
Static Analysis and Verification
SAV 2024/2025

Tomáš Vojnar
vojnar@fit.vutbr.cz

Brno University of Technology
Faculty of Information Technology

Božetěchova 2, 612 66 Brno

Temporal Logics – p.1/26

Temporal Logics:

CTL∗, CTL, LTL

Temporal Logics – p.2/26

Model of Computation

Temporal Logics – p.3/26

Kripke Structures

❖ Informally, Kripke structures are directed graphs whose

• vertices correspond to configurations of the examined system,

• the vertices are labelled by atomic propositions that are true in the appropriate

configurations, and

• edges encode possible transitions between the configurations.

a

b

c

d

lock(l)unlock(l) unlock(l)lock(l)

mutex l;P1 P2
unlocked(l)

cs(P1) cs(P2)

s1

s2 s3

❖ Can be generated from the source description of examined systems (or used implicitly

as an underlying semantic model of the formulae as well as examined systems).

❖ The generation involves the state explosion problem, or the Kripke structure may be

infinite—in the following, we, however, concentrate on finite Kripke structures.

Temporal Logics – p.4/26

Kripke Structures

❖ Let AP be a set of atomic propositions about the configurations of the examined
system.

❖ Formally, a (finite) Kripke structure M over AP is a tuple M = (S, S0, R, L) where

• S is a finite set of states,

• S0 ⊆ S is a set of initial states,

• R ⊆ S × S is a transition relation, for convenience supposed to be total (i.e.

∀s ∈ S ∃s′ ∈ S. R(s, s′)),

• L : S → 2AP is a labelling function that labels each state by the set of atomic

propositions that are true in it.

Temporal Logics – p.5/26

Kripke Structures

❖ Let AP be a set of atomic propositions about the configurations of the examined
system.

❖ Formally, a (finite) Kripke structure M over AP is a tuple M = (S, S0, R, L) where

• S is a finite set of states,

• S0 ⊆ S is a set of initial states,

• R ⊆ S × S is a transition relation, for convenience supposed to be total (i.e.

∀s ∈ S ∃s′ ∈ S. R(s, s′)),

• L : S → 2AP is a labelling function that labels each state by the set of atomic

propositions that are true in it.

❖ For the example from the previous slide, we have:

• AP = {unlocked(l), cs(P1), cs(P2)},

• S = {s1, s2, s3},

• S0 = {s1},

• R = {(s1, s2), (s2, s1), (s1, s3), (s3, s1)},

• L = {(s1, {unlocked(l)}), (s2, {cs(P1)}), (s3, {cs(P2)})}.

Temporal Logics – p.5/26

Kripke Structures

❖ A path π in a Kripke structure M is an infinite sequence of states π = s0s1s2... such

that ∀i ∈ N.R(si, si+1).

❖ We denote Π(M, s) the set of all paths in M that start at s ∈ S.

❖ The suffix πi of a path π = s0s1s2...sisi+1si+2... is the path πi = sisi+1si+2... starting
at si.

Temporal Logics – p.6/26

The CTL∗ Logic

Temporal Logics – p.7/26

CTL∗—Basic Idea

❖ CTL∗ formulae describe properties of computation trees.

❖ Infinite computation trees are obtained by unwinding a Kripke structure from its initial
states.

unlocked(l)

cs(P1) cs(P2)

s1

s2 s3

unlocked(l)

cs(P1) cs(P2)

unlocked(l) unlocked(l)

cs(P1) cs(P2) cs(P1) cs(P2)

........

❖ CTL∗ formulae consist of:

• atomic propositions,

• Boolean connectives,

• path quantifiers,

• temporal operators.

Temporal Logics – p.8/26

CTL∗—Quantifiers and Operators

❖ Path quantifiers—describe the branching structure of a computation tree:

• E: for some computation path leading from a state,

• A: for all computation paths leading from a state.

❖ Temporal operators—properties of a path through a computation tree:

• X ϕ (“next time”, ©): the property ϕ holds (on the path starting) from the second

state of the given path,

• F ϕ (“eventually” / “sometimes”, ✸): the property ϕ holds (on the path starting) from

some state of the given path,

• G ϕ (“always” / “globally”, ✷): the property ϕ holds from all states of the path,

• ϕ U ψ (“until”): the property ψ holds from some state of the path, and the property

ϕ holds from all preceding states of the path,

• ϕ R ψ (“release”): the property ψ holds from all states of the path up to (and

including) the first state from where the property ϕ holds (if such a state exists).

Temporal Logics – p.9/26

CTL∗—The Syntax

❖ Let AP be a non-empty set of atomic propositions.

❖ The syntax of state formulae, which are true in a specific state, is given by the following

rules:

• If p ∈ AP , then p is a state formula.

• If ϕ and ψ are state formulae, then ¬ϕ, ϕ ∨ ψ, ϕ ∧ ψ are state formulae.

• If ϕ is a path formula, then E ϕ and A ϕ are state formulae.

❖ The syntax of path formulae, which are true along a specific path, is given by the

following rules:

• If ϕ is a state formula, then ϕ is a path formula too.

• If ϕ and ψ are path formulae, then ¬ϕ, ϕ ∨ ψ, ϕ ∧ ψ, X ϕ, F ϕ, G ϕ, ϕUψ, and

ϕRψ are path formulae.

❖ CTL∗ is the set of state formulae generated by the above rules.

Temporal Logics – p.10/26

CTL∗—The Semantics

❖ Let a Kripke structure M = (S, S0, R, L) over a set of atomic propositions AP be given.

❖ For a state formula ϕ over AP , we denote M, s |= ϕ the fact that ϕ holds at s ∈ S.

❖ For a path formula ϕ over AP , we denote M,π |= ϕ the fact that ϕ holds along a path π

in M .

Temporal Logics – p.11/26

CTL∗—The Semantics

❖ Let a Kripke structure M = (S, S0, R, L) over a set of atomic propositions AP be given.

❖ For a state formula ϕ over AP , we denote M, s |= ϕ the fact that ϕ holds at s ∈ S.

❖ For a path formula ϕ over AP , we denote M,π |= ϕ the fact that ϕ holds along a path π

in M .

