Static Analysis and Verification
SAV 2024/2025

Tomas Vojnar
vojnar@fit.vutbr.cz

Brno University of Technology
Faculty of Information Technology
Bozetéchova 2, 612 66 Brno

Temporal Logics — p.1/26

Temporal Logics:
CTL*, CTL, LTL

Model of Computation

Kripke Structures

% Informally, Kripke structures are directed graphs whose
vertices correspond to configurations of the examined system,

the vertices are labelled by atomic propositions that are true in the appropriate
configurations, and

edges encode possible transitions between the configurations.

Pl mutexl: P2 S
© (c) _ Cnlocked(h>™
unlock(l) lock(l) || lock(l) unlock(l) / \
(b) (D CesPl) > Ces(P2) >
S, S,

% Can be generated from the source description of examined systems (or used implicitly
as an underlying semantic model of the formulae as well as examined systems).

% The generation involves the state explosion problem, or the Kripke structure may be
infinite—in the following, we, however, concentrate on finite Kripke structures.

Temporal Logics — p.4/26

Kripke Structures

% Let AP be a set of atomic propositions about the configurations of the examined
system.

% Formally, a (finite) Kripke structure M over AP is atuple M = (S, So, R, L) where
S is a finite set of states,
So C S is a set of initial states,

R C S x S'is a transition relation, for convenience supposed to be total (i.e.
Vs € S 3s" € S. R(s,s")),

L : S — 247 is a labelling function that labels each state by the set of atomic
propositions that are true in it.

Temporal Logics — p.5/26

Kripke Structures

% Let AP be a set of atomic propositions about the configurations of the examined
system.

% Formally, a (finite) Kripke structure M over AP is atuple M = (S, So, R, L) where
S is a finite set of states,
So C S is a set of initial states,

R C S x S'is a transition relation, for convenience supposed to be total (i.e.
Vs € S 3s" € S. R(s,s")),

L : S — 247 is a labelling function that labels each state by the set of atomic
propositions that are true in it.

% For the example from the previous slide, we have:
AP = {unlocked(l),cs(P1),cs(P2)},
S = {s1, 82,83},
So ={s1},
R = {(s1, s2), (52, 51), (51, 83), (83, 51) },
L = {(s1,{unlocked(l)}), (s2,{cs(P1)}), (s3,{cs(P2)})}.

Temporal Logics — p.5/26

Kripke Structures

% A path 7 in a Kripke structure M is an infinite sequence of states m = sps1s2... such
that vz € N.R(Si, S»L'_|_1).

< We denote II(M, s) the set of all paths in M that startat s € S.

< The suffix 7* of a path ™ = s05152...5;8i4+15i+2... iS the path 7" = s;5;415:42... starting
at s;.

Temporal Logics — p.6/26

The CTL* Logic

CTL*—Basic Idea

% CTL* formulae describe properties of computation trees.

“ Infinite computation trees are obtained by unwinding a Kripke structure from its initial
states.

% CTL™ formulae consist of:
atomic propositions,
Boolean connectives,
path quantifiers,
temporal operators.

Temporal Logics — p.8/26

CTL*—Quantifiers and Operators

% Path quantifiers—describe the branching structure of a computation tree:
E': for some computation path leading from a state,
A: for all computation paths leading from a state.

% Temporal operators—properties of a path through a computation tree:

X ¢ (“next time”,): the property ¢ holds (on the path starting) from the second
state of the given path,

F o (“eventually” / “sometimes”, ©): the property holds (on the path starting) from
some state of the given path,

G o (“always” / “globally”, O): the property ¢ holds from all states of the path,

o U 1 (“until”): the property 1 holds from some state of the path, and the property
v holds from all preceding states of the path,

v R 1 (“release”): the property ¢ holds from all states of the path up to (and
including) the first state from where the property ¢ holds (if such a state exists).

Temporal Logics — p.9/26

CTL*—The Syntax

% Let AP be a non-empty set of atomic propositions.

% The syntax of state formulae, which are true in a specific state, is given by the following
rules:

If p € AP, then p is a state formula.
If o and 1) are state formulae, then —p, © \V 1), © A 1) are state formulae.
If © is a path formula, then £ p and A ¢ are state formulae.

% The syntax of path formulae, which are true along a specific path, is given by the
following rules:

If © is a state formula, then ¢ is a path formula too.

If © and v are path formulae, then =, 0o V), o A, X o, F o, G p, U, and
w R are path formulae.

% CTL" is the set of state formulae generated by the above rules.

Temporal Logics — p.10/26

CTL"—The Semantics

% Let a Kripke structure M = (5, So, R, L) over a set of atomic propositions AP be given.
% For a state formula ¢ over AP, we denote M, s = ¢ the fact that ¢ holds at s € S.

% For a path formula o over AP, we denote M, = ¢ the fact that ¢ holds along a path «
in M.

