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Introduction

We need to check whether M |= ϕ holds for a Kripke structure M and an LTL formula ϕ.

We are going to use an automata-theoretic approach to solve the above problem.

The semantics of LTL formulae is defined over infinite paths—hence, when considering

labelling of states as letters, we need to work with infinite words over the alphabet 2AP .

We need a suitable kind of automata to represent languages of infinite words: we are going to
use the so-called Büchi automata (BA) and their variants (called, in general, ω-automata).

◮ At the first glance, Büchi automata look like ordinary finite automata, but they accept infinite words by

looping through accepting states.
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labelling of states as letters, we need to work with infinite words over the alphabet 2AP .

We need a suitable kind of automata to represent languages of infinite words: we are going to
use the so-called Büchi automata (BA) and their variants (called, in general, ω-automata).

◮ At the first glance, Büchi automata look like ordinary finite automata, but they accept infinite words by

looping through accepting states.

◮ We transform a Kripke structure M to a BA BM accepting words that correspond to the paths in⋃
s0∈S0

Π(M, s0) when only the labelling of the states is considered.

◮ We translate an LTL formula ϕ into a BA B¬ϕ accepting words corresponding to paths π such that

π 6|= ϕ. (We do not refer to any concrete M and consider paths in all Kripke structures.)

◮ We check that L(BM) ∩ L(B¬ϕ) = ∅.

Automata-Based LTL Model Checking — 2 / 22



Büchi Automata

for use in LTL Model Checking
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Büchi automata

A (non-deterministic) Büchi automaton B is a tuple B = (Q,Σ, δ,Q0,F ) where
◮ Q is a finite set of states,
◮ Σ is a finite alphabet,
◮ δ ⊆ Q × Σ× Q is the transition relation,
◮ Q0 ⊆ Q is the set of initial states,
◮ F ⊆ Q is the set of accepting states.
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A (non-deterministic) Büchi automaton B is a tuple B = (Q,Σ, δ,Q0,F ) where
◮ Q is a finite set of states,
◮ Σ is a finite alphabet,
◮ δ ⊆ Q × Σ× Q is the transition relation,
◮ Q0 ⊆ Q is the set of initial states,
◮ F ⊆ Q is the set of accepting states.

Provided (q1,a,q2) ∈ δ, we often write q1
a

−→ q2.

The language of a BA B = (Q,Σ, δ,Q0,F ) is defined as follows:
◮ A run ̺ of B over an infinite word w = a0a1a2 . . . ∈ Σω is an infinite sequence q0q1q2 . . . ∈ Qω of

states such that q0 ∈ Q0 and ∀i .qi
ai−→ qi+1.

◮ A run ̺ is accepting iff inf(̺) ∩ F 6= ∅ where inf(̺) is the set of states that appear infinitely often in ̺.

Automata-Based LTL Model Checking — 4 / 22
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states such that q0 ∈ Q0 and ∀i .qi
ai−→ qi+1.

◮ A run ̺ is accepting iff inf(̺) ∩ F 6= ∅ where inf(̺) is the set of states that appear infinitely often in ̺.

◮ The language of B is defined as L(B) = {w ∈ Σω | there is an accepting run of B over w}.
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Two Examples of BA
a

b

b

a
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ω-Regular Languages

When dealing with BA with Σ = 2AP , we often describe (sets of) transitions using propositional
formulae:
◮ e.g., for AP = {p, q, r}, we may write a transition labelled with p ∧ ¬q instead of two transitions

labelled with {p} and {p, r}.
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When dealing with BA with Σ = 2AP , we often describe (sets of) transitions using propositional
formulae:
◮ e.g., for AP = {p, q, r}, we may write a transition labelled with p ∧ ¬q instead of two transitions

labelled with {p} and {p, r}.

An example: ~p /\ ~q

p

p /\ ~q

~p /\ ~q

the BA describes the set of words over 2AP , AP = {p,q, r}, such that

q may appear (if at all) at even occurrences of p only

The above language is not expressible using LTL.
◮ BA have a strictly higher expressive power than LTL.
◮ The languages that are accepted by some BA are called ω-regular.

