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Motivation

▶ A single abstract domain may not be sufficient for analysis.
▶ Two possible solutions:

▶ Create a single more complex/universal domain covering
more properties of the program.

▶ Use multiple specialized domains in parallel and combine
their results.

▶ Creating a universal domain is a complex task. Combination
of multiple simpler domains is more feasible.

▶ Results of one domain can refine the results of another
domain.
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Reduced product

▶ For simplicity, let’s consider only 2 domains.

▶ Let ⟨A1,⊑1⟩ and ⟨A2,⊑2⟩ be abstract domains with their
concretization functions γ1 and γ2, respectively. Their
Cartesian product [1] is ⟨A,⊑⟩ where:

▶ A = A1 × A2

▶ ⟨p1, p2⟩ ⊑ ⟨q1, q2⟩ ⇐⇒ p1 ⊑1 q1 ∧ p2 ⊑2 q2
▶ γA(⟨p1, p2⟩) = γ1(p1) ∩ γ2(p2)

▶ Such combined abstract domain does not provide more precise
results than running the analyses with each abstract domain
independently [2].

▶ The reduced product is ⟨A/≡,⊑⟩ where
P ≡ Q ⇐⇒ γA(P) = γA(Q) and γA and ⊑ are extended to
the equivalence classes of ≡.
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Reduced product

▶ Finding the equivalence class of an abstract context can be
seen as using a reduction function σ : A → A such that
σ(⟨p1, p2⟩) = ⟨α1(γA(⟨p1, p2⟩)), α2(γA(⟨p1, p2⟩))⟩

▶ For example, in a reduced product of interval and parity
domain, ⟨[1, 9], even⟩ ≡ ⟨[2, 8], even⟩:

γA(⟨[1, 9], even⟩) = γ1([1, 9]) ∩ γ2(even)

= {1, 2, . . . , 9} ∩ {0, 2, 4, . . .}
= {2, 4, 6, 8}
= γA(⟨[2, 8], even⟩)

▶ In practice, analyzers compute an over-approximation of the
reduction using some rules (concretization is not feasible).

▶ Typically, messages are exchanged between domains, each
domain implements refinement based on a received message.
The message format varies (e.g. various logics).



Reduced product

▶ Finding the equivalence class of an abstract context can be
seen as using a reduction function σ : A → A such that
σ(⟨p1, p2⟩) = ⟨α1(γA(⟨p1, p2⟩)), α2(γA(⟨p1, p2⟩))⟩

▶ For example, in a reduced product of interval and parity
domain, ⟨[1, 9], even⟩ ≡ ⟨[2, 8], even⟩:

γA(⟨[1, 9], even⟩) = γ1([1, 9]) ∩ γ2(even)

= {1, 2, . . . , 9} ∩ {0, 2, 4, . . .}
= {2, 4, 6, 8}
= γA(⟨[2, 8], even⟩)

▶ In practice, analyzers compute an over-approximation of the
reduction using some rules (concretization is not feasible).

▶ Typically, messages are exchanged between domains, each
domain implements refinement based on a received message.
The message format varies (e.g. various logics).



Reduced product

▶ Finding the equivalence class of an abstract context can be
seen as using a reduction function σ : A → A such that
σ(⟨p1, p2⟩) = ⟨α1(γA(⟨p1, p2⟩)), α2(γA(⟨p1, p2⟩))⟩

▶ For example, in a reduced product of interval and parity
domain, ⟨[1, 9], even⟩ ≡ ⟨[2, 8], even⟩:

γA(⟨[1, 9], even⟩) = γ1([1, 9]) ∩ γ2(even)

= {1, 2, . . . , 9} ∩ {0, 2, 4, . . .}
= {2, 4, 6, 8}
= γA(⟨[2, 8], even⟩)

▶ In practice, analyzers compute an over-approximation of the
reduction using some rules (concretization is not feasible).

▶ Typically, messages are exchanged between domains, each
domain implements refinement based on a received message.
The message format varies (e.g. various logics).



Full example [3]

▶ Consider the parity and sign domains.

x := 0

x := x div 2

x := x + 1

C0

C1

C2

C3

▶ A1 = {⊥, odd , even,⊤}
▶ A2 = {⊥,≥ 0, 0,≤ 0,⊤}
▶ Let’s consider A = A1 × A2

Product Reduced Product

C0 ⟨⊤,⊤⟩ ⟨⊤,⊤⟩
C1

⟨even, 0⟩ ⟨even, 0⟩

C2

⟨⊤, 0⟩ ⟨⊤, 0⟩ ≡ ⟨even, 0⟩

C3

⟨⊤,≥ 0⟩ ⟨odd ,≥ 0⟩

▶ Notice that we obtain more information in C3:
▶ γA(⟨⊤,≥ 0⟩) = {0, 1, 2, . . .}
▶ γA(⟨odd ,≥ 0⟩) = {1, 3, 5, . . .}

▶ This was a simple sequential example but such reductions can
have a positive effect on widening and narrowing as well.
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Combining more domains

▶ The product can naturally be extended to 3 or more domains.

▶ However, adding a new domain requires redesigning the
reduction [1].

▶ Oftentimes, only pairwise reductions are applied. This is
easier to implement at the cost of potentially less precise
results.

▶ Refinement in one domain can facilitate further refinements.
Therefore, the pairwise reductions are applied until a fixpoint
is reached [4].

▶ Alternatively, reductions can be applied in a fixed order, e.g.
Astrée [5].
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Astrée example hierarchy [5]

trace partitioning

×

intervals ×

symbolic domain ×

octagons boolean partitioning

×

intervals symbolic domain

▶ Symbolic domain propagates assigned
expressions in a symbolic way [6].

▶ Boolean partitioning relates the values
of (integer) variables to the values of
boolean variables.

▶ Trace partitioning tracks history of
control flow branches and values along
the execution trace.
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