Temporal Logics — p.11/26

CTL"—The Semantics

% Let a Kripke structure M = (5, So, R, L) over a set of atomic propositions AP be given.
% For a state formula ¢ over AP, we denote M, s = ¢ the fact that ¢ holds at s € S.

% For a path formula o over AP, we denote M, = ¢ the fact that ¢ holds along a path «
in M.

% Lets e S, mbeapathin M, o1, p2 be state formulae over AP, p € AP, and 1, 2 be
path formulae over AP. We define the relation = inductively as follows:

Continued at the next slide...

Temporal Logics — p.11/26

CTL"—The Semantics

% Let a Kripke structure M = (5, So, R, L) over a set of atomic propositions AP be given.
% For a state formula ¢ over AP, we denote M, s = ¢ the fact that ¢ holds at s € S.

% For a path formula o over AP, we denote M, = ¢ the fact that ¢ holds along a path «
in M.

% Lets e S, mbeapathin M, o1, p2 be state formulae over AP, p € AP, and 1, 2 be
path formulae over AP. We define the relation = inductively as follows:

M, s = piff p e L(s).

Continued at the next slide...

Temporal Logics — p.11/26

CTL"—The Semantics

% Let a Kripke structure M = (5, So, R, L) over a set of atomic propositions AP be given.
% For a state formula ¢ over AP, we denote M, s = ¢ the fact that ¢ holds at s € S.

% For a path formula o over AP, we denote M, = ¢ the fact that ¢ holds along a path «
in M.

% Lets e S, mbeapathin M, o1, p2 be state formulae over AP, p € AP, and 1, 2 be
path formulae over AP. We define the relation = inductively as follows:

M, s = piff p e L(s).

M, s = =y iff M, s = @1,

Continued at the next slide...

Temporal Logics — p.11/26

CTL"—The Semantics

% Let a Kripke structure M = (5, So, R, L) over a set of atomic propositions AP be given.
% For a state formula ¢ over AP, we denote M, s = ¢ the fact that ¢ holds at s € S.

% For a path formula o over AP, we denote M, = ¢ the fact that ¢ holds along a path «
in M.

% Lets e S, mbeapathin M, o1, p2 be state formulae over AP, p € AP, and 1, 2 be
path formulae over AP. We define the relation = inductively as follows:

M, s = piff p e L(s).
M, s = =y iff M, s = @1,
M, s = @1 Vs iff M, s =1 0r M, s = po.

Continued at the next slide...

Temporal Logics — p.11/26

CTL"—The Semantics

% Let a Kripke structure M = (5, So, R, L) over a set of atomic propositions AP be given.
% For a state formula ¢ over AP, we denote M, s = ¢ the fact that ¢ holds at s € S.

% For a path formula o over AP, we denote M, = ¢ the fact that ¢ holds along a path «
in M.

% Lets e S, mbeapathin M, o1, p2 be state formulae over AP, p € AP, and 1, 2 be
path formulae over AP. We define the relation = inductively as follows:

M, s = piff p e L(s).

M, s = =y iff M, s = @1,

M, s = @1 Vs iff M, s =1 0r M, s = po.
M,s = @1 A iff M, s = @1 and M, s = p2.

Continued at the next slide...

Temporal Logics — p.11/26

CTL"—The Semantics

% Let a Kripke structure M = (5, So, R, L) over a set of atomic propositions AP be given.
% For a state formula ¢ over AP, we denote M, s = ¢ the fact that ¢ holds at s € S.

% For a path formula o over AP, we denote M, = ¢ the fact that ¢ holds along a path «
in M.

% Lets e S, mbeapathin M, o1, p2 be state formulae over AP, p € AP, and 1, 2 be
path formulae over AP. We define the relation = inductively as follows:

M, s = piff p e L(s).

M, s = =y iff M, s = @1,

M, s = @1 Vs iff M, s =1 0r M, s = po.
M,s = @1 A iff M, s = @1 and M, s = p2.
M,s = FE ift Im € II(M, s). M, 7 = 1.

Continued at the next slide...

Temporal Logics — p.11/26

CTL"—The Semantics

% Let a Kripke structure M = (5, So, R, L) over a set of atomic propositions AP be given.
% For a state formula ¢ over AP, we denote M, s = ¢ the fact that ¢ holds at s € S.

% For a path formula o over AP, we denote M, = ¢ the fact that ¢ holds along a path «
in M.

% Lets e S, mbeapathin M, o1, p2 be state formulae over AP, p € AP, and 1, 2 be
path formulae over AP. We define the relation = inductively as follows:

M, s = piff p e L(s).

M, s = =y iff M, s = @1,

M, s = @1 Vs iff M, s =1 0r M, s = po.
M,s = @1 A iff M, s = @1 and M, s = p2.
M,s = FE ift Im € II(M, s). M, 7 = 1.
M,s = Ay iftvor e II(M, s). M, |= 1.

