝑎 𝑥1, 𝑥2 𝑓𝑏 𝑥1, 𝑥2 𝑓𝑐 𝑥2, 𝑥3 𝑓𝑑 𝑥3

𝑃 𝐱 =
1

𝑍
ෑ

𝑠

𝑓𝑠 𝐱𝑠

• Bipartite graph, with variable nodes 𝑥𝑖 connected only to factor

nodes 𝑓𝑗 and vice versa.

• Like MRF, but with explicitly specified factors (or potential functions)

MRF to FG

𝑝 𝐱 =
1

𝑍
𝑓 𝑥1, 𝑥2, 𝑥3 𝑝 𝐱 =

1

𝑍
𝑓𝑎 𝑥1, 𝑥2, 𝑥3 𝑓𝑏 𝑥2, 𝑥3

𝑝 𝐱 =
1

𝑍
𝑓𝑎 𝑥1, 𝑥2 𝑓𝑏 𝑥1, 𝑥3 𝑓𝑐 𝑥2, 𝑥3

𝑝 𝐱 =
1

𝑍
𝜓 𝑥1, 𝑥2, 𝑥3

• MRF can be converted to FG

• Since FG is more explicate, different factor

graphs can correspond to the same MRF

FG representations

x2

x1

x3

x2

x1

x1

x2

x3

x3

For discrete variables,

factors can be represented as

K-dimensional tables of values

The joint probability can be obtained as

the broadcasted elementwise product of the factors and normalized to sum to one.

BN to FG

𝑝 𝐱 = 𝑝 𝑥1 𝑝 𝑥2 𝑝 𝑥3|𝑥1, 𝑥2
𝑓 𝑥1, 𝑥2, 𝑥3 =
𝑝 𝑥1 𝑝 𝑥2 𝑝 𝑥3|𝑥1, 𝑥2

𝑓𝑎 𝑥1 = 𝑝 𝑥1
𝑓𝑏 𝑥2 = 𝑝 𝑥2
𝑓𝑐 𝑥1, 𝑥2, 𝑥3 = 𝑝 𝑥3|𝑥1, 𝑥2

• BN can be also converted to FG, but such graph does not

necessarily describe all the conditional independence properties

• e.g. the explain away property of the BN from this example is

not directly seen from the resulting factor graphs

• Again, different FGs can be constructed for the same BN to

capturing more or less details about the original factorization.

FG with Tree topology

• Efficient inference algorithms exists for FG with tree topology

• Even if the original BN or MRF is not tree, it can be often

represented by FG with tree topology

z1 z2 z3 z4

x1 x2 x3 x4

E.g. FG for HMM is tree

Belief Propagation
• Also known as sum-product message passing algorithm

• Algorithm for exact inference in FG (or MRF) with (poly)tree topology

• We are interested in obtaining the marginal probability of some 𝑥𝑛

𝑃 𝑥𝑛 = ෍

𝐱\𝑥𝑛

𝑃 𝐱

𝐱\𝑥𝑛 - set of all variables excluding variable 𝑥𝑛

• We already know that joint probability

𝑃 𝐱 = 𝑃 𝑥1, 𝑥2, … 𝑥𝑁 =
1

𝑍
ෑ

𝑠

𝑓𝑠 𝐱𝑠

𝐱s - set of variables nodes that are

neighbors of factor node 𝑓𝑠

𝑥1

𝑥6
𝑥3

𝑥2
𝑥4

𝑥5

𝑓𝑏

𝑓𝑑

𝑓𝑎

𝑓𝑒 𝑓𝑐

𝑓𝑔

We will assume only

discrete variables. For

continuous, sum would

be replaced by integral

• We choose 𝑥𝑛 as a tree root

• We start from the leaves

• Once a node obtains messages

from all its children, it sends

message to its parent.

• When root obtains all the

messages, 𝑃 𝑥𝑛 is evaluated

Belief Propagation - algorithm
The marginal probability for 𝑥𝑛 can be efficiently