❖ Let s ∈ S, π be a path in M , ϕ1, ϕ2 be state formulae over AP , p ∈ AP , and ψ1, ψ2 be

path formulae over AP . We define the relation |= inductively as follows:

Continued at the next slide...

Temporal Logics – p.11/26

CTL∗—The Semantics

❖ Let a Kripke structure M = (S, S0, R, L) over a set of atomic propositions AP be given.

❖ For a state formula ϕ over AP , we denote M, s |= ϕ the fact that ϕ holds at s ∈ S.

❖ For a path formula ϕ over AP , we denote M,π |= ϕ the fact that ϕ holds along a path π

in M .

❖ Let s ∈ S, π be a path in M , ϕ1, ϕ2 be state formulae over AP , p ∈ AP , and ψ1, ψ2 be

path formulae over AP . We define the relation |= inductively as follows:

• M,s |= p iff p ∈ L(s).

Continued at the next slide...

Temporal Logics – p.11/26

CTL∗—The Semantics

❖ Let a Kripke structure M = (S, S0, R, L) over a set of atomic propositions AP be given.

❖ For a state formula ϕ over AP , we denote M, s |= ϕ the fact that ϕ holds at s ∈ S.

❖ For a path formula ϕ over AP , we denote M,π |= ϕ the fact that ϕ holds along a path π

in M .

❖ Let s ∈ S, π be a path in M , ϕ1, ϕ2 be state formulae over AP , p ∈ AP , and ψ1, ψ2 be

path formulae over AP . We define the relation |= inductively as follows:

• M,s |= p iff p ∈ L(s).

• M,s |= ¬ϕ1 iff M, s 6|= ϕ1.

Continued at the next slide...

Temporal Logics – p.11/26

CTL∗—The Semantics

❖ Let a Kripke structure M = (S, S0, R, L) over a set of atomic propositions AP be given.

❖ For a state formula ϕ over AP , we denote M, s |= ϕ the fact that ϕ holds at s ∈ S.

❖ For a path formula ϕ over AP , we denote M,π |= ϕ the fact that ϕ holds along a path π

in M .

❖ Let s ∈ S, π be a path in M , ϕ1, ϕ2 be state formulae over AP , p ∈ AP , and ψ1, ψ2 be

path formulae over AP . We define the relation |= inductively as follows:

• M,s |= p iff p ∈ L(s).

• M,s |= ¬ϕ1 iff M, s 6|= ϕ1.

• M,s |= ϕ1 ∨ ϕ2 iff M,s |= ϕ1 or M, s |= ϕ2.

Continued at the next slide...

Temporal Logics – p.11/26

CTL∗—The Semantics

❖ Let a Kripke structure M = (S, S0, R, L) over a set of atomic propositions AP be given.

❖ For a state formula ϕ over AP , we denote M, s |= ϕ the fact that ϕ holds at s ∈ S.

❖ For a path formula ϕ over AP , we denote M,π |= ϕ the fact that ϕ holds along a path π

in M .

❖ Let s ∈ S, π be a path in M , ϕ1, ϕ2 be state formulae over AP , p ∈ AP , and ψ1, ψ2 be

path formulae over AP . We define the relation |= inductively as follows:

• M,s |= p iff p ∈ L(s).

• M,s |= ¬ϕ1 iff M, s 6|= ϕ1.

• M,s |= ϕ1 ∨ ϕ2 iff M,s |= ϕ1 or M, s |= ϕ2.

• M,s |= ϕ1 ∧ ϕ2 iff M,s |= ϕ1 and M,s |= ϕ2.

Continued at the next slide...

Temporal Logics – p.11/26

CTL∗—The Semantics

❖ Let a Kripke structure M = (S, S0, R, L) over a set of atomic propositions AP be given.

❖ For a state formula ϕ over AP , we denote M, s |= ϕ the fact that ϕ holds at s ∈ S.

❖ For a path formula ϕ over AP , we denote M,π |= ϕ the fact that ϕ holds along a path π

in M .

❖ Let s ∈ S, π be a path in M , ϕ1, ϕ2 be state formulae over AP , p ∈ AP , and ψ1, ψ2 be

path formulae over AP . We define the relation |= inductively as follows:

• M,s |= p iff p ∈ L(s).

• M,s |= ¬ϕ1 iff M, s 6|= ϕ1.

• M,s |= ϕ1 ∨ ϕ2 iff M,s |= ϕ1 or M, s |= ϕ2.

• M,s |= ϕ1 ∧ ϕ2 iff M,s |= ϕ1 and M,s |= ϕ2.

• M,s |= E ψ1 iff ∃π ∈ Π(M, s). M, π |= ψ1.

Continued at the next slide...

Temporal Logics – p.11/26

CTL∗—The Semantics

❖ Let a Kripke structure M = (S, S0, R, L) over a set of atomic propositions AP be given.

❖ For a state formula ϕ over AP , we denote M, s |= ϕ the fact that ϕ holds at s ∈ S.

❖ For a path formula ϕ over AP , we denote M,π |= ϕ the fact that ϕ holds along a path π

in M .

❖ Let s ∈ S, π be a path in M , ϕ1, ϕ2 be state formulae over AP , p ∈ AP , and ψ1, ψ2 be

path formulae over AP . We define the relation |= inductively as follows:

• M,s |= p iff p ∈ L(s).

• M,s |= ¬ϕ1 iff M, s 6|= ϕ1.

• M,s |= ϕ1 ∨ ϕ2 iff M,s |= ϕ1 or M, s |= ϕ2.

• M,s |= ϕ1 ∧ ϕ2 iff M,s |= ϕ1 and M,s |= ϕ2.

• M,s |= E ψ1 iff ∃π ∈ Π(M, s). M, π |= ψ1.

• M,s |= A ψ1 iff ∀π ∈ Π(M, s). M, π |= ψ1.

Continued at the next slide...

Temporal Logics – p.11/26

CTL∗—The Semantics

Continued from the previous slide...

• M,π |= ϕ1 iff M, s0 |= ϕ1 where s0 is the first state of π.

Temporal Logics – p.12/26

CTL∗—The Semantics

Continued from the previous slide...

• M,π |= ϕ1 iff M, s0 |= ϕ1 where s0 is the first state of π.

• M,π |= ¬ψ1 iff M,π 6|= ψ1.