Automata-Based LTL Model Checking — 6 / 22



Alternative Accepting Conditions

Several other forms of accepting conditions replacing the simple set of accepting states F are
in use:
◮ generalised Büchi: F ⊆ 2Q—a run ̺ is accepting iff ∀F ∈ F . inf(̺) ∩ F 6= ∅.
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run ρ is accepting iff min{c(q) | q ∈ inf(̺)} is even (alternative definitions for max/odd).

◮ Emerson-Lei: states of B are labelled with sets of colours from C and the acceptance condition is

given by an arbitrary Boolean formula ϕ over atoms of the form inf(ci) for ci ∈ C. A run ρ is accepting

iff inf(̺) is a model of ϕ.

◮ transition-based acceptance: as above, but states are substituted with transitions.

All the above conditions yield automata of equal expressive power.
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Deterministic BA

When considering the basic Büchi acceptance condition, deterministic BA are strictly less

powerful than ordinary (non-deterministic) BA.

a,b

b

b
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Deterministic BA

When considering the basic Büchi acceptance condition, deterministic BA are strictly less

powerful than ordinary (non-deterministic) BA.

a,b

b

b

The above BA expressing the language of words over Σ = {a,b} in which eventually only b

appears (i.e., (a + b)∗bω) does not have a deterministic variant:

Deterministic and non-deterministic Muller, Streett, Rabin, parity, and Emerson-Lei automata

have the same expressive power.
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Complementation of BA
The automata-theoretic approach to LTL model checking could be formulated as checking

whether L(BM) ⊆ L(Bϕ), which would naturally reduce to using complementation to check

L(BM) ⊆ L(Bϕ) as L(BM) ∩ L(Bϕ) = ∅.
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Due to the non-equivalent power of deterministic and non-deterministic BA, complementation

is much more complicated than for finite-word finite automata.

However, BA are still closed wrt complementation:
◮ One can complement BA, e.g., using the so-called Safra construction going through deterministic

Rabin automata.
• The complement of a BA with n states using this way has 2O(n log(n)) states.

(more precisely, 12nn2n for Safra (Rabin) and 2nnn! for Piterman (parity))
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◮ There are other procedures for complementation (the lower bound is Ω( 1
n
(0.76n)n))

• Ramsey-based, determinization-based, rank-based (tight: O(n(0.76n)n)), slice-based, learning-based,
subset-tuple construction, semideterm.-based, decomposition-based (+ specialized procedures for
subclasses)
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(more precisely, 12nn2n for Safra (Rabin) and 2nnn! for Piterman (parity))

◮ There are other procedures for complementation (the lower bound is Ω( 1
n
(0.76n)n))

• Ramsey-based, determinization-based, rank-based (tight: O(n(0.76n)n)), slice-based, learning-based,
subset-tuple construction, semideterm.-based, decomposition-based (+ specialized procedures for
subclasses)

To avoid the complex complementation of BA, complementation is usually done on the level of

formulae, and the model checking checks that L(BM) ∩ L(B¬ϕ) = ∅.
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Emptiness of BA

Emptiness of a given BA B can be checked in the following way:
◮ compute the SCCs of B, which can be done using the algorithm of Tarjan in time linear in the size of B,
◮ check whether there is a non-trivial SCC that contains an accepting state and is reachable from some

initial state.

The above procedure can be done in time O(|Q|+ |δ|).
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Nested depth-first search—two interleaved depth-first searches:
◮ The outer DFS searches for accepting states and the inner DFS tries to find a loop on the

encountered, fully-expanded by the outer DFS, accepting states (while going through states not

visited by the inner DFS).
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Nested depth-first search—two interleaved depth-first searches:
◮ The outer DFS searches for accepting states and the inner DFS tries to find a loop on the

encountered, fully-expanded by the outer DFS, accepting states (while going through states not

visited by the inner DFS).
◮ Note: A naive two-phase DFS (first find accepting states, then search from each of them for a loop)

gives time complexity O(|Q| · (|Q|+ |δ|)).

In the literature, various improved versions of both the SCC-based as well as the nested DFS

have been proposed: these are beyond the scope of this lecture.
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Product of BA

Given two BA B1, B2, constructing a BA accepting the language L(B1) ∩ L(B2) is easy.

