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Introduction
m We need to check whether M = ¢ holds for a Kripke structure M and an LTL formula .
m We are going to use an automata-theoretic approach to solve the above problem.

m The semantics of LTL formulae is defined over infinite paths—hence, when considering
labelling of states as letters, we need to work with infinite words over the alphabet 27.

m We need a suitable kind of automata to represent languages of infinite words: we are going to
use the so-called Blichi automata (BA) and their variants (called, in general, w-automata).

> At the first glance, Blchi automata look like ordinary finite automata, but they accept infinite words by
looping through accepting states.
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» We transform a Kripke structure M to a BA 5, accepting words that correspond to the paths in
Us,es, M(M, s0) when only the labelling of the states is considered.
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Introduction
m We need to check whether M = ¢ holds for a Kripke structure M and an LTL formula .
m We are going to use an automata-theoretic approach to solve the above problem.

m The semantics of LTL formulae is defined over infinite paths—hence, when considering
labelling of states as letters, we need to work with infinite words over the alphabet 27.

m We need a suitable kind of automata to represent languages of infinite words: we are going to
use the so-called Blichi automata (BA) and their variants (called, in general, w-automata).

> At the first glance, Blchi automata look like ordinary finite automata, but they accept infinite words by
looping through accepting states.

» We transform a Kripke structure M to a BA 5, accepting words that correspond to the paths in
Us,es, M(M, s0) when only the labelling of the states is considered.

> We translate an LTL formula ¢ into a BA 5-., accepting words corresponding to paths « such that
7 W~ . (We do not refer to any concrete M and consider paths in all Kripke structures.)

> We check that L(By) N L(B-,) = 0.
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Buchi Automata
for use in LTL Model Checking



Bilchi automata

m A (non-deterministic) Biichi automaton B is a tuple B = (Q, X, §, Qv, F) where
> Qis a finite set of states,
> Y is afinite alphabet,
> §C Qx X x Qis the transition relation,
> Qo C Qs the set of initial states,
> F C Qs the set of accepting states.
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> Qis a finite set of states,
> Y is afinite alphabet,
> §C Qx X x Qis the transition relation,
> Qo C Qs the set of initial states,
> F C Qs the set of accepting states.

m Provided (gs, a, g2) € 6, we often write g1 —2 ge.
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Bilchi automata

(non-deterministic) Biichi automaton B is a tuple B = (Q, ¥, 4, Qo, F) where

mA
> Qis a finite set of states,
> Y is afinite alphabet,
> §C Qx X x Qis the transition relation,
> Qo C Qs the set of initial states,
> F C Qs the set of accepting states.

m Provided (gs, a, g2) € 6, we often write g1 —2 ge.

m The language of a BA B = (Q, %, 0, Qu, F) is defined as follows:
> Arun g of B over an infinite word w = apaia- ... € ¥ is an infinite sequence @g1q2 ... € Q~ of
states such that go € Qo and Vi.q; = Gjs1.
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(non-deterministic) Biichi automaton B is a tuple B = (Q, ¥, 4, Qo, F) where

mA
> Qis a finite set of states,
> Y is afinite alphabet,
> §C Qx X x Qis the transition relation,
> Qo C Qs the set of initial states,
> F C Qs the set of accepting states.

m Provided (gs, a, g2) € 6, we often write g1 —2 ge.

m The language of a BA B = (Q, %, 0, Qu, F) is defined as follows:
> Arun g of B over an infinite word w = apaia- ... € ¥ is an infinite sequence @g1q2 ... € Q~ of
states such that go € Qo and Vi.q; = Gjs1.
> Arun g is accepting iff inf(0) N F # () where inf() is the set of states that appear infinitely often in .
> The language of B is defined as L(B) = {w € £ | there is an accepting run of B over w}.
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Two Examples of BA
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Two Examples of BA

A BA accepting the language of infinite words over ¥ = {a, b}
in which b appears infinitely often.
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A BA accepting the language of infinite words over ¥ = {a, b}
in which b appears infinitely often.
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Two Examples of BA