Temporal Logics – p.12/26

CTL∗—The Semantics

Continued from the previous slide...

• M,π |= ϕ1 iff M, s0 |= ϕ1 where s0 is the first state of π.

• M,π |= ¬ψ1 iff M,π 6|= ψ1.

• M,π |= ψ1 ∨ ψ2 iff M,π |= ψ1 or M,π |= ψ2.

Temporal Logics – p.12/26

CTL∗—The Semantics

Continued from the previous slide...

• M,π |= ϕ1 iff M, s0 |= ϕ1 where s0 is the first state of π.

• M,π |= ¬ψ1 iff M,π 6|= ψ1.

• M,π |= ψ1 ∨ ψ2 iff M,π |= ψ1 or M,π |= ψ2.

• M,π |= ψ1 ∧ ψ2 iff M,π |= ψ1 and M,π |= ψ2.

Temporal Logics – p.12/26

CTL∗—The Semantics

Continued from the previous slide...

• M,π |= ϕ1 iff M, s0 |= ϕ1 where s0 is the first state of π.

• M,π |= ¬ψ1 iff M,π 6|= ψ1.

• M,π |= ψ1 ∨ ψ2 iff M,π |= ψ1 or M,π |= ψ2.

• M,π |= ψ1 ∧ ψ2 iff M,π |= ψ1 and M,π |= ψ2.

• M,π |= X ψ1 iff M,π1 |= ψ1.

Temporal Logics – p.12/26

CTL∗—The Semantics

Continued from the previous slide...

• M,π |= ϕ1 iff M, s0 |= ϕ1 where s0 is the first state of π.

• M,π |= ¬ψ1 iff M,π 6|= ψ1.

• M,π |= ψ1 ∨ ψ2 iff M,π |= ψ1 or M,π |= ψ2.

• M,π |= ψ1 ∧ ψ2 iff M,π |= ψ1 and M,π |= ψ2.

• M,π |= X ψ1 iff M,π1 |= ψ1.

• M,π |= F ψ1 iff ∃i ≥ 0. M, πi |= ψ1.

Temporal Logics – p.12/26

CTL∗—The Semantics

Continued from the previous slide...

• M,π |= ϕ1 iff M, s0 |= ϕ1 where s0 is the first state of π.

• M,π |= ¬ψ1 iff M,π 6|= ψ1.

• M,π |= ψ1 ∨ ψ2 iff M,π |= ψ1 or M,π |= ψ2.

• M,π |= ψ1 ∧ ψ2 iff M,π |= ψ1 and M,π |= ψ2.

• M,π |= X ψ1 iff M,π1 |= ψ1.

• M,π |= F ψ1 iff ∃i ≥ 0. M, πi |= ψ1.

• M,π |= G ψ1 iff ∀i ≥ 0. M, πi |= ψ1.

Temporal Logics – p.12/26

CTL∗—The Semantics

Continued from the previous slide...

• M,π |= ϕ1 iff M, s0 |= ϕ1 where s0 is the first state of π.

• M,π |= ¬ψ1 iff M,π 6|= ψ1.

• M,π |= ψ1 ∨ ψ2 iff M,π |= ψ1 or M,π |= ψ2.

• M,π |= ψ1 ∧ ψ2 iff M,π |= ψ1 and M,π |= ψ2.

• M,π |= X ψ1 iff M,π1 |= ψ1.

• M,π |= F ψ1 iff ∃i ≥ 0. M, πi |= ψ1.

• M,π |= G ψ1 iff ∀i ≥ 0. M, πi |= ψ1.

• M,π |= ψ1 U ψ2 iff ∃i ≥ 0. M, πi |= ψ2 and ∀0 ≤ j < i. M, πj |= ψ1.

Temporal Logics – p.12/26

CTL∗—The Semantics

Continued from the previous slide...

• M,π |= ϕ1 iff M, s0 |= ϕ1 where s0 is the first state of π.

• M,π |= ¬ψ1 iff M,π 6|= ψ1.

• M,π |= ψ1 ∨ ψ2 iff M,π |= ψ1 or M,π |= ψ2.

• M,π |= ψ1 ∧ ψ2 iff M,π |= ψ1 and M,π |= ψ2.

• M,π |= X ψ1 iff M,π1 |= ψ1.

• M,π |= F ψ1 iff ∃i ≥ 0. M, πi |= ψ1.

• M,π |= G ψ1 iff ∀i ≥ 0. M, πi |= ψ1.

• M,π |= ψ1 U ψ2 iff ∃i ≥ 0. M, πi |= ψ2 and ∀0 ≤ j < i. M, πj |= ψ1.

• M,π |= ψ1 R ψ2 iff ∀i ≥ 0. (∀0 ≤ j < i. M, πj 6|= ψ1) ⇒M,πi |= ψ2.

Temporal Logics – p.12/26

CTL∗—The Semantics

Continued from the previous slide...

• M,π |= ϕ1 iff M, s0 |= ϕ1 where s0 is the first state of π.

• M,π |= ¬ψ1 iff M,π 6|= ψ1.

• M,π |= ψ1 ∨ ψ2 iff M,π |= ψ1 or M,π |= ψ2.

• M,π |= ψ1 ∧ ψ2 iff M,π |= ψ1 and M,π |= ψ2.

• M,π |= X ψ1 iff M,π1 |= ψ1.

• M,π |= F ψ1 iff ∃i ≥ 0. M, πi |= ψ1.

• M,π |= G ψ1 iff ∀i ≥ 0. M, πi |= ψ1.

• M,π |= ψ1 U ψ2 iff ∃i ≥ 0. M, πi |= ψ2 and ∀0 ≤ j < i. M, πj |= ψ1.

• M,π |= ψ1 R ψ2 iff ∀i ≥ 0. (∀0 ≤ j < i. M, πj 6|= ψ1) ⇒M,πi |= ψ2.

❖ For a (state) CTL∗ formula ϕ, we write M |= ϕ iff ∀s0 ∈ S0. M, s0 |= ϕ.