However, one has to be careful of the fact that accepting states may be reached in B1 and B2

at different times.
◮ Have two copies of the cross product of the transition graphs of B1 and B2.

◮ For q1
1 ∈ F1, redirect each transition going from a state (q1

1 , q
2
1) to (q1

2 , q
2
2) in the first copy of the cross

product to go from (q1
1 , q

2
1) in the first copy to (q1

2 , q
2
2) in the second copy.

◮ Redirect in a similar fashion transitions from the second copy back to the first one.

◮ Consider as accepting the states (q1, q2) of the second copy where q2 ∈ F2.
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product to go from (q1
1 , q

2
1) in the first copy to (q1

2 , q
2
2) in the second copy.

◮ Redirect in a similar fashion transitions from the second copy back to the first one.

◮ Consider as accepting the states (q1, q2) of the second copy where q2 ∈ F2.

In the LTL model checking procedure, the construction of the product may be simplified since
BM for a Kripke structure M will have all states accepting:
◮ Hence, no need to create two copies of the cross product.

◮ One can consider as accepting the states of the cross product in which the B¬ϕ component reaches

an accepting state.
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From Kripke Structures

to Büchi Automata
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From KS to BA
We transform a given Kripke structure M = (S,S0,R, ℓ) over atomic propositions from AP to

the Büchi automaton BM = (S ∪ {q0},2
AP , δ, {q0},S ∪ {q0}) where

◮ q0 6∈ S and
◮ δ is the smallest relation such that

• if (s1, s2) ∈ R, then (s1, ℓ(s2), s2) ∈ δ and
• if s0 ∈ S0, then (q0, ℓ(s0), s0) ∈ δ.

We have that L(BM) = {ℓ(s0)ℓ(s1)ℓ(s2) . . . | s0 ∈ S0 ∧ s0s1s2 . . . ∈ Π(M, s0)}.
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AP , δ, {q0},S ∪ {q0}) where

◮ q0 6∈ S and
◮ δ is the smallest relation such that

• if (s1, s2) ∈ R, then (s1, ℓ(s2), s2) ∈ δ and
• if s0 ∈ S0, then (q0, ℓ(s0), s0) ∈ δ.

We have that L(BM) = {ℓ(s0)ℓ(s1)ℓ(s2) . . . | s0 ∈ S0 ∧ s0s1s2 . . . ∈ Π(M, s0)}.

An example:

s0 s1

s2

{p,q} {p}

{q}

s0 s1

s2

{p,q} {p}

{q}

q0

{p,q}

{p}

{q}

{q}
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From LTL Formulae

to Büchi Automata
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The Idea of Going from LTL to BA

We consider the basic connectives (¬, ∨, X , U) only and we skip the use of the implicit A path

quantifier at the beginning of the formulae.

We introduce a state q for each consistent subset of the set of subformulae of the given

formula and their negations: these are assumed to hold in q.

We add transitions according to the observed changes in the validity of atomic propositions

(the sets of the new valid atomic propositions will label the transitions) and according to the

temporal operators that appear in the formulae present in the states.

We use generalised BA: one accepting condition for each until.
◮ The generalised BA may be converted to plain BA in a similar way as in the product construction (just

using as many copies as the number of accepting conditions is).

Various alternative, more optimised constructions have been studied (and are available in tools

such as ltl2ba, ltl2tgba (Spot), ltl3tela, Rabinizer, . . . ).
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The FL Closure of a Formula

Let ϕ be an LTL formula built over atomic propositions from AP using the connectives ¬, ∨, X ,
and U. The Fischer-Ladner (FL) closure cl(ϕ) of ϕ is defined inductively on the structure of ϕ
(assuming that ¬¬ϕ ≡ ϕ):
◮ cl(p) = {p,¬p} for p ∈ AP,

