
Bayesian Models in Machine Learning

GMM, EM algorithm

Lukáš Burget

BAYa lectures, October 2023

GMM - recapitulation

where

𝑝 𝑥|𝜼 = ෍
𝑐
𝒩 𝑥; 𝜇𝑐 , 𝜎𝑐

2 𝜋𝑐

𝜼 = {𝜋𝑐 , 𝜇𝑐 , 𝜎𝑐
2}

෍
𝑐
𝜋𝑐 = 1

• We can see the sum above just as a function defining
the shape of the probability density function

• or …

→
p
(x

)

→ x

Multivariate GMM - recapitulation

where

𝑝 𝐱|𝜼 = ෍
𝑐
𝒩 𝐱; 𝝁𝑐 , 𝚺𝑐 𝜋𝑐

𝜼 = {𝜋𝑐 , 𝝁𝑐 , 𝚺𝑐}

෍
𝑐
𝜋𝑐 = 1

• We can see the sum above just as a function defining
the shape of the probability density function

• or …

BN for GMM – recapitulation

• or we can see it as a generative probabilistic model described by
Bayesian network with Categorical latent random variable 𝑧 identifying
Gaussian distribution generating the observation 𝑥

• Observations are assumed to be generated as follows:
– randomly select Gaussian component according probabilities 𝑃(𝑧)
– generate observation 𝑥 form the selected Gaussian distribution

• To evaluate 𝑝 𝑥 , we have to marginalize out 𝑧
• No close form solution for training

𝑝 𝑥 = ෍
𝑧
𝑝 𝑥 𝑧 𝑃(𝑧) = ෍

𝑐
𝒩 𝑥; 𝜇𝑐 , 𝜎𝑐

2 Cat 𝑧 = 𝑐 𝝅

𝑧

𝑥

𝑝 𝑥, 𝑧 = 𝑝 𝑥 𝑧 𝑃(𝑧)

BN for GMM – recapitulation II

• Multiple observations:

z1 z2 zN-1 zN

x1 x2 xN-1 xN

𝑝 𝑥1, 𝑥2, … , 𝑥N, 𝑧1, 𝑧2, … 𝑧N = ෑ
𝑛=1

𝑁

𝑝 𝑥n 𝑧n 𝑃(𝑧𝑛)

or

zn

xn

𝑛 = 1. . 𝑁

Training GMM –Viterbi training
• Intuitive and Approximate iterative algorithm for training GMM parameters.

• Using current model parameters, let

Gaussians classify data as if the

Gaussians were different classes (Even

though all the data corresponds to only

one class modeled by the GMM)

• Re-estimate parameters of

Gaussians using the data assigned

to them in the previous step.

New weights will be proportional to

the number of data points assigned

to the Gaussians.

• Repeat the previous two steps until

the algorithm converges.

Training GMM – EM algorithm
• Expectation Maximization is a general tool applicable to different

generative models with latent (hidden) variables.

• Here, we only see the result of its application to the problem of re-estimating
GMM parameters.

• It guarantees to increase the likelihood of training data in every iteration.
However, it does not guarantee to find the global optimum.

• The algorithm is very similar to the Viterbi training presented above.
However, instead of hard alignments of observations to Gaussian
components, the posterior probabilities 𝑃 𝑐|𝑥𝑖 (calculated given the old
model) are used as soft weights. Parameters 𝜇𝑐,𝜎𝑐

2 are then calculated
using a weighted average.

𝜇𝑐
𝑛𝑒𝑤

=
1

σ𝑛 𝛾𝑛𝑐
෍

𝑛
𝛾𝑛𝑐x𝑛

𝜎2
𝑐
𝑛𝑒𝑤

=
1

σ𝑛 𝛾𝑛𝑐
෍

𝑛
𝛾𝑛𝑐 xn − 𝜇𝑐

𝑛𝑒𝑤
2

𝜋𝑐
𝑛𝑒𝑤

=
σ𝑛 𝛾𝑛𝑐

σ𝑘 σ𝑛 𝛾𝑛𝑐
=

σ𝑛 𝛾𝑛𝑐

𝑁

𝛾𝑛𝑐 =
𝒩 𝑥𝑛|𝜇𝑐

(𝑜𝑙𝑑)
, 𝜎2

𝑐
(𝑜𝑙𝑑)