Continued at the next slide...

Temporal Logics — p.11/26

CTL*—The Semantics

Continued from the previous slide...

o M,m = o iff M, so = ¢1 where sq is the first state of .

Temporal Logics — p.12/26

CTL*—The Semantics

Continued from the previous slide...

o M,m = o iff M, so = ¢1 where sq is the first state of .
o M, = -y it M, b= .

Temporal Logics — p.12/26

CTL*—The Semantics

Continued from the previous slide...

o M,m = o iff M, so = ¢1 where sq is the first state of .
o M,m = =)y ifft M, 7 &=,
® M,ﬂ' :wl\/wg IffM,T('I:’QD1 OfM,ﬂ' |:¢2

Temporal Logics — p.12/26

CTL*—The Semantics

Continued from the previous slide...

o M,m = o iff M, so = ¢1 where sq is the first state of .
o M,m = =)y ifft M, 7 &=,

o M, = Vs iff M,m =11 or M, = e.

° M, = AN iff M, =11 and M, 7 = .

Temporal Logics — p.12/26

CTL*—The Semantics

Continued from the previous slide...

o M,m = o iff M, so = ¢1 where sq is the first state of .
o M,m = =)y ifft M, 7 &=,

o M, = Vs iff M,m =11 or M, = e.

° M, = AN iff M, =11 and M, 7 = .

o M,m = X oy iff M, 7wt = .

Temporal Logics — p.12/26

CTL*—The Semantics

Continued from the previous slide...

M,
M,
M,
M,
M,
M,

—)y iff M, & 1.

— by Vo iff M, =4y of M, 7 = 1.
— b1 Ao iff M, b= and M, 7 =)s.
— X o)y iff M, 7t = .

— [y iff 30 > 0. M, 7" |= 1.

— ¢, iff M, so = p1 Where sq is the first state of .

Temporal Logics — p.12/26

CTL*—The Semantics

Continued from the previous slide...

M,
M,
M,
M,
M,
M,
M,

—)y iff M, 7 pE o).

=)1 Vs iff M, =11 or M, =).
= 1 N s iff M, =1 and M, 7w = e.
— X oy iff M, 7t = .

— [y iff 30 > 0. M, 7" |= 1.

— Gy iff Vi > 0. M, 7" = 11.

— ¢, iff M, so = p1 Where sq is the first state of .

Temporal Logics — p.12/26

CTL*—The Semantics

Continued from the previous slide...

o M,m = o iff M, so = ¢1 where sq is the first state of .

o M, = —apy iff M, 7 F= 1.

o M, = Vs iff M,m =11 or M, = e.

° M, = AN iff M, =11 and M, 7 = .

o M,m = X oy iff M, 7wt = .

o M7= Fapyiff 35> 0. M, 7" = .

o M7= Gy iff Vi > 0. M, 7" = .

o M, Uy iff 3 >0 M, 7" = and V0 < j <i. M, w7 = 1.

Temporal Logics — p.12/26

CTL*—The Semantics

Continued from the previous slide...

M,
M,
M,
M,
M,
M,
M,
M,
M,

—)y iff M, 7 B~).

=)1 Vs iff M, =11 or M, =).
= 1 N s iff M, =1 and M, 7w = e.
— X oy iff M, 7t = .

— [y iff 30 > 0. M, 7" |= 1.

— Gy iff Vi > 0. M, 7" = 11.

— ¢, iff M, so = p1 Where sq is the first state of .

— o)y U o iff 3 > 0. M, m" =1 and V0 < j < i. M, 77 |=).
— b R iff Vi > 0. (VO < j <i. M,m0 J=opr) = M, 7 = 1o,

Temporal Logics — p.12/26

CTL"—The Semantics

Continued from the previous slide...

M,
M,
M,
M,
M,
M,
M,
M,
M,

= o iff M, so = ¢1 where sq is the first state of .

—)y iff M, 7 B~).

=)1 Vs iff M, =11 or M, =).

= 1 N s iff M, =1 and M, 7w = e.

— X oy iff M, 7" = .

— [y iff 30 > 0. M, 7" |= 1.

— Gy iff Vi > 0. M, 7" = 11.

— o)y U o iff 3 > 0. M, m" =1 and V0 < j < i. M, 77 |=).

— b R iff Vi > 0. (VO < j <i. M,m0 J=opr) = M, 7 = 1o,

% For a (state) CTL* formula o, we write M = ¢ iff Vso € So. M, so = .