Temporal Logics – p.12/26

CTL∗—Basic Operators

❖ Provided that AP 6= ∅, it is easy to see that all CTL∗ operators can be derived from
∨,¬, X, U , and E:

• let p ∈ AP , true ≡ (and false ≡ ¬true),

• ϕ ∧ ψ ≡

• F ϕ ≡

• G ϕ ≡

• ϕ R ψ ≡

• A ϕ ≡

Temporal Logics – p.13/26

CTL∗—Basic Operators

❖ Provided that AP 6= ∅, it is easy to see that all CTL∗ operators can be derived from
∨,¬, X, U , and E:

• let p ∈ AP , true ≡ p ∨ ¬p (and false ≡ ¬true),

• ϕ ∧ ψ ≡

• F ϕ ≡

• G ϕ ≡

• ϕ R ψ ≡

• A ϕ ≡

Temporal Logics – p.13/26

CTL∗—Basic Operators

❖ Provided that AP 6= ∅, it is easy to see that all CTL∗ operators can be derived from
∨,¬, X, U , and E:

• let p ∈ AP , true ≡ p ∨ ¬p (and false ≡ ¬true),

• ϕ ∧ ψ ≡ ¬(¬ϕ ∨ ¬ψ)

• F ϕ ≡

• G ϕ ≡

• ϕ R ψ ≡

• A ϕ ≡

Temporal Logics – p.13/26

CTL∗—Basic Operators

❖ Provided that AP 6= ∅, it is easy to see that all CTL∗ operators can be derived from
∨,¬, X, U , and E:

• let p ∈ AP , true ≡ p ∨ ¬p (and false ≡ ¬true),

• ϕ ∧ ψ ≡ ¬(¬ϕ ∨ ¬ψ)

• F ϕ ≡ true U ϕ,

• G ϕ ≡

• ϕ R ψ ≡

• A ϕ ≡

Temporal Logics – p.13/26

CTL∗—Basic Operators

❖ Provided that AP 6= ∅, it is easy to see that all CTL∗ operators can be derived from
∨,¬, X, U , and E:

• let p ∈ AP , true ≡ p ∨ ¬p (and false ≡ ¬true),

• ϕ ∧ ψ ≡ ¬(¬ϕ ∨ ¬ψ)

• F ϕ ≡ true U ϕ,

• G ϕ ≡ ¬F ¬ϕ,

• ϕ R ψ ≡

• A ϕ ≡

Temporal Logics – p.13/26

CTL∗—Basic Operators

❖ Provided that AP 6= ∅, it is easy to see that all CTL∗ operators can be derived from
∨,¬, X, U , and E:

• let p ∈ AP , true ≡ p ∨ ¬p (and false ≡ ¬true),

• ϕ ∧ ψ ≡ ¬(¬ϕ ∨ ¬ψ)

• F ϕ ≡ true U ϕ,

• G ϕ ≡ ¬F ¬ϕ,

• ϕ R ψ ≡ ¬(¬ϕ U ¬ψ),

• A ϕ ≡

Temporal Logics – p.13/26

CTL∗—Basic Operators

❖ Provided that AP 6= ∅, it is easy to see that all CTL∗ operators can be derived from
∨,¬, X, U , and E:

• let p ∈ AP , true ≡ p ∨ ¬p (and false ≡ ¬true),

• ϕ ∧ ψ ≡ ¬(¬ϕ ∨ ¬ψ)

• F ϕ ≡ true U ϕ,

• G ϕ ≡ ¬F ¬ϕ,

• ϕ R ψ ≡ ¬(¬ϕ U ¬ψ),

• A ϕ ≡ ¬E ¬ϕ.

Temporal Logics – p.13/26

CTL∗—Basic Operators

❖ Provided that AP 6= ∅, it is easy to see that all CTL∗ operators can be derived from
∨,¬, X, U , and E:

• let p ∈ AP , true ≡ p ∨ ¬p (and false ≡ ¬true),

• ϕ ∧ ψ ≡ ¬(¬ϕ ∨ ¬ψ)

• F ϕ ≡ true U ϕ,

• G ϕ ≡ ¬F ¬ϕ,

• ϕ R ψ ≡ ¬(¬ϕ U ¬ψ),

• A ϕ ≡ ¬E ¬ϕ.

❖ Some further connectives may be introduced too, e.g.:

• ϕ⇒ ψ ≡ ¬ϕ ∨ ψ,

• ϕ⇔ ψ ≡ (ϕ⇒ ψ) ∧ (ψ ⇒ ϕ),

• ...

Temporal Logics – p.13/26

The CTL Logic

Temporal Logics – p.14/26

CTL—The Syntax

❖ CTL is a sublogic of CTL∗—the path formulae are restricted to X ϕ, F ϕ, G ϕ, ϕUψ,

and ϕRψ for ϕ, ψ being state formulae.

Temporal Logics – p.15/26

CTL—The Syntax

❖ CTL is a sublogic of CTL∗—the path formulae are restricted to X ϕ, F ϕ, G ϕ, ϕUψ,

and ϕRψ for ϕ, ψ being state formulae.

❖ In effect, there are allowed these 10 modal CTL operators:

• AX and EX,
EX p

p

AX p

pp

.....

Continued at the next slide...
Temporal Logics – p.15/26

CTL—The Syntax

❖ CTL is a sublogic of CTL∗—the path formulae are restricted to X ϕ, F ϕ, G ϕ, ϕUψ,

and ϕRψ for ϕ, ψ being state formulae.

❖ In effect, there are allowed these 10 modal CTL operators:

• AX and EX,
EX p

p

AX p

pp

.....

• AF and EF ,
EF pAF p

p

pp p
.....

Continued at the next slide...
Temporal Logics – p.15/26

CTL—The Syntax

❖ CTL is a sublogic of CTL∗—the path formulae are restricted to X ϕ, F ϕ, G ϕ, ϕUψ,

and ϕRψ for ϕ, ψ being state formulae.

❖ In effect, there are allowed these 10 modal CTL operators:

• AX and EX,
EX p

p

AX p

pp

.....

• AF and EF ,
EF pAF p

p

pp p
.....

• AG and EG,
EG pAG p

p

pp p

p

p

pp

p

p

.....

Continued at the next slide...
Temporal Logics – p.15/26

CTL—The Syntax

Continued from the previous slide...

• AU and EU ,
A[p U q]

q

qq q

p

p p

p

E[p U q]

.....