calculated as

𝑃 𝑥𝑛 =
1

𝑍
ෑ

𝑠∈ne 𝑥𝑛

𝜇𝑓𝑠→𝑥𝑛 𝑥𝑛

where ne 𝑥𝑛 is a set of factor nodes neighboring

with variable node 𝑥𝑛 and 𝜇𝑓𝑠→𝑥𝑛 𝑥𝑛 is so-called

message send from factor node 𝑓𝑠 to variable node

𝑥𝑛. Like 𝑃 𝑥𝑛 , each 𝜇𝑓𝑠→𝑥𝑛 𝑥𝑛 is function of

variable 𝑥𝑛 and can be recursively evaluated as

𝜇𝑓𝑠→𝑥𝑛 𝑥𝑛 = ෍

𝐱𝑠\𝑥𝑛

𝑓𝑠 𝐱𝑠 ෑ

𝑚∈ne 𝑓𝑠 \𝑥𝑛

𝜇𝑥𝑚→𝑓𝑠 𝑥𝑚

where 𝐱s is set of variables that are neighbors of

factor node 𝑓𝑠, ne 𝑓𝑠 \𝑥𝑛 is set of variable nodes

neighboring with factor 𝑓𝑠 node excluding 𝑥𝑛 and

𝜇𝑥𝑚→𝑓𝑠(𝑥𝑚) is message send from variable node

𝑥𝑚 to factor node 𝑓𝑠.

𝜇𝑥𝑚→𝑓𝑠(𝑥𝑚) = ෑ

𝑙∈𝑛𝑒 𝑥𝑚 \𝑓𝑠

𝜇𝑓𝑙→𝑥𝑚(𝑥𝑚)

𝑥1

𝑥3

𝑥2
𝑥4

𝑥5

𝑓𝑎

𝑓𝑏

𝑓𝑑

𝜇𝑓𝑎→𝑥1 𝑥1

𝜇𝑥2→𝑓𝑎 𝑥2

𝑓𝑐 𝑥6

𝑓𝑔

𝑓𝑒

𝑥 𝑥 𝑓

𝜇𝑥→𝑓 𝑥 = 1

𝑓

𝜇𝑓→𝑥 𝑥 = 𝑓(𝑥)

𝜇𝑥4→𝑓𝑏 𝑥4 = 1

Belief Propagation – derivation I

ne 𝑥𝑛 - set of factor nodes that are neighbors

of variable node 𝑥𝑛

𝑋𝑛𝑠 - variables in the subtree connected

to 𝑥𝑛 via the factor node 𝑓𝑠

𝐹𝑠 𝑥𝑛, 𝑋𝑠 - product of all the factors in the

group associated with factor 𝑓𝑠

Let’s consider node 𝑥𝑛 as a root node

𝑃 𝐱 =
1

𝑍
ෑ

𝑠

𝑓𝑠 𝐱𝑠 =
1

𝑍
ෑ

𝑠∈ne(𝑥𝑛)

𝐹𝑠 𝑥𝑛, 𝑋𝑛𝑠

𝑥1

𝑥6
𝑥3

𝑥2
𝑥4

𝑥5

𝑓𝑏

𝑓𝑑

𝑓𝑎

Factors in 𝐹𝑎 𝑥1, 𝑋1𝑎
𝑋1𝑎 = 𝑥2, 𝑥3, 𝑥4, 𝑥5

𝑓𝑐

𝑓𝑔

𝑓𝑒

Factors in 𝐹𝑑 𝑥1, 𝑋1𝑑
𝑋1𝑑 = 𝑥6

For our example:

𝑃 𝐱 =
1

𝑍
𝑓𝑎 𝑥1, 𝑥2, 𝑥3 𝑓𝑏 𝑥2, 𝑥4, 𝑥5 𝑓𝑒 𝑥5 𝑓𝑔 𝑥2 𝑓𝑐 𝑥3

𝐹𝑎 𝑥1,𝑋1𝑎

𝑓𝑑 𝑥1, 𝑥6
𝐹𝑑 𝑥1,𝑋1𝑑

For our example:

𝑝 𝑥1 =
1

𝑍
෍

𝑥2

…෍

𝑥6

𝐹𝑎 𝑥1, 𝑋1𝑎 𝐹𝑑 𝑥1, 𝑋1𝑑

=
1

𝑍
෍

𝑥2,𝑥3,𝑥4,𝑥5

𝐹𝑎 𝑥1, 𝑋1𝑎 ෍

𝑥6

𝐹𝑑 𝑥1, 𝑋1𝑑

𝑥1

𝑥3

𝑥2
𝑥4

𝑥5

𝑓𝑎

𝑓𝑏

𝑓𝑑

Belief Propagation – derivation II
𝑃 𝑥𝑛 = ෍

𝐱\𝑥𝑛

𝑃 𝐱

=
1

𝑍
෍

𝐱\𝑥𝑛

ෑ

𝑠∈ne(𝑥𝑛)

𝐹𝑠 𝑥𝑛, 𝑋𝑛𝑠

=
1

𝑍
ෑ

𝑠∈ne(𝑥𝑛)