Temporal Logics — p.12/26

CTL*—Basic Operators

< Provided that AP # (), it is easy to see that all CTL* operators can be derived from
VvV,—, X,U, and E:

° letp e AP, true = (and false = —true),
® pANY =

® F o=

° Gp=

® pRY=

° Ap=

Temporal Logics — p.13/26

CTL*—Basic Operators

< Provided that AP # (), it is easy to see that all CTL* operators can be derived from
VvV,—, X,U, and E:

° letp e AP, true = pV —p (and false = —true),
* pAY=

® F o=

° Gp=

* p Ry =

® Ap=

Temporal Logics — p.13/26

CTL*—Basic Operators

< Provided that AP # (), it is easy to see that all CTL* operators can be derived from
VvV,—, X,U, and E:

° letp e AP, true = pV —p (and false = —true),
* e N =a(mp V)

® Fop=

° Gp=

* p Ry =

° Ap=

Temporal Logics — p.13/26

CTL*—Basic Operators

< Provided that AP # (), it is easy to see that all CTL* operators can be derived from
VvV,—, X,U, and E:

° letp e AP, true = pV —p (and false = —true),
¢ pANY=(mpV)

° Fo=truelU o,

° Gp=

® v Ry =

® Ap=

Temporal Logics — p.13/26

CTL*—Basic Operators

< Provided that AP # (), it is easy to see that all CTL* operators can be derived from
VvV,—, X,U, and E:

° letp e AP, true = pV —p (and false = —true),
* e N =a(mp V)

° Fo=truelU o,

° G Y = —F P,

* p Ry =

® Ap=

Temporal Logics — p.13/26

CTL*—Basic Operators

< Provided that AP # (), it is easy to see that all CTL* operators can be derived from
VvV,—, X,U, and E:

° letp e AP, true = pV —p (and false = —true),
* e N =a(mp V)

° Fo=truelU o,

° G Y = —F P,

* ¢ Ry ==(-pU),

® Ap=

Temporal Logics — p.13/26

CTL*—Basic Operators

< Provided that AP # (), it is easy to see that all CTL* operators can be derived from
VvV,—, X,U, and E:

° letp e AP, true = pV —p (and false = —true),
° Fo=truelU o,
° G Y = F —g,

* p RYp=-(-pU),
® AQOE—lE—IQO.

Temporal Logics — p.13/26

CTL*—Basic Operators

< Provided that AP # (), it is easy to see that all CTL* operators can be derived from
VvV,—, X,U, and E:

° letp e AP, true = pV —p (and false = —true),
* e N =a(mp V)

° Fo=truelU o,

° G ¥ = —F P,

* ¢ Ry ==(-pU),

° Ap=-FE —op.

% Some further connectives may be introduced too, e.g.:
* v=Y="p Vi,
c pev=(@=Y)AN W =),

Temporal Logics — p.13/26

The CTL Logic

CTL—The Syntax

% CTL is a sublogic of CTL*—the path formulae are restricted to X ¢, F' ¢, G ¢, pU1),
and o R for ¢, 1 being state formulae.

Temporal Logics — p.15/26

CTL—The Syntax

% CTL is a sublogic of CTL*—the path formulae are restricted to X ¢, F' ¢, G ¢, pU1),
and o R for ¢, 1) being state formulae.

% In effect, there are allowed these 10 modal CTL operators:
e AX and EX,

AXp EXp

Continued at the next slide...
Temporal Logics — p.15/26

CTL—The Syntax

% CTL is a sublogic of CTL*—the path formulae are restricted to X ¢, F' ¢, G ¢, pU1),
and o R for ¢, 1) being state formulae.

% In effect, there are allowed these 10 modal CTL operators:
e AX and EX,

AXp EXp

o AF and EF,

AF p EFp

Continued at the next slide...
Temporal Logics — p.15/26

CTL—The Syntax

% CTL is a sublogic of CTL*—the path formulae are restricted to X ¢, F' ¢, G ¢, pU1),
and o R for ¢, 1 being state formulae.

% In effect, there are allowed these 10 modal CTL operators:

e AX and EX,

AX p EXp
o AF and EF,

AF p EFp
* AG and EG,

AGp EGp

Continued at the next slide...
Temporal Logics — p.15/26

CTL—The Syntax

Continued from the previous slide...

o AU and EU,

Temporal Logics — p.16/26

CTL—The Syntax

Continued from the previous slide...

o AU and EU,

e AR and FR.

Temporal Logics — p.16/26

CTL—The Syntax

Continued from the previous slide...

o AU and EU,

e AR and FR.

% There are 3 basic CTL modal operators—FE X, EG, and EU:

° AX o=
® FF o=
° AG ¢ =
° AF ¢ =

* Alp U]
* Alp R 1]
* Elp R

Temporal Logics — p.16/26

CTL—The Syntax

Continued from the previous slide...

o AU and EU,

e AR and FR.

% There are 3 basic CTL modal operators—FE X, EG, and EU:

° AX p=-FEX -,
® FF o=
° AG ¢ =
° AF ¢ =

* Alp U]
* Alp R 1]
* Elp R

Temporal Logics — p.16/26

CTL—The Syntax

Continued from the previous slide...

o AU and EU,

e AR and FR.