A BA accepting the language of infinite words over ¥ = {a, b}
in which b appears infinitely often.

a,b
b

a
A BA accepting the language of infinite words over ¥ = {a, b}

in which ba appears infinitely often.
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w-Regular Languages

m When dealing with BA with ¥ = 24P, we often describe (sets of) transitions using propositional
formulae:

> e.g., for AP = {p, q, r}, we may write a transition labelled with p A —q instead of two transitions
labelled with {p} and {p. r}.
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> e.g., for AP = {p, q, r}, we may write a transition labelled with p A —q instead of two transitions
labelled with {p} and {p. r}.

m An example: ~pA~q ~p/A~q

the BA describes the set of words over 24P, AP = {p, g, r}, such that
q may appear (if at all) at even occurrences of p only
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w-Regular Languages

m When dealing with BA with ¥ = 24P, we often describe (sets of) transitions using propositional
formulae:

> e.g., for AP = {p, q, r}, we may write a transition labelled with p A —q instead of two transitions
labelled with {p} and {p. r}.

m An example: ~pA~q ~p/A~q

the BA describes the set of words over 24P, AP = {p, g, r}, such that
q may appear (if at all) at even occurrences of p only

m The above language is not expressible using LTL.

»> BA have a strictly higher expressive power than LTL.
» The languages that are accepted by some BA are called w-regular.
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Alternative Accepting Conditions

m Several other forms of accepting conditions replacing the simple set of accepting states F are
in use:

» generalised Biichi: 7 C 2%—a run g is accepting iff VF € F. inf(o) N F # 0.
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m Several other forms of accepting conditions replacing the simple set of accepting states F are
in use:

» generalised Biichi: 7 C 2%—a run g is accepting iff VF € F. inf(o) N F # 0.
> Muller: F C 29—arun g is accepting iff 3F € F. inf(o) = F.
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Alternative Accepting Conditions

m Several other forms of accepting conditions replacing the simple set of accepting states F are
in use:

> generalised Biichi: 7 C 29—arun g is accepting iff VF € F. inf(o) N F # 0.

Muller: F C 2%—a run g is accepting iff 3F € F. inf(o) = F.

Streett: F C 29 x 29%—arun g is accepting iff V(E, F) € F. inf(o) N E # 0 = inf(o) N F # 0.
Rabin: F C 29 x 29—arun g is accepting iff 3(E, F) € F. inf(o) NE =0 A inf(o) N F # 0.

parity: states of B are labelled with colours from the set C = {0, ..., k} by afunctionc: Q — C. A
run p is accepting iff min{c(q) | g € inf(o)} is even (alternative definitions for max/odd).

>
>
| 4
>
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> Rabin: F C 29 x 2%—arun g is accepting iff 3(E, F) € F. inf(9) NE =0 A inf(o) N F # 0.

> parity: states of B are labelled with colours from the set C = {0, ..., k} by afunctionc: Q — C. A
run p is accepting iff min{c(q) | g € inf(o)} is even (alternative definitions for max/odd).

> Emerson-Lei: states of B are labelled with sets of colours from C and the acceptance condition is
given by an arbitrary Boolean formula ¢ over atoms of the form inf(c;) for ¢; € C. A run p is accepting
iff inf(o) is @ model of .
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Alternative Accepting Conditions

m Several other forms of accepting conditions replacing the simple set of accepting states F are
in use:

» generalised Biichi: 7 C 2%—a run g is accepting iff VF € F. inf(o) N F # 0.

> Muller: F C 29—arun g is accepting iff 3F € F. inf(o) = F.
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> Rabin: F C 29 x 2%—arun g is accepting iff 3(E, F) € F. inf(9) NE =0 A inf(o) N F # 0.
>

parity: states of B are labelled with colours from the set C = {0, ..., k} by afunctionc: Q — C. A
run p is accepting iff min{c(q) | g € inf(o)} is even (alternative definitions for max/odd).