෍

𝑋𝑛𝑠

𝐹𝑠 𝑥𝑛, 𝑋𝑛𝑠

=
1

𝑍
ෑ

𝑠∈ne 𝑥𝑛

𝜇𝑓𝑠→𝑥𝑛 𝑥𝑛
𝜇𝑓𝑎→𝑥1 𝑥1

𝑓𝑐 𝑥6

Factors in 𝐹𝑎 𝑥1, 𝑋1𝑎 only

depend on variables

𝑥2, 𝑥3, 𝑥4, 𝑥5

𝑓𝑔

𝑓𝑒

Factors in 𝐹𝑑 𝑥1, 𝑋1𝑑
𝑋1𝑑 = 𝑥6

Factors in 𝐹𝑎 𝑥1, 𝑋1𝑎
𝑋1𝑎 = 𝑥2, 𝑥3, 𝑥4, 𝑥5

Product of all the factors in the subtree

connected to 𝑥𝑛 through factor node 𝑓𝑠
with all the variables other than 𝑥𝑛

marginalized (summed) out

𝜇𝑓𝑠→𝑥𝑛 𝑥𝑛 =෍

𝑋𝑛𝑠

𝐹𝑠 𝑥𝑛, 𝑋𝑛𝑠

=෍

𝑋𝑛𝑠

𝑓𝑠 𝐱𝑠 ෑ

𝑚∈ne 𝑓𝑠 \𝑥𝑛

𝐺𝑚 𝑥𝑚, 𝑋𝑠𝑚

= ෍

𝐱𝑠\𝑥𝑛

𝑓𝑠 𝐱𝑠 ෑ

𝑥𝑚∈ne 𝑓𝑠 \𝑥𝑛

෍

𝑋𝑠𝑚

𝐺𝑚 𝑥𝑚, 𝑋𝑠𝑚

= ෍

𝐱𝑠\𝑥𝑛

𝑓𝑠 𝐱𝑠 ෑ

𝑚∈ne 𝑓𝑠 \𝑥𝑛

𝜇𝑥𝑚→𝑓𝑠 𝑥𝑚

𝑥1

𝑥3

𝑥2
𝑥4

𝑥5

𝑓𝑎

𝑓𝑏

𝑓𝑑
𝜇𝑓𝑎→𝑥1 𝑥1

Factors in 𝐺2 𝑥2, 𝑋𝑎2
𝑋𝑎2 = {𝑥4, 𝑥5}

𝜇𝑥2→𝑓𝑎 𝑥2

𝜇𝑓𝑎→𝑥1 𝑥1 = ෍

x2,𝑥3

𝑓𝑎 𝑥1, 𝑥2, 𝑥3 ෍

𝑥4,𝑥5

𝑓𝑏 𝑥2, 𝑥4, 𝑥5 𝑓𝑒 𝑥5 𝑓𝑔 𝑥2
𝐺2(𝑥2,𝑋𝑎2)

𝜇𝑥2→𝑓𝑎 𝑥2

𝑓𝑐 𝑥3
𝐺3 𝑥3,𝑋𝑎3

𝜇𝑥3→𝑓𝑎 𝑥3

𝑓𝑐 𝑥6

𝑋𝑛𝑠 - variables in the subtree connected to 𝑥𝑛 via the factor node 𝑓𝑠
𝑋𝑠𝑚 - variables in the subtree connected to 𝑓𝑠 via the variable node 𝑥𝑚 (excluding 𝑥𝑚)