𝜋𝑐
(𝑜𝑙𝑑)

σ𝑘 𝒩 x𝑛|𝜇𝑘
(𝑜𝑙𝑑)

, 𝜎2
𝑘
(𝑜𝑙𝑑)

𝜋𝑘
(𝑜𝑙𝑑)

=
𝑝 x𝑛|𝑧𝑛 = 𝑐 𝑃(𝑧𝑛 = 𝑐)

σ𝑘 𝑝 𝑥𝑛|𝑧𝑛 = 𝑘 𝑃(𝑧𝑛 = 𝑘)
= 𝑃 𝑧𝑛 = 𝑐|x𝑛

GMM to be learned

EM algorithm

EM algorithm

EM algorithm

EM algorithm

EM algorithm

Expectation maximization algorithm

• where 𝑞 𝐙 is any distribution over the latent variable

• Kullback-Leibler divergence DKL(𝑞| 𝑝 measures “unsimilarity”

between two distributions 𝑞, 𝑝

• 𝐷𝐾𝐿(𝑞| 𝑝 ≥ 0 and 𝐷KL(𝑞| 𝑝 = 0 ⇔ 𝑞 = 𝑝

• ⇒ Evidence lower bound (ELBO) ℒ 𝑞 𝐙 , 𝜼 ≤ 𝑝(𝐗|𝜼)

• 𝐻 𝑞(𝐙) is (non-negative) Entropy of distribution 𝑞(𝐙)

• 𝒬 𝑞 𝐙 , 𝜼 is called auxiliary function.

Expectation maximization algorithm

• We aim to find parameters 𝜼 that maximize ln 𝑝 𝐗 𝜼

• E-step: 𝑞 𝐙 ≔ 𝑃(𝐙|𝐗, 𝜼𝑜𝑙𝑑)
– makes the 𝐷KL(𝑞| 𝑝 term 0

– makes ℒ 𝑞 𝐙 , 𝜼 = ln 𝑝 𝐗 𝜼

• M-step: 𝜼𝑛𝑒𝑤 = arg max
𝜼

𝒬 𝑞 𝐙 , 𝜼

– 𝐷𝐾𝐿(𝑞| 𝑝 increases as 𝑃 𝐗 𝐙, 𝜼 deviates from 𝑞 𝐙

– 𝐻 𝑞 𝐙 does not change for fixed 𝑞 𝐙

– ℒ 𝑞 𝐙 , 𝜼 increases like 𝒬(𝑞 𝐙 , 𝜼)

– ln 𝑝 𝐗 𝜼 increases more than 𝒬(𝑞 𝐙 , 𝜼)

Expectation maximization algorithm

⇩ E-step: 𝑞 𝐙 ≔ 𝑃(𝐙|𝐗, 𝜼𝑜𝑙𝑑)

M-step: ⇨
𝜼𝑛𝑒𝑤 = arg max

𝜼
𝒬 𝑞 𝐙 , 𝜼

ln 𝑝 𝐗 𝜼newℒ 𝑞 𝐙 , 𝜼newln 𝑝 𝐗 𝜼oldℒ 𝑞 𝐙 , 𝜼old

ln 𝑝 𝐗 𝜼ℒ 𝑞 𝐙 , 𝜼

Expectation maximization algorithm
𝒬 𝑞 𝐙 , 𝜼 and ℒ 𝑞 𝐙 , 𝜼 will be easy to optimize (e.g. quadratic function)

compared to ln 𝑝 𝐗 𝜼

𝜼𝑜𝑙𝑑 𝜼𝑛𝑒𝑤

ℒ 𝑞 𝐙 , 𝜼

ln 𝑝 𝐗 𝜼

EM for GMM
• Now, we aim to train parameters 𝜼 = 𝜇𝑧 , 𝜎𝑧

2, 𝜋𝑧 of Gaussian Mixture

model

𝑝 𝑥 = ෍
𝑧
𝑝 𝑥 𝑧 𝑃(𝑧) = ෍

𝑐
𝒩 𝑥; 𝜇𝑐 , 𝜎𝑐

2 Cat 𝑧 = 𝑐 𝝅

• Given training observations 𝐱 = [𝑥1, 𝑥2, … , 𝑥𝑁] we search for ML

estimate of 𝜼 that maximizes log likelihood of the training data.