> Emerson-Lei: states of B are labelled with sets of colours from C and the acceptance condition is
given by an arbitrary Boolean formula ¢ over atoms of the form inf(c;) for ¢; € C. A run p is accepting
iff inf(o) is @ model of .

> transition-based acceptance: as above, but states are substituted with transitions.

m All the above conditions yield automata of equal expressive power.

Automata-Based LTL Model Checking — 7 /22



Deterministic BA

m When considering the basic Blichi acceptance condition, deterministic BA are strictly less
powerful than ordinary (non-deterministic) BA.

3
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Deterministic BA

m When considering the basic Blichi acceptance condition, deterministic BA are strictly less
powerful than ordinary (non-deterministic) BA.

3

m The above BA expressing the language of words over ~ = {a, b} in which eventually only b
appears (i.e., (a+ b)"b~) does not have a deterministic variant:

m Deterministic and non-deterministic Muller, Streett, Rabin, parity, and Emerson-Lei automata
have the same expressive power.
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Complementation of BA
m The automata-theoretic approach to LTL model checking could be formulated as checking
whether L(5y) C L(5,), which would naturally reduce to using complementation to check
L(Bwm) € L(B,) as L(Bm) N L(B,) = 0.
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Complementation of BA
m The automata-theoretic approach to LTL model checking could be formulated as checking
whether L(5y) C L(5,), which would naturally reduce to using complementation to check
L(Bu) C L(B,) as L(By) N L(B,) = 0.

m Due to the non-equivalent power of deterministic and non-deterministic BA, complementation
is much more complicated than for finite-word finite automata.

m However, BA are still closed wrt complementation:
> One can complement BA, e.g., using the so-called Safra construction going through deterministic
Rabin automata.

® The complement of a BA with n states using this way has 2(71°2(") states.
(more precisely, 1277°" for Safra (Rabin) and 21" n! for Piterman (parity))
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> One can complement BA, e.g., using the so-called Safra construction going through deterministic
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® The complement of a BA with n states using this way has 2(71°2(") states.
(more precisely, 1277°" for Safra (Rabin) and 21" n! for Piterman (parity))
> There are other procedures for complementation (the lower bound is (! (0.761)"))

® Ramsey-based, determinization-based, rank-based (tight: ©(n(0.76n)")), slice-based, learning-based,

subset-tuple construction, semideterm.-based, decomposition-based (+ specialized procedures for
subclasses)
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Complementation of BA
m The automata-theoretic approach to LTL model checking could be formulated as checking
whether L(5y) C L(5,), which would naturally reduce to using complementation to check
L(Bu) C L(B,) as L(By) N L(B,) = 0.

m Due to the non-equivalent power of deterministic and non-deterministic BA, complementation
is much more complicated than for finite-word finite automata.

m However, BA are still closed wrt complementation:
> One can complement BA, e.g., using the so-called Safra construction going through deterministic
Rabin automata.

® The complement of a BA with n states using this way has 2(71°2(") states.
(more precisely, 1277°" for Safra (Rabin) and 21" n! for Piterman (parity))

> There are other procedures for complementation (the lower bound is (! (0.761)"))

® Ramsey-based, determinization-based, rank-based (tight: ©(n(0.76n)")), slice-based, learning-based,
subset-tuple construction, semideterm.-based, decomposition-based (+ specialized procedures for
subclasses)

m To avoid the complex complementation of BA, complementation is usually done on the level of
formulae, and the model checking checks that L(53) N L(5-,) = (.
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Emptiness of BA

m Emptiness of a given BA B can be checked in the following way:

» compute the SCCs of B, which can be done using the algorithm of Tarjan in time linear in the size of B,
» check whether there is a non-trivial SCC that contains an accepting state and is reachable from some
initial state.

m The above procedure can be done in time O(|Q| + |4]).
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m The above procedure can be done in time O(|Q| + |4]).

m Nested depth-first search—two interleaved depth-first searches:

» The outer DFS searches for accepting states and the inner DFS tries to find a loop on the
encountered, fully-expanded by the outer DFS, accepting states (while going through states not
visited by the inner DFS).
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» compute the SCCs of B, which can be done using the algorithm of Tarjan in time linear in the size of B,
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m The above procedure can be done in time O(|Q| + |4]).