𝑓𝑔

𝑓𝑒

Factors in 𝐺3 𝑥3, 𝑋𝑎3
𝑋𝑎3 = {}

Belief Propagation – derivation III

Belief Propagation

Message evaluation example

𝜇𝑓𝑎→𝑥1 𝑥1 = σ
x2,𝑥3

𝑓𝑎 𝑥1, 𝑥2, 𝑥3 𝜇𝑥2→𝑓𝑎 𝑥2 𝜇𝑥3→𝑓𝑎 𝑥3
𝑥1

𝑥3

𝑥2

𝑓𝑎

𝜇𝑓𝑎→𝑥1 𝑥1

𝜇𝑥2→𝑓𝑎 𝑥2

𝜇𝑥3→𝑓𝑎 𝑥3

𝜇𝑥3→𝑓𝑎 𝑥3𝑓𝑎 𝑥1, 𝑥2, 𝑥3 𝜇𝑥2→𝑓𝑎 𝑥2 𝜇𝑥3→𝑓𝑎 𝑥3σ
x2,𝑥3

𝑥167

69.5

𝑓𝑎 𝑥1, 𝑥2, 𝑥3

𝜇𝑓𝑎→𝑥1 𝑥1 = 1 =

𝜇𝑓𝑎→𝑥1 𝑥1 = 2 =

𝑥1

1

2

With discrete variables,

the messages are a vectors

𝑥1

𝑥3

𝑥2
𝑥4

𝑥5

𝑓𝑎

𝑓𝑏

𝑓𝑑

𝜇𝑓𝑏→𝑥2 𝑥2

𝜇𝑥2→𝑓𝑎 𝑥2

𝑓𝑐 𝑥6

𝑓𝑔

𝑓𝑒

𝜇𝑥𝑚→𝑓𝑠(𝑥𝑚) = ෍

𝑋𝑠𝑚

𝐺𝑚(𝑥𝑚, 𝑋𝑠𝑚)

= ෍

𝑋𝑠𝑚

ෑ

𝑙∈𝑛𝑒 𝑥𝑚 \𝑓𝑠

𝐹𝑙 𝑥𝑚, 𝑋𝑚𝑙

= ෑ

𝑙∈𝑛𝑒 𝑥𝑚 \𝑓𝑠

෍

𝑋𝑚𝑙

𝐹𝑙 𝑥𝑚, 𝑋𝑚𝑙

= ෑ

𝑙∈𝑛𝑒 𝑥𝑚 \𝑓𝑠

𝜇𝑓𝑙→𝑥𝑚(𝑥𝑚)

Factors in 𝐹𝑏 𝑥2, 𝑋2𝑏
𝑋2𝑏 = {𝑥4, 𝑥5}

Factors in 𝐹𝑔 𝑥2, 𝑋2𝑔
𝑋2𝑔 = {}

𝜇𝑥2→𝑓𝑎 𝑥2 = ෍

𝑥4,𝑥5

𝑓𝑏 𝑥2, 𝑥4, 𝑥5 𝑓𝑒 𝑥5
𝐹𝑏(𝑥2,𝑋2𝑏)

𝜇𝑓𝑏→𝑥2(𝑥2)

𝑓𝑔 𝑥2
𝐹𝑔(𝑥2,𝑋2𝑔)

𝜇𝑓𝑔→𝑥2(𝑥2)

Belief Propagation – derivation IV

• We choose 𝑥𝑛 as a tree root

• We start from the leaves

• Once a node obtains messages

from all its children, it sends

message to its parent.

• When root obtains all the

messages, 𝑃 𝑥𝑛 is evaluated

Belief Propagation - algorithm
The marginal probability for 𝑥𝑛 can be efficiently

calculated as

𝑃 𝑥𝑛 =
1

𝑍
ෑ

𝑠∈ne 𝑥𝑛

𝜇𝑓𝑠→𝑥𝑛 𝑥𝑛

where ne 𝑥𝑛 is a set of factor nodes neighboring

with variable node 𝑥𝑛 and 𝜇𝑓𝑠→𝑥𝑛 𝑥𝑛 is so-called

message send from factor node 𝑓𝑠 to variable node

𝑥𝑛. Like 𝑃 𝑥𝑛 , each 𝜇𝑓𝑠→𝑥𝑛 𝑥𝑛 is function of

variable 𝑥𝑛 and can be recursively evaluated as

𝜇𝑓𝑠→𝑥𝑛 𝑥𝑛 = ෍

𝐱𝑠\𝑥𝑛

𝑓𝑠 𝐱𝑠 ෑ

𝑚∈ne 𝑓𝑠 \𝑥𝑛

𝜇𝑥𝑚→𝑓𝑠 𝑥𝑚

where 𝐱s is set of variables that are neighbors of

factor node 𝑓𝑠, ne 𝑓𝑠 \𝑥𝑛 is set of variable nodes

neighboring with factor 𝑓𝑠 node excluding 𝑥𝑛 and

𝜇𝑥𝑚→𝑓𝑠(𝑥𝑚) is message send from variable node

𝑥𝑚 to factor node 𝑓𝑠.