ln 𝑝 𝐱 = ෍
𝑛

ln 𝑝 𝑥𝑛 = ෍

𝑛

ln ෍
𝑐
𝒩 𝑥𝑛; 𝜇𝑐 , 𝜎𝑐

2 𝜋𝑐

• Direct maximization of this objective function w.r.t. 𝜼 is intractable.

• We will use EM algorithm, where we maximize the auxiliary function

which is (for simplicity) sum of per-observation auxiliary functions

𝒬 𝑞 𝐳 , 𝜼 = ෍

𝑛

𝒬𝑛 𝑞 z𝑛 , 𝜼

• Again, in M-step σ𝑛 ln 𝑝 𝑥𝑛 must increase more than σ𝑛 𝒬𝑛 𝑞 𝑧𝑛 , 𝜼

EM for GMM – E-step

• 𝛾𝑛𝑐 is the so-called responsibility of Gaussian component 𝑧 for

observation 𝑛.

• It is the probability for an observation 𝑛 being generated from

component 𝑐

EM for GMM – M-step

• In M-step, the auxiliary function is maximized w.r.t. all GMM parameters

EM for GMM –update of means

• Update for component mean means:

• Update for variances: can be derived similarly.𝜎𝑐
2 =

σ𝑛 𝛾𝑛𝑐 xn − 𝜇𝑐
2

σ𝑛 𝛾𝑛𝑐

Flashback: ML estimate for Gaussian

arg max
𝜇,𝜎2

𝑝 𝐱 𝜇, 𝜎2 = arg max
𝜇,𝜎2

ln 𝑝 𝐱 𝜇, 𝜎2 = ෍

𝑖

ln 𝒩 𝑥𝑛; 𝜇, 𝜎2

= −
1

2𝜎2
෍

𝑛

𝑥𝑛
2 +

𝜇

𝜎2
෍

𝑛

𝑥𝑛 − 𝑁
𝜇2

2𝜎2
−

ln 2𝜋

2

𝜕

𝜕𝜇
ln 𝑝 𝐱 𝜇, 𝜎2 =

𝜕

𝜕𝜇
−

1

2𝜎2
෍

𝑛

𝑥𝑛
2 +

𝜇

𝜎2
෍

𝑛

𝑥𝑛 − 𝑁
𝜇2

2𝜎2
−

ln 2𝜋

2

=
1

𝜎2
෍

𝑛

𝑥𝑛 − 𝑁𝜇 = 0 ⇒ ො𝜇𝑀𝐿 =
1

𝑁
෍

𝑛
𝑥𝑛

෢𝜎2
𝑀𝐿

=
1

𝑁
෍

𝑛
(𝑥𝑛−𝜇)2

and similarly:

EM for GMM –update of weights

• Weights 𝜋𝑐 need to sum up to one. When updating weights,

Lagrange multiplier 𝜆 is used to enforce this constraint.

Factorization of the auxiliary

function more formally
• Before, we have introduced the per-observation auxiliary functions

• We can show that such factorization comes naturally even if we directly

write the auxiliary function as defined for the EM algorithm:

𝒬 𝑞 𝐳 , 𝜼 = ෍

𝐳

𝑞(𝐳) ln 𝑝 𝐱, 𝐳|𝜼 = ෍

𝐳

ෑ

𝑛′

𝑞(𝑧𝑛′) ෍

𝑛

ln 𝑝 𝑥𝑛, 𝑧𝑛|𝜼

= ෍

𝑐

෍

𝑛

𝑞 𝑧𝑛 = 𝑐 ln 𝑝 𝑥𝑛, 𝑧𝑛 = 𝑐|𝜼

• See the next slide for proof

Factorization over components
Example with only 3 observations (i.e., 𝐳 = [z1, z2, z3])