m Nested depth-first search—two interleaved depth-first searches:

» The outer DFS searches for accepting states and the inner DFS tries to find a loop on the
encountered, fully-expanded by the outer DFS, accepting states (while going through states not
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> Note: A naive two-phase DFS (first find accepting states, then search from each of them for a loop)
gives time complexity O(|Q| - (|Q| + |4]))-
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Emptiness of BA

m Emptiness of a given BA B can be checked in the following way:
» compute the SCCs of B, which can be done using the algorithm of Tarjan in time linear in the size of B,
» check whether there is a non-trivial SCC that contains an accepting state and is reachable from some
initial state.

m The above procedure can be done in time O(|Q| + |4]).

m Nested depth-first search—two interleaved depth-first searches:

» The outer DFS searches for accepting states and the inner DFS tries to find a loop on the
encountered, fully-expanded by the outer DFS, accepting states (while going through states not
visited by the inner DFS).

> Note: A naive two-phase DFS (first find accepting states, then search from each of them for a loop)
gives time complexity O(|Q| - (|Q| + |4]))-

m [n the literature, various improved versions of both the SCC-based as well as the nested DFS
have been proposed: these are beyond the scope of this lecture.

Automata-Based LTL Model Checking — 10 /22



Product of BA

m Given two BA By, Bs, constructing a BA accepting the language L(B1) N L(Bz) is easy.

m However, one has to be careful of the fact that accepting states may be reached in By and B»
at different times.

» Have two copies of the cross product of the transition graphs of 5y and B..

> For g € Fy, redirect each transition going from a state (g1, ¢¢) to (g2, g3) in the first copy of the cross
product to go from (g1, ¢?) in the first copy to (g2, g3) in the second copy.

> Redirect in a similar fashion transitions from the second copy back to the first one.
> Consider as accepting the states (g1, g2) of the second copy where @ € Fo.
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Product of BA

m Given two BA By, Bs, constructing a BA accepting the language L(B1) N L(Bz) is easy.

m However, one has to be careful of the fact that accepting states may be reached in By and B»

at different times.
» Have two copies of the cross product of the transition graphs of 5y and B..

> For g € Fy, redirect each transition going from a state (g1, ¢¢) to (g2, g3) in the first copy of the cross
product to go from (g1, ¢?) in the first copy to (g2, g3) in the second copy.
> Redirect in a similar fashion transitions from the second copy back to the first one.

> Consider as accepting the states (g1, g2) of the second copy where @ € Fo.

m In the LTL model checking procedure, the construction of the product may be simplified since
By for a Kripke structure M will have all states accepting:
» Hence, no need to create two copies of the cross product.
» One can consider as accepting the states of the cross product in which the 5-, component reaches

an accepting state.
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From Kripke Structures
to Buchi Automata



From KS to BA
m We transform a given Kripke structure M = (S, Sy, R, ¢) over atomic propositions from AP to
the Biichi automaton By = (SU {qo}, 27,6, {q0}, SU {qo}) where
> g ¢ Sand
> § is the smallest relation such that

® if (sy,S2) € R, then (sy,4(s2),s2) € 6 and
® if sop € Sp, then (qo, ¢(So), So) € 6.

m We have that L(Buy) = {¢(s0)¢(51)¢(S2) ... | So € So A Sp81S2... € (M, 5p)}.