% There are 3 basic CTL modal operators—FE X, EG, and EU:

° AX p=-FEX -,

° EF ¢ = E[true U ¢,
° AG ¢ =

° AF ¢ =

* Alp U]
* Alp R 1]
* Elp R

Temporal Logics — p.16/26

CTL—The Syntax

Continued from the previous slide...

o AU and EU,

e AR and FR.

% There are 3 basic CTL modal operators—FE X, EG, and EU:

° AX p=-FEX -,

° EF ¢ = E[true U ¢,
° AG o =-FEF —,

° AF ¢ =

Al U 9]
Alp R]
Elp R)

Temporal Logics — p.16/26

CTL—The Syntax

Continued from the previous slide...

o AU and EU,

e AR and FR.

% There are 3 basic CTL modal operators—FE X, EG, and EU:

° AX p=-FEX -,
° EF ¢ = E[true U ¢,
° AG o =-FEF —,
o AF p = -EG —p,

Al U 9]
Alp R]
Elp R)

Temporal Logics — p.16/26

CTL—The Syntax

Continued from the previous slide...

o AU and EU,

e AR and FR.

% There are 3 basic CTL modal operators—FE X, EG, and EU:

° AX p=-FEX -,
° EF ¢ = E[true U ¢,
° AG o =-FEF —,
o AF p = -EG —p,

Al U 9]
Alp R]
Elp R)

—E[-p U (mp AN —p)] N AFY,

Temporal Logics — p.16/26

CTL—The Syntax

Continued from the previous slide...

o AU and EU,

e AR and FR.

% There are 3 basic CTL modal operators—FE X, EG, and EU:

°* AX p=-EX —o, o Alp Uyl ==E[-p U (mp A=p)] N AFY,
° EF o= Eltrue U ¢), ° Alp Ry] =-E[-¢ U),
® AG p = —~EF -, ® Flo RyY|=

® AFgO = —lEG —Q,

Temporal Logics — p.16/26

CTL—The Syntax

Continued from the previous slide...

o AU and EU,

e AR and FR.

% There are 3 basic CTL modal operators—FE X, EG, and EU:

° AX o= —EX —op, ° Alp U] =
° EF ¢ = E[true U ¢, °* Alp Ry| =
® AG p = —~EF -, ® Flo RyY|=

o AFgD = -FEG —Q,

-
-5
-A

Y U (e A)] A AF,
- U],

o U —].

Temporal Logics — p.16/26

CTL—Some Examples

% Some examples of CTL formulae:

® Mutual exclusion of two processes using propositions cs(P1) (process P1 is in the
critical section) and cs(P2).

Temporal Logics — p.17/26

CTL—Some Examples

% Some examples of CTL formulae:

® Mutual exclusion of two processes using propositions cs(P1) (process P1 is in the
critical section) and cs(P2).
-EF (cs(P1) A ¢s(P2)) = AG (—c¢s(P1) V —es(P2))

Temporal Logics — p.17/26

CTL—Some Examples

% Some examples of CTL formulae:

® Mutual exclusion of two processes using propositions cs(P1) (process P1 is in the
critical section) and cs(P2).

-EF (cs(P1) A ¢s(P2)) = AG (—c¢s(P1) V —es(P2))
® |t is possible to get to a state where Start holds, but Ready does not.

Temporal Logics — p.17/26

CTL—Some Examples

% Some examples of CTL formulae:

® Mutual exclusion of two processes using propositions cs(P1) (process P1 is in the
critical section) and cs(P2).
-EF (cs(P1) A ¢s(P2)) = AG (—c¢s(P1) V —es(P2))

® |tis possible to get to a state where Start holds, but Ready does not.
EF (Start N —~Ready)

Temporal Logics — p.17/26

CTL—Some Examples

% Some examples of CTL formulae:

Mutual exclusion of two processes using propositions cs(P1) (process P1 is in the
critical section) and cs(P2).

-EF (cs(P1) A ¢s(P2)) = AG (—c¢s(P1) V —es(P2))

It is possible to get to a state where Start holds, but Ready does not.

EF (Start N —~Ready)

Whenever a request occurs (i.e. Req holds), then it will eventually be
acknowledged (i.e. Ack will hold).

Temporal Logics — p.17/26

CTL—Some Examples

% Some examples of CTL formulae:

Mutual exclusion of two processes using propositions cs(P1) (process P1 is in the
critical section) and cs(P2).

-EF (cs(P1) A ¢s(P2)) = AG (—c¢s(P1) V —es(P2))

It is possible to get to a state where Start holds, but Ready does not.