𝜇𝑥𝑚→𝑓𝑠(𝑥𝑚) = ෑ

𝑙∈𝑛𝑒 𝑥𝑚 \𝑓𝑠

𝜇𝑓𝑙→𝑥𝑚(𝑥𝑚)

𝑥1

𝑥3

𝑥2

𝑥4

𝑥5

𝑓𝑎

𝑓𝑏

𝑓𝑑

𝜇𝑓𝑎→𝑥1 𝑥1

𝜇𝑥2→𝑓𝑎 𝑥2

𝑓𝑐 𝑥6

𝑓𝑔

𝑓𝑒

𝑥 𝑥 𝑓

𝜇𝑥→𝑓 𝑥 = 1

𝑓

𝜇𝑓→𝑥 𝑥 = 𝑓(𝑥)

𝜇𝑥4→𝑓𝑏 𝑥4 = 1

BP solving all marginals at once

• Once root obtains all the messages, we can keep sending messages from the

root towards to the leaves

• This way, all variable nodes obtain messages from the neighboring factor nodes

➔ we can efficiently calculate marginals 𝑃 𝑥𝑛 for all the variables

• It takes only 2x more time than calculating marginal for one node

➔ the same computational complexity

• It does not matter which node is selected as the root

BP with observed variables

• So far, we have assumed that all the variables are unobserved.

• We can also calculate marginal probability of any 𝑥𝑛 given a set observed of

variables 𝐱C:

𝑃 𝑥𝑛|𝐱C ∝ 𝑃 𝑥𝑛, 𝐱C = ෍

𝐱\{𝑥𝑛,𝐱C}

𝑃 𝐱 ∝ ෍

𝐱\{𝑥𝑛,𝐱C}

ෑ

𝑠

𝑓𝑠 𝐱𝑠

• In our example with 6 random variables, we may wish to evaluate:

𝑃 𝑥1|𝑥3, 𝑥4 ∝ 𝑃 𝑥1, 𝑥3, 𝑥4 =෍

𝒙𝟐

෍

𝒙𝟓

෍

𝒙𝟔

𝑃 𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5, 𝑥6

where the observed variables 𝑥3, 𝑥4 have known fixed values.

• We solve the same problem as before for marginals 𝑃 𝑥𝑛 , except that we

do not sum over the observed variables ➔We can use the same efficient

BP algorithm except that the sums are removed for the observed variables

and the factors are evaluated with the given values of the observed variables

• Make sure that the resulting 𝑃 𝑥1|𝑥3, 𝑥4 is properly normalized distribution!

Marginal distribution of set of variables
• We can also easily calculate joint marginal distribution for subset of variables 𝐱𝑠 belonging

to one factor 𝑓𝑠 (e.g. 𝑃 𝑥1, 𝑥2, 𝑥3 in our example):

𝑃 𝐱𝑠 =
1

𝑍
𝑓𝑠(𝐱s) ෑ

𝑖∈ne 𝑓𝑠

𝜇𝑥𝑖→𝑓𝑠 𝑥𝑖

• We cannot easily obtain joint marginal distribution for variables 𝐱C not belonging to one

factor (e.g. 𝑃 𝑥4, 𝑥5, 𝑥6 in our example).

• But we can use BP to efficiently evaluate such distribution for particular (observed) values

of the variables 𝐱C (i.e. we can evaluate 𝑃 𝑥4, 𝑥5, 𝑥6 for particular given values of

𝑥4, 𝑥5, 𝑥6).

• Here, we require that the factor graph is created from a Bayesian Network ➔ the factors

corresponds to well normalized distributions and therefore 𝑍 = 1
• See the slide “Example: HMM as MRF” as an example

𝑃 𝐱C = ෍

𝐱\𝐱C

𝑃 𝐱 =
1

𝑍
෍

𝐱\𝐱C

ෑ

𝑠

𝑓𝑠 𝐱𝑠

• BP algorithm can be used to efficiently evaluate the right

hand side for fixed values of 𝐱C. Again, we do not sum

over possible values of 𝐱C in BP. Instead, we directly use the

given fixed values of 𝐱C, when evaluating the factors.

• Choosing any xn ∈ 𝐱C as the “root” for BP, we can calculate

𝑃 𝐱C as the product of the incoming messages evaluated at 𝑥𝑛

𝑃 𝐱C = ෑ

𝑠∈ne 𝑥𝑛

𝜇𝑓𝑠→𝑥𝑛 𝑥𝑛

𝑥1

𝑥6
𝑥3

𝑥2

𝑥4

𝑥5

𝑓𝑏

𝑓𝑑

𝑓𝑎

𝑓𝑒 𝑓𝑐

𝑓𝑔

Most likely values
• Belief Propagation allows us to calculate the marginals p 𝑥𝑛 , so for each

variable 𝑥𝑛, we can find the value that is individually the most probable

𝑥𝑛
max = arg max

𝑥𝑛

p 𝑥𝑛

• Instead, we may want to know what are values of all the variables

𝐱 = 𝑥1, 𝑥2, … 𝑥𝑁 that have jointly the largest probability

𝐱max = arg max
𝐱

p 𝐱

• An example where individually and jointly most probable values are different:

– Individually, the most likely values are 𝑥 = 1 and 𝑦 = 1 as 𝑃 𝑥 = 𝑃 𝑦 = 0.38 are the largest

marginal probabilities

– But it is impossible that 𝑥 = 1 and 𝑦 = 1 at the same time as 𝑃 𝑥 = 1, 𝑦 = 1 = 0

– Jointly, the most likely values are 𝑥 = 4 and 𝑦 = 4 as 𝑃 𝑥 = 4, 𝑦 = 4 = 0.24 is the largest joint

probability

𝑃(𝑥, 𝑦) 𝑥 = 1 𝑥 = 2 𝑥 = 3 𝑥 = 4 𝑃 𝑦

𝑦 = 1 0.0 0.19 0.19 0.0 0.38

𝑦 = 2 0.19 0.0 0.0 0.0 0.19

𝑦 = 3 0.19 0.0 0.0 0.0 0.19

𝑦 = 4 0.0 0.0 0.0 0.24 0.24

𝑃 𝑥 0.38 0.19 0.19 0.24

Max-product algorithm
• Sum-product algorithm (or Belief Propagation) allowed us to find marginals

𝑃 𝑥𝑛 = ෍

𝐱\𝑥𝑛

𝑃 𝐱 =
1

𝑍
෍

𝐱\𝑥𝑛

ෑ

𝑠

𝑓𝑠 𝐱𝑠

efficiently by re-arranging the order of sums and products using the distributive

property of multiplication over addition: 𝑎𝑏 + 𝑎𝑐 = 𝑎(𝑏 + 𝑐)

• Similar distributive property holds also max operator: max 𝑎𝑏, 𝑎𝑐 =𝑎 max 𝑏, 𝑐
which allows for the same efficient calculation of the largest joint probability

𝑃 𝐱max = max
𝐱

𝑃 𝐱 =
1

𝑍
max
𝐱

ෑ

𝑠

𝑓𝑠 𝐱𝑠

• We use the same BP where sum is replaced with max in the messages from

factor nodes to variable nodes

𝜇𝑓𝑠→𝑥𝑛 𝑥𝑛 = max
𝐱𝑠\𝑥𝑛

𝑓𝑠 𝐱𝑠 ෑ

𝑚∈ne 𝑓𝑠 \𝑥𝑛

𝜇𝑥𝑚→𝑓𝑠 𝑥𝑚

• The solution is the maximum of the product of the messages arriving to the

root node evaluated for the possible values of the “root” variable 𝑥𝑛

𝑍𝑃 𝐱max = max
𝑥𝑛

ෑ

𝑠∈ne 𝑥𝑛

𝜇𝑓𝑠→𝑥𝑛 𝑥𝑛

Max-product algorithm II
• The solution on the previous slide is the (unnormalized unless 𝑍 = 1)

maximum of the joint distribution 𝑃 𝐱max

• However, we usually need the most likely values

𝐱max = arg max
𝐱

𝑃 𝐱

• Solution: whenever max operator is applied during the max-product algorithm,

remember the variable values giving the maximum

– When calculating message from factor node to variable node

𝜇𝑓𝑠→𝑥𝑛 𝑥𝑛 = max
𝐱𝑠\𝑥𝑛

𝑓𝑠 𝐱𝑠 ෑ

𝑚∈ne 𝑓𝑠 \𝑥𝑛

𝜇𝑥𝑚→𝑓𝑠 𝑥𝑚

for each 𝑥𝑛, remember the most likely values of the other factor’s variables 𝐱𝑠\𝑥𝑛