Automata-Based LTL Model Checking — 13 /22



From KS to BA
m We transform a given Kripke structure M = (S, Sy, R, ¢) over atomic propositions from AP to
the Biichi automaton By = (SU {qo}, 27,6, {q0}, SU {qo}) where
> g ¢ Sand
> § is the smallest relation such that

® if (sy,S2) € R, then (sy,4(s2),s2) € 6 and
® if sop € Sp, then (qo, ¢(So), So) € 6.

m We have that L(Buy) = {¢(s0)¢(51)¢(S2) ... | So € So A Sp81S2... € (M, 5p)}.

m An example:
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From LTL Formulae
to Buchi Automata



The Idea of Going from LTL to BA

m We consider the basic connectives (—, Vv, X, U) only and we skip the use of the implicit A path
quantifier at the beginning of the formulae.

m We introduce a state g for each consistent subset of the set of subformulae of the given
formula and their negations: these are assumed to hold in q.

m We add transitions according to the observed changes in the validity of atomic propositions
(the sets of the new valid atomic propositions will label the transitions) and according to the
temporal operators that appear in the formulae present in the states.

m We use generalised BA: one accepting condition for each until.

»> The generalised BA may be converted to plain BA in a similar way as in the product construction (just
using as many copies as the number of accepting conditions is).

m Various alternative, more optimised constructions have been studied (and are available in tools
such as 1t12ba, 1t12tgba (Spot), 1t13tela, Rabinizer, ...).
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The FL Closure of a Formula

m Let ¢ be an LTL formula built over atomic propositions from AP using the connectives —, Vv, X,
and U. The Fischer-Ladner (FL) closure cl() of ¢ is defined inductively on the structure of ¢
(assuming that =——¢ = ¢):
> cl(p) = {p,—p} for p € AP,

(=) = cl() U {~g},

(1 Vv p2) = cl(pr) Ucl(p2) U{pr V g2, (p1 V ¢2)},

cl(X p) = cllp) U{X o, =X o},

cl(pr U p2) = cl(epr) U cl(pz) U {1 U gz, =(1 U p2)},

> c
> c
>
>

1
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(assuming that =——¢ = ¢):
> cl(p) = {p,—p} for p € AP,

(=) = cl() U {~g},

(1 Vv p2) = cl(pr) Ucl(p2) U{pr V g2, (p1 V ¢2)},

cl(X p) = cllp) U{X o, =X o},

cl(pr U p2) = cl(epr) U cl(pz) U {1 U gz, =(1 U p2)},

> c
> c
>

> 1

m Example: ¢/((pUq) Vv (-pUQ))
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The FL Closure of a Formula

m Let ¢ be an LTL formula built over atomic propositions from AP using the connectives —, Vv, X,
and U. The Fischer-Ladner (FL) closure cl() of ¢ is defined inductively on the structure of ¢
(assuming that =——¢ = ¢):
> cl(p) = {p,—p} for p € AP,

(=) = cl() U {~g},

(1 Vv p2) = cl(pr) Ucl(p2) U{pr V g2, (p1 V ¢2)},

cl(X ) = cl(e) U{X ¢, =X ¢},

cl(pr U p2) = cl(epr) U cl(pz) U {1 U gz, =(1 U p2)},

> c
> c
| 2

> 1
m Example: ¢/((pUq) Vv (-pUQ))

(pUq) v (=pUq), —((pUq) v (-pUQ)),
ol((pUq) v (~pUg)) = (jgggg; ZEHZZ)C;L
p,—p, q,—q
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Consistent Sets of Formulae

m We want to restrict the construction to sets of formulae that do not contain contradictory
formulae (i.e., formulae that can never hold together).

m Given an LTL formula ¢ with the chosen basic connectives, we call a set g C cl(p) consistent
iff the following conditions hold:
Vi € cl(p).p €q= " €q.
V(1 V gh2) € Cl(@). (Y1 V Yo) Eq= 11 €Qq V Y2 €Qq.
V(1 U ) € cl(p). 2 € = (1 Uy2) € q.
V(1 Udpe) € clp). (1 Uv2) €q A 2 € q= 11 €G.
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Constructing B,,
Given an LTL formula ¢ built over atomic propositions from AP using the basic connectives —, Vv,
X, U, the generalised BA B, = (Q, 247, 5, Qo, F) is defined as follows:

m Q={q}U{gCcl(e)]|qisconsistent}, go & 29, and Oy = {qo}.
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Constructing B,,
Given an LTL formula  built over atomic propositions from AP using the basic connectives —, v,
X, U, the generalised BA B, = (Q, 247, 5, Qo, F) is defined as follows:
m Q={q}U{gCcl(e)]|qisconsistent}, go & 29, and Oy = {qo}.
m ) C Q x 2P x Q satisfies the following conditions:
> (o, a,q) € diff

q # do,
¥ € g, and
a=qnAP.
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Constructing B,,
Given an LTL formula  built over atomic propositions from AP using the basic connectives —, v,
X, U, the generalised BA B, = (Q, 247, 5, Qo, F) is defined as follows:
m Q={q}U{gCcl(e)]|qisconsistent}, go & 29, and Oy = {qo}.
m ) C Q x 2P x Q satisfies the following conditions:
> (o, a,q) € diff

q # do,
¥ € g, and
a=qnAP.

> (g1,a,q) € dfor g1 # qo iff

V(X ) €clp) (Xp) € gt <= € Ga.
V(1 Upe) € cl(p). (w1 Uve) € g1 A Y2 & g1 = (91 U h2) € Qa.
V(1 Ub2) € cl(p). (1 Ub2) € g1 A b1 € g1 = (1 U2) € Qo
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Constructing B,,
Given an LTL formula ¢ built over atomic propositions from AP using the basic connectives —, Vv,
X, U, the generalised BA B, = (Q, 247, 5, Qo, F) is defined as follows:

m Q={q}U{gCcl(e)]|qisconsistent}, go & 29, and Oy = {qo}.

m ) C Q x 2P x Q satisfies the following conditions:

> (qo,a,q) € diff
q # Qo,
¢ € g, and
a=qnAP.

> (g1,a,q) € dfor g1 # qo iff
G2 # Qos
a=qgNAP,
V(X ¥) € cl(p). (X ) € n <= ¥ € Q.
V(1 Upe) € cl(p). (w1 Uve) € g1 A Y2 & g1 = (91 U h2) € Qa.
V(1 Udpe) € cl(p). (Y1 Ugpo) € g1 A Y1 € g1 = (Y1 Uth2) € Go.

w7 ={{qeQ\{aq}[v2cqV (¥1 Uv2) & q}|(¢1 Ue)eclp)}.

» Guarantees that each until (once encountered) will reach its end (i.e., a state where its right operand
holds).
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Constructing B,,
Given an LTL formula ¢ built over atomic propositions from AP using the basic connectives —, Vv,
X, U, the generalised BA B, = (Q, 247, 5, Qo, F) is defined as follows:

m Q={q}U{gCcl(e)]|qisconsistent}, go & 29, and Oy = {qo}.

m ) C Q x 2P x Q satisfies the following conditions:
> (q,a,q) < Jiff
q # do.
¢ € q,and
a=qnAP.
> (g1,a,q) € dfor g1 # qo iff

G2 # Qos

a=qgNAP,

V(X ) €clp) (Xp) € gt <= € Ga.

V(1 Upe) € cl(p). (w1 Uve) € g1 A Y2 & g1 = (91 U h2) € Qa.
V(1 Udpe) € cl(p). (Y1 Ugpo) € g1 A Y1 € g1 = (Y1 Uth2) € Go.

w7 ={{qeQ\{aq}[v2cqV (¥1 Uv2) & q}|(¢1 Ue)eclp)}.

» Guarantees that each until (once encountered) will reach its end (i.e., a state where its right operand
holds).
We have that L(B,,

) = {4(s0)l(s1)l(S2) - .. | thereisa KS M = (S, Sp, R, ¢) over AP such that
So € So, S0S152... € (M

,S0), and M, 5p8182 ... = ¢}.
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An Example of Translating from LTL to BA

m Consider p =p U q:
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An Example of Translating from LTL to BA

m Considerp =p U q:
> C/((tp) = {p, —p,q,—q, ¥, _'90}
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An Example of Translating from LTL to BA

m Considerp =p U q:

> C/(‘P) = {p7 —p,q,~q, p, _'90}'
> Consistent subsets of c/(y):
* g ={e,p.q}
* q={e,p,—q},
* a3 ={v,7p,q}
® g ={~9,p,~q},
® g5 = {~¢,~p.—q},
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An Example of Translating from LTL to BA

m Considerp =p U q:

> C/((,D) = {p7 —p,q,~q, p, _'90}

> Consistent subsets of c/(y):
* g ={e,p.q}
* q={e,p,—q},
* i ={p,pq}
® qs={~p,p,q},
® g5 = {~p, P, ~q},
> 3, is shown on the right
(not all labels are shown)

> F = {{q1 ) q3> q47 QS}}

— 4o

A g

—~p A g

g1

q9z

g3

B
&

—p. g

—p M g

—pAg

—pAg

o5l T

v ~p A g
—p. =g
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The Top Level of
the LTL MC Algorithm



A Naive LTL MC Algorithm

m A naive procedure:

generate the KS M for the given system to be verified and the atomic observations AP of interest,
translate M to the BA 5,

negate the given LTL formula ¢ to be checked and translate the negation into the BA 5.,
construct the product BA 1By, x 5-.. representing the language L(Bwy) N L(B-),

check language emptiness of By x B-,:

e if L(By x B-,) is empty, ¢ holds for the given system,

® otherwise return a path corresponding to some element from the intersection as a counterexample to the
property being checked.
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On-the-Fly LTL MC Algorithm
m Differences of on-the-fly model checking from the naive procedure:

» Do not generate the KS M and the BA By, first, only then constructing the product with the negated
property BA, followed by checking its emptiness.
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On-the-Fly LTL MC Algorithm
m Differences of on-the-fly model checking from the naive procedure:

» Do not generate the KS M and the BA By, first, only then constructing the product with the negated
property BA, followed by checking its emptiness.

» Instead, construct B, and use it to control the construction of By and the product By x B-, while
continuously checking for accepting loops:
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On-the-Fly LTL MC Algorithm
m Differences of on-the-fly model checking from the naive procedure:

» Do not generate the KS M and the BA By, first, only then constructing the product with the negated
property BA, followed by checking its emptiness.

» Instead, construct B, and use it to control the construction of By and the product By x B-, while
continuously checking for accepting loops:

® if an accepting loop is detected, immediately stop and print out a counterexample without generating further
states (faulty systems tend to have many strange states due to not obeying the intended invariants),
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On-the-Fly LTL MC Algorithm
m Differences of on-the-fly model checking from the naive procedure:
» Do not generate the KS M and the BA By, first, only then constructing the product with the negated

property BA, followed by checking its emptiness.

» Instead, construct B, and use it to control the construction of By and the product By x B-, while
continuously checking for accepting loops:

® if an accepting loop is detected, immediately stop and print out a counterexample without generating further
states (faulty systems tend to have many strange states due to not obeying the intended invariants),

® when some transition from the state of 13y, that is currently being explored cannot be composed with the
currently executable transitions of B, do not follow it (no counterexample can be reached via the
transition—hence, the sub-state space reachable (exclusively) via it needs not be explored).
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On-the-Fly LTL MC Algorithm
m Differences of on-the-fly model checking from the naive procedure:

» Do not generate the KS M and the BA By, first, only then constructing the product with the negated
property BA, followed by checking its emptiness.

» Instead, construct B, and use it to control the construction of By and the product By x B-, while
continuously checking for accepting loops:

® if an accepting loop is detected, immediately stop and print out a counterexample without generating further
states (faulty systems tend to have many strange states due to not obeying the intended invariants),

® when some transition from the state of 13y, that is currently being explored cannot be composed with the
currently executable transitions of B, do not follow it (no counterexample can be reached via the
transition—hence, the sub-state space reachable (exclusively) via it needs not be explored).

» Combine the on-the-fly generation of states of M with suitable state space reduction techniques, e.g.,
® partial order reduction (exploring only some interleavings of the concurrent processes running in the verified
system) or
® symmetry reduction (do not explore states that are indistinguishable from some already generated states wrt
the property being checked),

® hit-state hashing (do not distinguish states with the same hash), ...
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