EF (Start N —~Ready)

Whenever a request occurs (i.e. Req holds), then it will eventually be
acknowledged (i.e. Ack will hold).
AG (Req = AF Ack)

Temporal Logics — p.17/26

CTL—Some Examples

% Some examples of CTL formulae:

Mutual exclusion of two processes using propositions cs(P1) (process P1 is in the
critical section) and cs(P2).
-EF (cs(P1) A ¢s(P2)) = AG (—c¢s(P1) V —es(P2))

It is possible to get to a state where Start holds, but Ready does not.
EF (Start N —~Ready)

Whenever a request occurs (i.e. Req holds), then it will eventually be
acknowledged (i.e. Ack will hold).
AG (Req = AF Ack)

In any run of the system, Device Enabled is true infinitely often.

Temporal Logics — p.17/26

CTL—Some Examples

% Some examples of CTL formulae:

Mutual exclusion of two processes using propositions cs(P1) (process P1 is in the
critical section) and cs(P2).

-EF (cs(P1) A ¢s(P2)) = AG (—c¢s(P1) V —es(P2))

It is possible to get to a state where Start holds, but Ready does not.

EF (Start N —~Ready)

Whenever a request occurs (i.e. Req holds), then it will eventually be
acknowledged (i.e. Ack will hold).
AG (Req = AF Ack)

In any run of the system, Device Enabled is true infinitely often.
AG AF DeviceEnabled

Temporal Logics — p.17/26

CTL—Some Examples

% Some examples of CTL formulae:

Mutual exclusion of two processes using propositions cs(P1) (process P1 is in the
critical section) and cs(P2).

-EF (cs(P1) A ¢s(P2)) = AG (—c¢s(P1) V —es(P2))

It is possible to get to a state where Start holds, but Ready does not.

EF (Start N —~Ready)

Whenever a request occurs (i.e. Req holds), then it will eventually be
acknowledged (i.e. Ack will hold).
AG (Req = AF Ack)

In any run of the system, Device Enabled is true infinitely often.
AG AF DeviceEnabled

From any state, the system can be restarted (i.e. get to a Restart state).

Temporal Logics — p.17/26

CTL—Some Examples

% Some examples of CTL formulae:

Mutual exclusion of two processes using propositions cs(P1) (process P1 is in the
critical section) and cs(P2).

-EF (cs(P1) A ¢s(P2)) = AG (—c¢s(P1) V —es(P2))

It is possible to get to a state where Start holds, but Ready does not.

EF (Start N —~Ready)

Whenever a request occurs (i.e. Req holds), then it will eventually be
acknowledged (i.e. Ack will hold).
AG (Req = AF Ack)

In any run of the system, Device Enabled is true infinitely often.
AG AF DeviceEnabled

From any state, the system can be restarted (i.e. get to a Restart state).
AG EF Restart

Temporal Logics — p.17/26

CTL—Some Examples

% Some examples of CTL formulae:

Mutual exclusion of two processes using propositions cs(P1) (process P1 is in the
critical section) and cs(P2).

-EF (cs(P1) A ¢s(P2)) = AG (—c¢s(P1) V —es(P2))

It is possible to get to a state where Start holds, but Ready does not.

EF (Start N —~Ready)

Whenever a request occurs (i.e. Req holds), then it will eventually be
acknowledged (i.e. Ack will hold).
AG (Req = AF Ack)

In any run of the system, Device Enabled is true infinitely often.
AG AF DeviceEnabled

From any state, the system can be restarted (i.e. get to a Restart state).
AG EF Restart

The Reset signal is initially set, and from the next state on, it is never set again.

Temporal Logics — p.17/26

CTL—Some Examples

% Some examples of CTL formulae:

Mutual exclusion of two processes using propositions cs(P1) (process P1 is in the
critical section) and cs(P2).

-EF (cs(P1) A ¢s(P2)) = AG (—c¢s(P1) V —es(P2))

It is possible to get to a state where Start holds, but Ready does not.

EF (Start N —~Ready)

Whenever a request occurs (i.e. Req holds), then it will eventually be
acknowledged (i.e. Ack will hold).
AG (Req = AF Ack)

In any run of the system, Device Enabled is true infinitely often.
AG AF DeviceEnabled

From any state, the system can be restarted (i.e. get to a Restart state).
AG EF Restart

The Reset signal is initially set, and from the next state on, it is never set again.
Reset N\ AX AG —Reset

Temporal Logics — p.17/26

CTL—Some Examples

% Some examples of CTL formulae:

Mutual exclusion of two processes using propositions cs(P1) (process P1 is in the
critical section) and cs(P2).

-EF (cs(P1) A ¢s(P2)) = AG (—c¢s(P1) V —es(P2))

It is possible to get to a state where Start holds, but Ready does not.