Temporal Logics – p.16/26

CTL—The Syntax

Continued from the previous slide...

• AU and EU ,
A[p U q]

q

qq q

p

p p

p

E[p U q]

.....

• AR and ER.
A[p R q]

p q

q q

q

E[p R q]

p p
.....

q

Temporal Logics – p.16/26

CTL—The Syntax

Continued from the previous slide...

• AU and EU ,
A[p U q]

q

qq q

p

p p

p

E[p U q]

.....

• AR and ER.
A[p R q]

p q

q q

q

E[p R q]

p p
.....

q

❖ There are 3 basic CTL modal operators—EX, EG, and EU :

• AX ϕ ≡

• EF ϕ ≡

• AG ϕ ≡

• AF ϕ ≡

• A[ϕ U ψ] ≡

• A[ϕ R ψ] ≡

• E[ϕ R ψ] ≡

Temporal Logics – p.16/26

CTL—The Syntax

Continued from the previous slide...

• AU and EU ,
A[p U q]

q

qq q

p

p p

p

E[p U q]

.....

• AR and ER.
A[p R q]

p q

q q

q

E[p R q]

p p
.....

q

❖ There are 3 basic CTL modal operators—EX, EG, and EU :

• AX ϕ ≡ ¬EX ¬ϕ,

• EF ϕ ≡

• AG ϕ ≡

• AF ϕ ≡

• A[ϕ U ψ] ≡

• A[ϕ R ψ] ≡

• E[ϕ R ψ] ≡

Temporal Logics – p.16/26

CTL—The Syntax

Continued from the previous slide...

• AU and EU ,
A[p U q]

q

qq q

p

p p

p

E[p U q]

.....

• AR and ER.
A[p R q]

p q

q q

q

E[p R q]

p p
.....

q

❖ There are 3 basic CTL modal operators—EX, EG, and EU :

• AX ϕ ≡ ¬EX ¬ϕ,

• EF ϕ ≡ E[true U ϕ],

• AG ϕ ≡

• AF ϕ ≡

• A[ϕ U ψ] ≡

• A[ϕ R ψ] ≡

• E[ϕ R ψ] ≡

Temporal Logics – p.16/26

CTL—The Syntax

Continued from the previous slide...

• AU and EU ,
A[p U q]

q

qq q

p

p p

p

E[p U q]

.....

• AR and ER.
A[p R q]

p q

q q

q

E[p R q]

p p
.....

q

❖ There are 3 basic CTL modal operators—EX, EG, and EU :

• AX ϕ ≡ ¬EX ¬ϕ,

• EF ϕ ≡ E[true U ϕ],

• AG ϕ ≡ ¬EF ¬ϕ,

• AF ϕ ≡

• A[ϕ U ψ] ≡

• A[ϕ R ψ] ≡

• E[ϕ R ψ] ≡

Temporal Logics – p.16/26

CTL—The Syntax

Continued from the previous slide...

• AU and EU ,
A[p U q]

q

qq q

p

p p

p

E[p U q]

.....

• AR and ER.
A[p R q]

p q

q q

q

E[p R q]

p p
.....

q

❖ There are 3 basic CTL modal operators—EX, EG, and EU :

• AX ϕ ≡ ¬EX ¬ϕ,

• EF ϕ ≡ E[true U ϕ],

• AG ϕ ≡ ¬EF ¬ϕ,

• AF ϕ ≡ ¬EG ¬ϕ,

• A[ϕ U ψ] ≡

• A[ϕ R ψ] ≡

• E[ϕ R ψ] ≡

Temporal Logics – p.16/26

CTL—The Syntax

Continued from the previous slide...

• AU and EU ,
A[p U q]

q

qq q

p

p p

p

E[p U q]

.....

• AR and ER.
A[p R q]

p q

q q

q

E[p R q]

p p
.....

q

❖ There are 3 basic CTL modal operators—EX, EG, and EU :

• AX ϕ ≡ ¬EX ¬ϕ,

• EF ϕ ≡ E[true U ϕ],

• AG ϕ ≡ ¬EF ¬ϕ,

• AF ϕ ≡ ¬EG ¬ϕ,

• A[ϕ U ψ] ≡ ¬E[¬ψ U (¬ϕ ∧ ¬ψ)] ∧ AFψ,

• A[ϕ R ψ] ≡

• E[ϕ R ψ] ≡

Temporal Logics – p.16/26

CTL—The Syntax

Continued from the previous slide...

• AU and EU ,
A[p U q]

q

qq q

p

p p

p

E[p U q]

.....

• AR and ER.
A[p R q]

p q

q q

q

E[p R q]

p p
.....

q

❖ There are 3 basic CTL modal operators—EX, EG, and EU :

• AX ϕ ≡ ¬EX ¬ϕ,

• EF ϕ ≡ E[true U ϕ],

• AG ϕ ≡ ¬EF ¬ϕ,

• AF ϕ ≡ ¬EG ¬ϕ,

• A[ϕ U ψ] ≡ ¬E[¬ψ U (¬ϕ ∧ ¬ψ)] ∧ AFψ,

• A[ϕ R ψ] ≡ ¬E[¬ϕ U ¬ψ],

• E[ϕ R ψ] ≡

Temporal Logics – p.16/26

CTL—The Syntax

Continued from the previous slide...

• AU and EU ,
A[p U q]

q

qq q

p

p p

p

E[p U q]

.....

• AR and ER.
A[p R q]

p q

q q

q

E[p R q]

p p
.....

q

❖ There are 3 basic CTL modal operators—EX, EG, and EU :

• AX ϕ ≡ ¬EX ¬ϕ,

• EF ϕ ≡ E[true U ϕ],

• AG ϕ ≡ ¬EF ¬ϕ,

• AF ϕ ≡ ¬EG ¬ϕ,

• A[ϕ U ψ] ≡ ¬E[¬ψ U (¬ϕ ∧ ¬ψ)] ∧ AFψ,

• A[ϕ R ψ] ≡ ¬E[¬ϕ U ¬ψ],

• E[ϕ R ψ] ≡ ¬A[¬ϕ U ¬ψ].

Temporal Logics – p.16/26

CTL—Some Examples

❖ Some examples of CTL formulae:

• Mutual exclusion of two processes using propositions cs(P1) (process P1 is in the

critical section) and cs(P2).