𝜙𝑓𝑠 𝑥𝑛 = arg max
𝐱𝑠\𝑥𝑛

𝑓𝑠 𝐱𝑠 ෑ

𝑚∈ne 𝑓𝑠 \𝑥𝑛

𝜇𝑥𝑚→𝑓𝑠 𝑥𝑚

– When calculating

𝑍𝑃 𝐱max = max
𝑥𝑛

ෑ

𝑠∈ne 𝑥𝑛

𝜇𝑓𝑠→𝑥𝑛 𝑥𝑛

obtain also the most likely setting of the “root” variable

𝑥𝑛
max = arg max

𝑥𝑛

ෑ

𝑠∈ne 𝑥𝑛

𝜇𝑓𝑠→𝑥𝑛 𝑥𝑛

Max-product message example

𝜇𝑓𝑎→𝑥1 𝑥1 = max
x2,𝑥3

𝑓𝑎 𝑥1, 𝑥2, 𝑥3 𝜇𝑥2→𝑓𝑎 𝑥2 𝜇𝑥3→𝑓𝑎 𝑥3
𝑥1

𝑥3

𝑥2

𝑓𝑎

𝜇𝑓𝑎→𝑥1 𝑥1

𝜇𝑥2→𝑓𝑎 𝑥2

𝜇𝑥3→𝑓𝑎 𝑥3

𝜙𝑓𝑎 𝑥1 = arg max
x2,𝑥3

𝑓𝑎 𝑥1, 𝑥2, 𝑥3 𝜇𝑥2→𝑓𝑎 𝑥2 𝜇𝑥3→𝑓𝑎 𝑥3

𝜇𝑥3→𝑓𝑎 𝑥3𝑓𝑎 𝑥1, 𝑥2, 𝑥3 𝜇𝑥2→𝑓𝑎 𝑥2 𝜇𝑥3→𝑓𝑎 𝑥3

max
x2,𝑥3

𝑥19

18

𝑥2 = 𝟑, 𝑥3 = 𝟐

𝑥2 = 𝟐, 𝑥3 = 𝟒

arg max
x2,𝑥3

𝑓𝑎 𝑥1, 𝑥2, 𝑥3

𝜇𝑓𝑎→𝑥1 𝑥1 = 1 =

𝜇𝑓𝑎→𝑥1 𝑥1 = 2 =

𝜙𝑓𝑎 𝑥1 = 1 =

𝜙𝑓𝑎 𝑥1 = 2 =

𝑥1

1

2

Max-product algorithm - backtracking
• Now, we have the most likely value for the root 𝑥𝑛

max

• We back-propagate 𝑥𝑛
max to each neighboring factor node 𝑓𝑠

• Here, we evaluate the stored 𝜙𝑓𝑠 𝑥𝑛 for 𝑥𝑛
max, which gives us the most likely

values of the other factor’s variables 𝐱𝑠\𝑥𝑛
• We back-propagate these new “most likely values” to the next factor nodes 𝑓𝑠

further away from the root to evaluate their functions 𝜙𝑓𝑠 𝑥𝑛

• This is repeated until we obtain the most likely values for all the variables 𝐱max

𝑥1
max

𝑥3
max

𝑥2
max

𝑥4
max

𝑥5
max

𝑥6
max

𝜙𝑓𝑎 𝑥1

𝜙𝑓𝑑 𝑥1

𝜙𝑏 𝑥2

(Dynamic) BN for HMM - flashback

• In BN, 𝑧𝑖 nodes are not “HMM states”, these are random variables (one for

each frame) with values saying which state we are in for a particular frame 𝑖

𝑝 𝑥1, 𝑥2, … , 𝑥N, 𝑧1, 𝑧2, … 𝑧N = 𝑃(𝑧1)ෑ
𝑖=2

𝑁

𝑝 𝑧i 𝑧i−1 ෑ
𝑖=1

𝑁

𝑝 𝑥i 𝑧i

z1 z2 zN-1 zN

x1 x2 xN-1 xN

• For each time frame, Hidden Markov Model moves from state 𝑗 to state
𝑘 according to a transition probability ajk = 𝑝 𝑘 𝑗) and generates observation

𝐱 from probability distribution bk x = 𝑝 𝐱 𝑘) associated with the entered
state. More details on this model for modeling sequences are in SUR class.

b1 𝐱 b2 𝐱 b3 𝐱

a11 a22 a33

a12 a3exita23

Example: BP for HMM

z1 z2 zN-1 zN

x1 x2 xN-1 xN

• To evaluation an HMM, given a sequence of observations 𝑿 =
𝑥1, 𝑥2… , 𝑥𝑁 , we need to infer

𝑝 𝑿 = 𝑝 𝑥1, 𝑥2… , 𝑥𝑁 =෍

𝑧1

෍

𝑧2

…෍

𝑧𝑁

𝑝 𝑥1, 𝑥2… , 𝑥𝑁, 𝑧1, 𝑧2… , 𝑧𝑁

• To train an HMM using an EM algorithm (see next lesson), for every 𝑡 = 1. . 𝑁,

we need to infer

𝑝 𝑧𝑡 𝑿 =
𝑝 𝑧𝑡, 𝑿

𝑝 𝑿
=
σ𝑧1

σ𝑧2…σ𝑧𝑡−1
σ𝑧𝑡+1…σ𝑧𝑁 𝑝 𝑥1, 𝑥2… , 𝑥𝑁, 𝑧1, 𝑧2… , 𝑧𝑁

𝑝(𝑿)