EF (Start N —~Ready)

Whenever a request occurs (i.e. Req holds), then it will eventually be
acknowledged (i.e. Ack will hold).
AG (Req = AF Ack)

In any run of the system, Device Enabled is true infinitely often.
AG AF DeviceEnabled

From any state, the system can be restarted (i.e. get to a Restart state).
AG EF Restart

The Reset signal is initially set, and from the next state on, it is never set again.
Reset N\ AX AG —Reset

The Reset signal is initially set, but once it is unset, it is never set again.

Temporal Logics — p.17/26

CTL—Some Examples

% Some examples of CTL formulae:

Mutual exclusion of two processes using propositions cs(P1) (process P1 is in the
critical section) and cs(P2).

-EF (cs(P1) A ¢s(P2)) = AG (—c¢s(P1) V —es(P2))

It is possible to get to a state where Start holds, but Ready does not.

EF (Start N —~Ready)

Whenever a request occurs (i.e. Req holds), then it will eventually be
acknowledged (i.e. Ack will hold).
AG (Req = AF Ack)

In any run of the system, Device Enabled is true infinitely often.
AG AF DeviceEnabled

From any state, the system can be restarted (i.e. get to a Restart state).
AG EF Restart

The Reset signal is initially set, and from the next state on, it is never set again.
Reset N\ AX AG —Reset

The Reset signal is initially set, but once it is unset, it is never set again.
Reset N AG (—Reset = AG —Reset)

Temporal Logics — p.17/26

CTL—Some Examples

% Some examples of CTL formulae:

Mutual exclusion of two processes using propositions cs(P1) (process P1 is in the
critical section) and cs(P2).

-EF (cs(P1) A ¢s(P2)) = AG (—c¢s(P1) V —es(P2))

It is possible to get to a state where Start holds, but Ready does not.

EF (Start N —~Ready)

Whenever a request occurs (i.e. Req holds), then it will eventually be
acknowledged (i.e. Ack will hold).
AG (Req = AF Ack)

In any run of the system, Device Enabled is true infinitely often.
AG AF DeviceEnabled

From any state, the system can be restarted (i.e. get to a Restart state).
AG EF Restart

The Reset signal is initially set, and from the next state on, it is never set again.
Reset N\ AX AG —Reset

The Reset signal is initially set, but once it is unset, it is never set again.
Reset N AG (—Reset = AG —Reset)

The AccConn signal can be set only after the Start Acc signal arrives.

Temporal Logics — p.17/26

CTL—Some Examples

% Some examples of CTL formulae:

Mutual exclusion of two processes using propositions cs(P1) (process P1 is in the
critical section) and cs(P2).

-EF (cs(P1) A ¢s(P2)) = AG (—c¢s(P1) V —es(P2))

It is possible to get to a state where Start holds, but Ready does not.

EF (Start N —~Ready)

Whenever a request occurs (i.e. Req holds), then it will eventually be
acknowledged (i.e. Ack will hold).
AG (Req = AF Ack)

In any run of the system, Device Enabled is true infinitely often.
AG AF DeviceEnabled

From any state, the system can be restarted (i.e. get to a Restart state).
AG EF Restart

The Reset signal is initially set, and from the next state on, it is never set again.
Reset N\ AX AG —Reset

The Reset signal is initially set, but once it is unset, it is never set again.
Reset N AG (—Reset = AG —Reset)

The AccConn signal can be set only after the Start Acc signal arrives.
A[StartAcc R (—AccConn)]

Temporal Logics — p.17/26

CTL Model Checking

The Basic Idea

% The CTL model checking question to be answered: Given a Kripke structure
M = (S, So, R, L) over a set of atomic propositions AP and a CTL formula ¢ over AP,

does M = ¢ hold?

% A very basic approach to answer the CTL model checking question by the so-called
explicit-state model checking:

For every subformula) of ¢, label by v all those states s of M in which ¢ holds
(i.e., M, s =).
Perform the labelling from the inner-most subformulae (i.e. the most nested ones)

going to the outer ones exploiting the already computed labels (with atomic
propositions corresponding to the original labels of M).

Check whether each state in Sy gets labelled by .

% It is enough to consider the basic operators of CTL, i.e. the below syntax for p € AP:
pu=p|l-p|le V o|EXp|ElpUyp| | EGe.

Temporal Logics — p.19/26

Label(—y), Label(o, V' ©,)

Label(—)
for all s € S such that ¢ ¢ Label(s) do

Label(s) := Label(s) U {—p}
pvp P
TP \ 0
Label(p1 V 2)

for all s € S such that ¢ € Label(s) or w2 € Label(s) do
Label(s) := Label(s) U {p1 V @2}

P p
pvq pv
q p
PvA pvq

Temporal Logics — p.20/26

Label(E' X p)

Label(E X p)
for all so € S such that ¢ € Label(s2) do
for all s; € S such that R(s1,s2) do
Label(s1) := Label(s1) U {EXy}

Temporal Logics — p.21/26

Label(E|p, U ¢,])

% The idea:
* Label first states already labelled by ¢-.