Temporal Logics – p.17/26

CTL—Some Examples

❖ Some examples of CTL formulae:

• Mutual exclusion of two processes using propositions cs(P1) (process P1 is in the

critical section) and cs(P2).

¬EF (cs(P1) ∧ cs(P2)) ≡ AG (¬cs(P1) ∨ ¬cs(P2))

Temporal Logics – p.17/26

CTL—Some Examples

❖ Some examples of CTL formulae:

• Mutual exclusion of two processes using propositions cs(P1) (process P1 is in the

critical section) and cs(P2).

¬EF (cs(P1) ∧ cs(P2)) ≡ AG (¬cs(P1) ∨ ¬cs(P2))

• It is possible to get to a state where Start holds, but Ready does not.

Temporal Logics – p.17/26

CTL—Some Examples

❖ Some examples of CTL formulae:

• Mutual exclusion of two processes using propositions cs(P1) (process P1 is in the

critical section) and cs(P2).

¬EF (cs(P1) ∧ cs(P2)) ≡ AG (¬cs(P1) ∨ ¬cs(P2))

• It is possible to get to a state where Start holds, but Ready does not.

EF (Start ∧ ¬Ready)

Temporal Logics – p.17/26

CTL—Some Examples

❖ Some examples of CTL formulae:

• Mutual exclusion of two processes using propositions cs(P1) (process P1 is in the

critical section) and cs(P2).

¬EF (cs(P1) ∧ cs(P2)) ≡ AG (¬cs(P1) ∨ ¬cs(P2))

• It is possible to get to a state where Start holds, but Ready does not.

EF (Start ∧ ¬Ready)

• Whenever a request occurs (i.e. Req holds), then it will eventually be

acknowledged (i.e. Ack will hold).

Temporal Logics – p.17/26

CTL—Some Examples

❖ Some examples of CTL formulae:

• Mutual exclusion of two processes using propositions cs(P1) (process P1 is in the

critical section) and cs(P2).

¬EF (cs(P1) ∧ cs(P2)) ≡ AG (¬cs(P1) ∨ ¬cs(P2))

• It is possible to get to a state where Start holds, but Ready does not.

EF (Start ∧ ¬Ready)

• Whenever a request occurs (i.e. Req holds), then it will eventually be

acknowledged (i.e. Ack will hold).

AG (Req ⇒ AF Ack)

Temporal Logics – p.17/26

CTL—Some Examples

❖ Some examples of CTL formulae:

• Mutual exclusion of two processes using propositions cs(P1) (process P1 is in the

critical section) and cs(P2).

¬EF (cs(P1) ∧ cs(P2)) ≡ AG (¬cs(P1) ∨ ¬cs(P2))

• It is possible to get to a state where Start holds, but Ready does not.

EF (Start ∧ ¬Ready)

• Whenever a request occurs (i.e. Req holds), then it will eventually be

acknowledged (i.e. Ack will hold).

AG (Req ⇒ AF Ack)

• In any run of the system, DeviceEnabled is true infinitely often.

Temporal Logics – p.17/26

CTL—Some Examples

❖ Some examples of CTL formulae:

• Mutual exclusion of two processes using propositions cs(P1) (process P1 is in the

critical section) and cs(P2).

¬EF (cs(P1) ∧ cs(P2)) ≡ AG (¬cs(P1) ∨ ¬cs(P2))

• It is possible to get to a state where Start holds, but Ready does not.

EF (Start ∧ ¬Ready)

• Whenever a request occurs (i.e. Req holds), then it will eventually be

acknowledged (i.e. Ack will hold).

AG (Req ⇒ AF Ack)

• In any run of the system, DeviceEnabled is true infinitely often.
AG AF DeviceEnabled

Temporal Logics – p.17/26

CTL—Some Examples

❖ Some examples of CTL formulae:

• Mutual exclusion of two processes using propositions cs(P1) (process P1 is in the

critical section) and cs(P2).

¬EF (cs(P1) ∧ cs(P2)) ≡ AG (¬cs(P1) ∨ ¬cs(P2))

• It is possible to get to a state where Start holds, but Ready does not.

EF (Start ∧ ¬Ready)

• Whenever a request occurs (i.e. Req holds), then it will eventually be

acknowledged (i.e. Ack will hold).

AG (Req ⇒ AF Ack)

• In any run of the system, DeviceEnabled is true infinitely often.
AG AF DeviceEnabled

• From any state, the system can be restarted (i.e. get to a Restart state).

Temporal Logics – p.17/26

CTL—Some Examples

❖ Some examples of CTL formulae:

• Mutual exclusion of two processes using propositions cs(P1) (process P1 is in the

critical section) and cs(P2).

¬EF (cs(P1) ∧ cs(P2)) ≡ AG (¬cs(P1) ∨ ¬cs(P2))

• It is possible to get to a state where Start holds, but Ready does not.

EF (Start ∧ ¬Ready)

• Whenever a request occurs (i.e. Req holds), then it will eventually be

acknowledged (i.e. Ack will hold).

AG (Req ⇒ AF Ack)

• In any run of the system, DeviceEnabled is true infinitely often.
AG AF DeviceEnabled

• From any state, the system can be restarted (i.e. get to a Restart state).
AG EF Restart

Temporal Logics – p.17/26

CTL—Some Examples

❖ Some examples of CTL formulae:

• Mutual exclusion of two processes using propositions cs(P1) (process P1 is in the

critical section) and cs(P2).

¬EF (cs(P1) ∧ cs(P2)) ≡ AG (¬cs(P1) ∨ ¬cs(P2))

• It is possible to get to a state where Start holds, but Ready does not.

EF (Start ∧ ¬Ready)

• Whenever a request occurs (i.e. Req holds), then it will eventually be

acknowledged (i.e. Ack will hold).

AG (Req ⇒ AF Ack)

• In any run of the system, DeviceEnabled is true infinitely often.
AG AF DeviceEnabled

• From any state, the system can be restarted (i.e. get to a Restart state).
AG EF Restart

• The Reset signal is initially set, and from the next state on, it is never set again.

Temporal Logics – p.17/26

CTL—Some Examples

❖ Some examples of CTL formulae:

• Mutual exclusion of two processes using propositions cs(P1) (process P1 is in the

critical section) and cs(P2).