Forward-backward algorithm

𝑠 are state ids (i.e. possible values of 𝑧𝑡)

𝛼 𝑡, 𝑠 = 𝑝 𝐱𝑡 𝑠 ෍

𝑠′

𝛼 𝑡 − 1, 𝑠′ 𝑝 𝑠 𝑠′

𝛽 𝑡, 𝑠 =෍

𝑠′

𝛽 𝑡 + 1, 𝑠′ 𝑝 𝐱𝑡+1 𝑠
′ 𝑝(𝑠′|𝑠)

𝑝 𝑿 = ෍

𝑠′∈𝐹𝑖𝑛𝑎𝑙𝑆𝑡𝑎𝑡𝑒𝑠

𝛼 𝑁, 𝑠′

𝑝 𝑧𝑡 = 𝑠 𝑿 =
𝛼 𝑡, 𝑠 𝛽 𝑡, 𝑠

𝑃 𝐗

Inference in non-tree graphs

• Junction tree algorithm

– Exact inference in general graphs (not only trees or polytrees)

– Belief propagation on a modified graph where cycles are eliminated by

merging nodes into single nodes

– Usually too computationally expensive and impractical

• Loopy Belief Propagation

– Initialize Sum-Product algorithm so that each node has already

“messages from all neighbors”

• these are only randomly initialized vectors, not real messages sent from the

neighbors

– Start sending messages like in the Sum-Product algorithm

• Choose some message passing schedule

• Send messages from pending nodes that received new messages and

updated their states

– Approximate inference, no guarantee to converge

	Slide 1
	Slide 2: Bayesian Networks (BN)
	Slide 3: Simple BN example
	Slide 4: Example 2: Am I out of fuel?
	Slide 5: Example 2: Am I out of fuel?
	Slide 6: Example 2: Am I out of fuel?
	Slide 7: Conditional independence
	Slide 8: Conditional independence
	Slide 9: Conditional independence - proof
	Slide 10: “Explaining away” effect
	Slide 11: d-separation
	Slide 12: d-separation: Examples
	Slide 13: d-separation: Examples II.
	Slide 14: Example of inference in BN
	Slide 15: Brute force inference in BN
	Slide 16: Optimized inference in BN
	Slide 17: Example II.
	Slide 18: Example III.
	Slide 19: Examples of Bayesian Networks
	Slide 20: Gaussian Mixture Model (GMM)
	Slide 21: Multivariate GMM
	Slide 22: Bayesian Networks for GMM
	Slide 23: Bayesian Networks for GMM - II
	Slide 24: (Dynamic) BN for HMM
	Slide 25: PLDA model for speaker verification
	Slide 26: PLDA model for speaker verification II
	Slide 27: Markov Random Fields
	Slide 28: MRF - factorization
	Slide 29: Checking the conditional independence
	Slide 30: BN vs MRF
	Slide 31: Example: HMM as MRF
	Slide 32: Flashback: (Dynamic) BN for HMM (slide from SUR class)
	Slide 33: Inference on a chain
	Slide 34: Inference on a chain II.
	Slide 35: Inference on a chain III.
	Slide 36: Inference on a chain IV.
	Slide 37: Factor graphs (FG)
	Slide 38: MRF to FG
	Slide 39: FG representations
	Slide 40: BN to FG
	Slide 41: FG with Tree topology
	Slide 42: Belief Propagation
	Slide 43
	Slide 44: Belief Propagation – derivation I
	Slide 45: Belief Propagation – derivation II
	Slide 46: Belief Propagation – derivation III
	Slide 47: Belief Propagation Message evaluation example
	Slide 48: Belief Propagation – derivation IV
	Slide 49
	Slide 50: BP solving all marginals at once
	Slide 51: BP with observed variables
	Slide 52: Marginal distribution of set of variables
	Slide 53: Most likely values
	Slide 54: Max-product algorithm
	Slide 55: Max-product algorithm II
	Slide 56: Max-product message example
	Slide 57: Max-product algorithm - backtracking
	Slide 58: (Dynamic) BN for HMM - flashback
	Slide 59: Example: BP for HMM
	Slide 61: Inference in non-tree graphs