෍

𝐳

𝑞(𝐳) ln 𝑝 𝐱, 𝐳|𝜼 = ෍

𝐳

ෑ

𝑛′

𝑞(𝑧𝑛′) ෍

𝑛

log 𝑝 𝑥𝑛, 𝑧𝑛|𝜼 = ෍

𝐳

ෑ

𝑛′

𝑞(𝑧𝑛′) ෍

𝑛

𝑓 𝑧𝑛 = ෍

𝑛

෍

𝐳

ෑ

𝑛′

𝑞(𝑧𝑛′) 𝑓 𝑧𝑛 =

෍

𝑧1

෍

𝑧2

෍

𝑧3

𝑞 𝑧1 𝑞 𝑧2 𝑞 𝑧3 𝑓(𝑧1) + ෍

𝑧1

෍

𝑧2

෍

𝑧3

𝑞 𝑧1 𝑞 𝑧2 𝑞 𝑧3 𝑓(𝑧2) + ෍

𝑧1

෍

𝑧2

෍

𝑧3

𝑞 𝑧1 𝑞 𝑧2 𝑞 𝑧3 𝑓(𝑧3) =

෍

𝑧1

𝑞 𝑧1 𝑓 𝑧1 ෍

𝑧2

𝑞 𝑧2 ෍

𝑧3

𝑞 𝑧3 + ෍

𝑧1

𝑞 𝑧1 ෍

𝑧2

𝑞 𝑧2 𝑓 𝑧2 ෍

𝑧3

𝑞 𝑧3 + ෍

𝑧1

𝑞 𝑧1 ෍

𝑧2

𝑞 𝑧2 ෍

𝑧3

𝑞 𝑧3 𝑓 𝑧3 =

෍

𝑧1

𝑞 𝑧1 𝑓 𝑧1 + ෍

𝑧2

𝑞 𝑧2 𝑓 𝑧2 + ෍

𝑧3

𝑞 𝑧3 𝑓 𝑧3 =

෍

𝑐=1

𝐶

𝑞 𝑧1 = 𝑐 𝑓(𝑧1 = 𝑐) + ෍

𝑐=1

𝐶

𝑞 𝑧2 = 𝑐 𝑓(𝑧2 = 𝑐) + ෍

𝑐=1

𝐶

𝑞 𝑧3 = 𝑐 𝑓(𝑧3 = 𝑐) =

෍

𝑐=1

𝐶

෍

𝑛

𝑞 𝑧𝑛 = 𝑐 𝑓(𝑧𝑛 = 𝑐) = ෍

𝑐=1

𝐶

෍

𝑛

𝑞 𝑧𝑛 = 𝑐 log 𝑝 𝑥𝑛, 𝑧𝑛 = 𝑐|𝜂

Flashback: Example: BP for HMM

z1 z2 zN-1 zN

x1 x2 xN-1 xN

• To evaluation an HMM, given a sequence of observations 𝑿 =
𝑥1, 𝑥2 … , 𝑥𝑁 , we need to infer

𝑝 𝑿 = 𝑝 𝑥1, 𝑥2 … , 𝑥𝑁 = ෍

𝑧1

෍

𝑧2

… ෍

𝑧𝑁

𝑝 𝑥1, 𝑥2 … , 𝑥𝑁, 𝑧1, 𝑧2 … , 𝑧𝑁

• To train an HMM using an EM algorithm (see next lesson), for every 𝑡 = 1. . 𝑁,

we need to infer

𝑝 𝑧𝑡 𝑿 =
𝑝 𝑧𝑡, 𝑿

𝑝 𝑿
=

σ𝑧1
σ𝑧2

… σ𝑧𝑡−1
σ𝑧𝑡+1

… σ𝑧𝑁
𝑝 𝑥1, 𝑥2 … , 𝑥𝑁, 𝑧1, 𝑧2 … , 𝑧𝑁

𝑝(𝑿)

Forward-backward algorithm

𝑠 are state ids (i.e., possible values of 𝑧𝑡)