¬EF (cs(P1) ∧ cs(P2)) ≡ AG (¬cs(P1) ∨ ¬cs(P2))

• It is possible to get to a state where Start holds, but Ready does not.

EF (Start ∧ ¬Ready)

• Whenever a request occurs (i.e. Req holds), then it will eventually be

acknowledged (i.e. Ack will hold).

AG (Req ⇒ AF Ack)

• In any run of the system, DeviceEnabled is true infinitely often.
AG AF DeviceEnabled

• From any state, the system can be restarted (i.e. get to a Restart state).
AG EF Restart

• The Reset signal is initially set, and from the next state on, it is never set again.
Reset ∧ AX AG ¬Reset

Temporal Logics – p.17/26

CTL—Some Examples

❖ Some examples of CTL formulae:

• Mutual exclusion of two processes using propositions cs(P1) (process P1 is in the

critical section) and cs(P2).

¬EF (cs(P1) ∧ cs(P2)) ≡ AG (¬cs(P1) ∨ ¬cs(P2))

• It is possible to get to a state where Start holds, but Ready does not.

EF (Start ∧ ¬Ready)

• Whenever a request occurs (i.e. Req holds), then it will eventually be

acknowledged (i.e. Ack will hold).

AG (Req ⇒ AF Ack)

• In any run of the system, DeviceEnabled is true infinitely often.
AG AF DeviceEnabled

• From any state, the system can be restarted (i.e. get to a Restart state).
AG EF Restart

• The Reset signal is initially set, and from the next state on, it is never set again.
Reset ∧ AX AG ¬Reset

• The Reset signal is initially set, but once it is unset, it is never set again.

Temporal Logics – p.17/26

CTL—Some Examples

❖ Some examples of CTL formulae:

• Mutual exclusion of two processes using propositions cs(P1) (process P1 is in the

critical section) and cs(P2).

¬EF (cs(P1) ∧ cs(P2)) ≡ AG (¬cs(P1) ∨ ¬cs(P2))

• It is possible to get to a state where Start holds, but Ready does not.

EF (Start ∧ ¬Ready)

• Whenever a request occurs (i.e. Req holds), then it will eventually be

acknowledged (i.e. Ack will hold).

AG (Req ⇒ AF Ack)

• In any run of the system, DeviceEnabled is true infinitely often.
AG AF DeviceEnabled

• From any state, the system can be restarted (i.e. get to a Restart state).
AG EF Restart

• The Reset signal is initially set, and from the next state on, it is never set again.
Reset ∧ AX AG ¬Reset

• The Reset signal is initially set, but once it is unset, it is never set again.

Reset ∧ AG (¬Reset ⇒ AG ¬Reset)

Temporal Logics – p.17/26

CTL—Some Examples

❖ Some examples of CTL formulae:

• Mutual exclusion of two processes using propositions cs(P1) (process P1 is in the

critical section) and cs(P2).

¬EF (cs(P1) ∧ cs(P2)) ≡ AG (¬cs(P1) ∨ ¬cs(P2))

• It is possible to get to a state where Start holds, but Ready does not.

EF (Start ∧ ¬Ready)

• Whenever a request occurs (i.e. Req holds), then it will eventually be

acknowledged (i.e. Ack will hold).

AG (Req ⇒ AF Ack)

• In any run of the system, DeviceEnabled is true infinitely often.
AG AF DeviceEnabled

• From any state, the system can be restarted (i.e. get to a Restart state).
AG EF Restart

• The Reset signal is initially set, and from the next state on, it is never set again.
Reset ∧ AX AG ¬Reset

• The Reset signal is initially set, but once it is unset, it is never set again.

Reset ∧ AG (¬Reset ⇒ AG ¬Reset)

• The AccConn signal can be set only after the StartAcc signal arrives.

Temporal Logics – p.17/26

CTL—Some Examples

❖ Some examples of CTL formulae:

• Mutual exclusion of two processes using propositions cs(P1) (process P1 is in the

critical section) and cs(P2).

¬EF (cs(P1) ∧ cs(P2)) ≡ AG (¬cs(P1) ∨ ¬cs(P2))

• It is possible to get to a state where Start holds, but Ready does not.

EF (Start ∧ ¬Ready)

• Whenever a request occurs (i.e. Req holds), then it will eventually be

acknowledged (i.e. Ack will hold).

AG (Req ⇒ AF Ack)

• In any run of the system, DeviceEnabled is true infinitely often.
AG AF DeviceEnabled

• From any state, the system can be restarted (i.e. get to a Restart state).
AG EF Restart

• The Reset signal is initially set, and from the next state on, it is never set again.
Reset ∧ AX AG ¬Reset

• The Reset signal is initially set, but once it is unset, it is never set again.

Reset ∧ AG (¬Reset ⇒ AG ¬Reset)

• The AccConn signal can be set only after the StartAcc signal arrives.

A[StartAcc R (¬AccConn)]
Temporal Logics – p.17/26

CTL Model Checking

Temporal Logics – p.18/26

The Basic Idea

❖ The CTL model checking question to be answered: Given a Kripke structure

M = (S, S0, R, L) over a set of atomic propositions AP and a CTL formula ϕ over AP ,

does M |= ϕ hold?

❖ A very basic approach to answer the CTL model checking question by the so-called

explicit-state model checking:

• For every subformula ψ of ϕ, label by ψ all those states s of M in which ϕ holds

(i.e., M,s |= ψ).

• Perform the labelling from the inner-most subformulae (i.e. the most nested ones)

going to the outer ones exploiting the already computed labels (with atomic

propositions corresponding to the original labels of M).

• Check whether each state in S0 gets labelled by ϕ.

❖ It is enough to consider the basic operators of CTL, i.e. the below syntax for p ∈ AP :

ϕ ::= p | ¬ϕ | ϕ ∨ ϕ | EXϕ | E[ϕUϕ] | EGϕ.