® Look at predecessors of states labelled with ©1 U 2, and if they are labelled with
©1, label them with o1 U (2 as well.

pUq_~"pUq - IOUOI/ pUq/ p U

p
SN PN, P\ \ \

 J

Uv

Temporal Logics — p.22/26

Label(EG)

% Based on the following observation: Let M = (S, So, R, L) be a Kripke structure,
S'={seS|M,s=p},and R = RN (S x S"). Forany s € S, M,s = EGy iff

1. s S and

2. there exists a path in the oriented graph G’ = (S’, R’) that leads from s to some
node t in a nontrivial SCC C of G'.

% An SCC C is nontrivial iff either it has more than one node or it contains one node with
a self-loop.

% SCCs of a finite oriented graph (V, E) can be computed using the Tarjan’s algorithm in
time O(|E| + |V]).

Temporal Logics — p.23/26

The LTL Logic

LTL—The Syntax

% LTL is another sublogic of CTL* that allows only formulae of the form A ¢ in which the
only state subformulae are atomic propositions.

% This is, LTL formulae ¢ are built according to the grammar:
 := A 1 (the use of A is often omitted),

Ypu=p| WYV | YAY [XY | Fy |Gy Uy | YRy
where p € AP.

% Note that LTL speaks about particular paths in a given Kripke structure only—it ignores
its branching structure.

% Sometimes, existential LTL allowing formulae of the form E ¢ is used too.

Temporal Logics — p.25/26

LTL—The Syntax

% LTL is another sublogic of CTL* that allows only formulae of the form A ¢ in which the
only state subformulae are atomic propositions.

% This is, LTL formulae ¢ are built according to the grammar:
 := A 1 (the use of A is often omitted),

Ypu=p| WYV | YAY [XY | Fy |Gy Uy | YRy
where p € AP.

% Note that LTL speaks about particular paths in a given Kripke structure only—it ignores
its branching structure.

% Sometimes, existential LTL allowing formulae of the form E ¢ is used too.

% Note also that while CTL cannot express fairness assumptions (in CTL model
checking, they are handled by a special extension of the model checking algorithm),
LTL can express fairness assumptions by formulae of the following form:

weak fairness: (F' G Enabled) = (G F Fired), i.e. ¢0O Enabled = OO Fired,
strong fairness: (G F Enabled) = (G F Fired), i.e. OO Enabled = OO Flired,

Temporal Logics — p.25/26

LTL, CTL, and CTL"

% LTL and CTL have an incomparable power:
® CTL cannot express, e.g., the LTL formula A (F'G p),
® LTL cannot express, e.g., the CTL formula AG (E'F p).

Temporal Logics — p.26/26

LTL, CTL, and CTL"

% LTL and CTL have an incomparable power:
CTL cannot express, e.g., the LTL formula A (F'G p),
LTL cannot express, e.g., the CTL formula AG (EF p).

% CTL" is strictly more powerful than both LTL and CTL:

the disjunction of the above formulae, i.e. (A (F'G p)) VvV (AG (EF p)),is not
expressible in CTL nor LTL.

Temporal Logics — p.26/26

LTL, CTL, and CTL"

% LTL and CTL have an incomparable power:
CTL cannot express, e.g., the LTL formula A (F'G p),
LTL cannot express, e.g., the CTL formula AG (EF p).

% CTL" is strictly more powerful than both LTL and CTL:

the disjunction of the above formulae, i.e. (A (FG p)) vV (AG (EF p)), is not
expressible in CTL nor LTL.

% To complete the picture, here are the complexities of the appropriate model checking
algorithms (we will discuss LTL model checking later on):

CTL: linear in |M| and linear in |p|.
LTL and CTL™: linear in | M| and PSPACE-complete in |y
where |M| = |S| + |R| and |¢| is the number of subformulae of ¢.
% Finally, as an example of a logic more general than CTL*, we can mention

modal u-calculus based on least/greatest fixpoint operators on sets of states
(basically allowing one to define new, specialised modalities).

Temporal Logics — p.26/26

	
	
	Kripke Structures
	Kripke Structures
	Kripke Structures
	
	CTLst ---Basic Idea
	CTLst ---Quantifiers and Operators
	CTLst ---The Syntax
	CTLst ---The Semantics
	CTLst ---The Semantics
	CTLst ---Basic Operators
	
	CTL---The Syntax
	CTL---The Syntax
	CTL---Some Examples
	
	The Basic Idea
	vspace *{-0.5mm}Label($
eg varphi $),
Label($varphi _1 vee varphi _2$)
	vspace *{-0.5mm}Label($EXvarphi $)
	vspace *{-1mm}Label($E[varphi _1 U varphi _2]$)
	vspace *{-0.5mm}Label($EG varphi $)
	
	LTL---The Syntax
	LTL, CTL, and CTLst hspace *{-4mm}