𝛼 𝑡, 𝑠 = 𝑝 𝐱𝑡 𝑠 ෍

𝑠′

𝛼 𝑡 − 1, 𝑠′ 𝑝 𝑠 𝑠′

𝛽 𝑡, 𝑠 = ෍

𝑠′

𝛽 𝑡 + 1, 𝑠′ 𝑝 𝐱𝑡+1 𝑠′ 𝑝(𝑠′|𝑠)

𝑝 𝑿 = ෍

𝑠′∈𝐹𝑖𝑛𝑎𝑙𝑆𝑡𝑎𝑡𝑒𝑠

𝛼 𝑁, 𝑠′

𝑝 𝑧𝑡 = 𝑠 𝑿 =
𝛼 𝑡, 𝑠 𝛽 𝑡, 𝑠

𝑃 𝐗

t

s

E-step:

𝛼 𝑡, 𝑠 = 𝑝 𝐱𝑡 𝑠 ෍

𝑠′

𝛼 𝑡 − 1, 𝑠′ 𝑝(𝑠|𝑠′)

𝛽 𝑡, 𝑠 = ෍

𝑠′

𝛽 𝑡 + 1, 𝑠′ 𝑝 𝐱𝑡+1 𝑠′ 𝑝(𝑠′|𝑠)

γ𝑠 𝑡 = 𝑝 𝑧𝑡 = 𝑠 𝑿 =
𝛼 𝑡, 𝑠 𝛽 𝑡, 𝑠

σ𝑠′∈𝐹𝑖𝑛𝑎𝑙𝑆𝑡𝑎𝑡𝑒𝑠 𝛼 𝑁, 𝑠′

M-step:

Examples: Training HMMs using EM

EM for continuous latent variable

• Same equations, where sums over the latent variable 𝐙
are simply replaced by integrals

Flashback: PLDA model for speaker verification
• Let each speech utterance be represented by speaker embedding vector 𝐱

• e.g. 512 dim. output of hidden layer of neural network trained for speaker classification

• We assume, that the distribution of the embeddings can be modeled as

follows:

• We assume the same factorization as for GMM, but with continuous laten variable 𝐳

𝑝 𝐳 = 𝓝 𝐳 𝝁, 𝚺𝑎𝑐 - distribution of speaker means

𝑝 𝐱 𝐳 = 𝓝(𝐱|𝒛, 𝚺𝑤𝑐) - within class (channel) variability

• Observations (embeddings) are assumed to be generated as follows:
• Latent (speaker mean) vector 𝐳𝑠 is generated for each speaker s from gaussian

distribution 𝑝 𝐳
• All embeddings of speaker s are generated

from Gaussian distribution 𝑝 𝐱si 𝐳s

𝐳1

x11 x12 x1N1
…

𝐳S

xS1 xS2 xSN1
…

…

𝐳𝑠

xSi

	Slide 1
	Slide 2: GMM - recapitulation
	Slide 3: Multivariate GMM - recapitulation
	Slide 4: BN for GMM – recapitulation
	Slide 5: BN for GMM – recapitulation II
	Slide 6: Training GMM –Viterbi training
	Slide 7: Training GMM – EM algorithm
	Slide 8: GMM to be learned
	Slide 9: EM algorithm
	Slide 10: EM algorithm
	Slide 11: EM algorithm
	Slide 12: EM algorithm
	Slide 13: EM algorithm
	Slide 14: Expectation maximization algorithm
	Slide 15: Expectation maximization algorithm
	Slide 16: Expectation maximization algorithm
	Slide 17: Expectation maximization algorithm
	Slide 18: EM for GMM
	Slide 19: EM for GMM – E-step
	Slide 20: EM for GMM – M-step
	Slide 21: EM for GMM –update of means
	Slide 22: Flashback: ML estimate for Gaussian
	Slide 23: EM for GMM –update of weights
	Slide 24: Factorization of the auxiliary function more formally
	Slide 25: Factorization over components
	Slide 26: Flashback: Example: BP for HMM
	Slide 27
	Slide 28: EM for continuous latent variable
	Slide 29: Flashback: PLDA model for speaker verification