Temporal Logics – p.19/26

Label(¬ϕ), Label(ϕ1 ∨ ϕ2)

Label(¬ϕ)
for all s ∈ S such that ϕ 6∈ Label(s) do
Label(s) := Label(s) ∪ {¬ϕ}

p p

p

p

p

Label(ϕ1 ∨ ϕ2)
for all s ∈ S such that ϕ1 ∈ Label(s) or ϕ2 ∈ Label(s) do
Label(s) := Label(s) ∪ {ϕ1 ∨ ϕ2}

p p

pq

p q

p q

p q

p q

Temporal Logics – p.20/26

Label(EXϕ)

Label(EXϕ)
for all s2 ∈ S such that ϕ ∈ Label(s2) do
for all s1 ∈ S such that R(s1, s2) do
Label(s1) := Label(s1) ∪ {EXϕ}

p
EXp

EXpp

EXp

Temporal Logics – p.21/26

Label(E[ϕ1 U ϕ2])

❖ The idea:

• Label first states already labelled by ϕ2.

• Look at predecessors of states labelled with ϕ1 U ϕ2, and if they are labelled with
ϕ1, label them with ϕ1 U ϕ2 as well.

qpppp

p U qp U qp U qp U qp U q

Temporal Logics – p.22/26

Label(EGϕ)

❖ Based on the following observation: Let M = (S, S0, R, L) be a Kripke structure,

S′ = {s ∈ S |M,s |= ϕ}, and R′ = R ∩ (S′ × S′). For any s ∈ S, M, s |= EGϕ iff

1. s ∈ S′ and

2. there exists a path in the oriented graph G′ = (S′, R′) that leads from s to some

node t in a nontrivial SCC C of G′.

p

EGp
p p

p
p

EGp

EGp
EGpEGp

nontrivial
SCC

S’

p

❖ An SCC C is nontrivial iff either it has more than one node or it contains one node with
a self-loop.

❖ SCCs of a finite oriented graph (V,E) can be computed using the Tarjan’s algorithm in

time O(|E|+ |V |).

Temporal Logics – p.23/26

The LTL Logic

Temporal Logics – p.24/26

LTL—The Syntax

❖ LTL is another sublogic of CTL∗ that allows only formulae of the form A ϕ in which the

only state subformulae are atomic propositions.

❖ This is, LTL formulae ϕ are built according to the grammar:

• ϕ ::= A ψ (the use of A is often omitted),

• ψ ::= p | ¬ψ | ψ ∨ ψ | ψ ∧ ψ | X ψ | F ψ | G ψ | ψUψ | ψRψ

where p ∈ AP .

❖ Note that LTL speaks about particular paths in a given Kripke structure only—it ignores

its branching structure.

❖ Sometimes, existential LTL allowing formulae of the form E ϕ is used too.

Temporal Logics – p.25/26

LTL—The Syntax

❖ LTL is another sublogic of CTL∗ that allows only formulae of the form A ϕ in which the

only state subformulae are atomic propositions.

❖ This is, LTL formulae ϕ are built according to the grammar:

• ϕ ::= A ψ (the use of A is often omitted),

• ψ ::= p | ¬ψ | ψ ∨ ψ | ψ ∧ ψ | X ψ | F ψ | G ψ | ψUψ | ψRψ

where p ∈ AP .

❖ Note that LTL speaks about particular paths in a given Kripke structure only—it ignores

its branching structure.

❖ Sometimes, existential LTL allowing formulae of the form E ϕ is used too.

❖ Note also that while CTL cannot express fairness assumptions (in CTL model

checking, they are handled by a special extension of the model checking algorithm),

LTL can express fairness assumptions by formulae of the following form:

• weak fairness: (F G Enabled) ⇒ (G F Fired), i.e. ✸✷ Enabled⇒ ✷✸ Fired,

• strong fairness: (G F Enabled) ⇒ (G F Fired), i.e. ✷✸ Enabled⇒ ✷✸ Fired.
Temporal Logics – p.25/26

LTL, CTL, and CTL∗

❖ LTL and CTL have an incomparable power:

• CTL cannot express, e.g., the LTL formula A (FG p),

• LTL cannot express, e.g., the CTL formula AG (EF p).

Temporal Logics – p.26/26

LTL, CTL, and CTL∗

❖ LTL and CTL have an incomparable power:

• CTL cannot express, e.g., the LTL formula A (FG p),

• LTL cannot express, e.g., the CTL formula AG (EF p).

❖ CTL∗ is strictly more powerful than both LTL and CTL:

• the disjunction of the above formulae, i.e. (A (FG p)) ∨ (AG (EF p)), is not

expressible in CTL nor LTL.

Temporal Logics – p.26/26

LTL, CTL, and CTL∗

❖ LTL and CTL have an incomparable power:

• CTL cannot express, e.g., the LTL formula A (FG p),

• LTL cannot express, e.g., the CTL formula AG (EF p).

❖ CTL∗ is strictly more powerful than both LTL and CTL:

• the disjunction of the above formulae, i.e. (A (FG p)) ∨ (AG (EF p)), is not

expressible in CTL nor LTL.

❖ To complete the picture, here are the complexities of the appropriate model checking

algorithms (we will discuss LTL model checking later on):

• CTL: linear in |M | and linear in |ϕ|.

• LTL and CTL∗: linear in |M | and PSPACE-complete in |ϕ|

where |M | = |S|+ |R| and |ϕ| is the number of subformulae of ϕ.

❖ Finally, as an example of a logic more general than CTL∗, we can mention

modal µ-calculus based on least/greatest fixpoint operators on sets of states

(basically allowing one to define new, specialised modalities).

Temporal Logics – p.26/26

	
	
	Kripke Structures
	Kripke Structures
	Kripke Structures
	
	CTLst ---Basic Idea
	CTLst ---Quantifiers and Operators
	CTLst ---The Syntax
	CTLst ---The Semantics
	CTLst ---The Semantics
	CTLst ---Basic Operators
	
	CTL---The Syntax
	CTL---The Syntax
	CTL---Some Examples
	
	The Basic Idea
	vspace *{-0.5mm}Label($
eg varphi $),
Label($varphi _1 vee varphi _2$)
	vspace *{-0.5mm}Label($EXvarphi $)
	vspace *{-1mm}Label($E[varphi _1 U varphi _2]$)
	vspace *{-0.5mm}Label($EG varphi $)
	
	LTL---The Syntax
	LTL, CTL, and CTLst hspace *{-4mm}