◮ cl(¬ϕ) = cl(ϕ) ∪ {¬ϕ},

◮ cl(ϕ1 ∨ ϕ2) = cl(ϕ1) ∪ cl(ϕ2) ∪ {ϕ1 ∨ ϕ2,¬(ϕ1 ∨ ϕ2)},

◮ cl(X ϕ) = cl(ϕ) ∪ {X ϕ,¬X ϕ},

◮ cl(ϕ1 U ϕ2) = cl(ϕ1) ∪ cl(ϕ2) ∪ {ϕ1 U ϕ2,¬(ϕ1 U ϕ2)},
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◮ cl(ϕ1 ∨ ϕ2) = cl(ϕ1) ∪ cl(ϕ2) ∪ {ϕ1 ∨ ϕ2,¬(ϕ1 ∨ ϕ2)},

◮ cl(X ϕ) = cl(ϕ) ∪ {X ϕ,¬X ϕ},

◮ cl(ϕ1 U ϕ2) = cl(ϕ1) ∪ cl(ϕ2) ∪ {ϕ1 U ϕ2,¬(ϕ1 U ϕ2)},

Example: cl((pUq) ∨ (¬pUq))
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◮ cl(ϕ1 U ϕ2) = cl(ϕ1) ∪ cl(ϕ2) ∪ {ϕ1 U ϕ2,¬(ϕ1 U ϕ2)},

Example: cl((pUq) ∨ (¬pUq))

cl((pUq) ∨ (¬pUq)) =















(pUq) ∨ (¬pUq), ¬((pUq) ∨ (¬pUq)),
(pUq), ¬(pUq),

(¬pUq), ¬(¬pUq),
p,¬p, q,¬q














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Consistent Sets of Formulae

We want to restrict the construction to sets of formulae that do not contain contradictory

formulae (i.e., formulae that can never hold together).

Given an LTL formula ϕ with the chosen basic connectives, we call a set q ⊆ cl(ϕ) consistent
iff the following conditions hold:

1 ∀ψ ∈ cl(ϕ). ψ ∈ q ⇐⇒ ¬ψ 6∈ q.

2 ∀(ψ1 ∨ ψ2) ∈ cl(ϕ). (ψ1 ∨ ψ2) ∈ q ⇐⇒ ψ1 ∈ q ∨ ψ2 ∈ q.

3 ∀(ψ1 U ψ2) ∈ cl(ϕ). ψ2 ∈ q =⇒ (ψ1 U ψ2) ∈ q.

4 ∀(ψ1 U ψ2) ∈ cl(ϕ). (ψ1 U ψ2) ∈ q ∧ ψ2 6∈ q =⇒ ψ1 ∈ q.
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Constructing Bϕ
Given an LTL formula ϕ built over atomic propositions from AP using the basic connectives ¬, ∨,

X , U, the generalised BA Bϕ = (Q,2AP , δ,Q0,F) is defined as follows:

Q = {q0} ∪ {q ⊆ cl(ϕ) | q is consistent}, q0 6∈ 2cl(ϕ), and Q0 = {q0}.
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Constructing Bϕ
Given an LTL formula ϕ built over atomic propositions from AP using the basic connectives ¬, ∨,

X , U, the generalised BA Bϕ = (Q,2AP , δ,Q0,F) is defined as follows:

Q = {q0} ∪ {q ⊆ cl(ϕ) | q is consistent}, q0 6∈ 2cl(ϕ), and Q0 = {q0}.

δ ⊆ Q × 2AP × Q satisfies the following conditions:
◮ (q0, a, q) ∈ δ iff

1 q 6= q0,
2 ϕ ∈ q, and
3 a = q ∩ AP.
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δ ⊆ Q × 2AP × Q satisfies the following conditions:
◮ (q0, a, q) ∈ δ iff

1 q 6= q0,
2 ϕ ∈ q, and
3 a = q ∩ AP.

◮ (q1, a, q2) ∈ δ for q1 6= q0 iff
1 q2 6= q0,
2 a = q2 ∩ AP,
3 ∀(X ψ) ∈ cl(ϕ). (X ψ) ∈ q1 ⇐⇒ ψ ∈ q2.
4 ∀(ψ1 U ψ2) ∈ cl(ϕ). (ψ1 U ψ2) ∈ q1 ∧ ψ2 6∈ q1 =⇒ (ψ1 U ψ2) ∈ q2.
5 ∀(ψ1 U ψ2) ∈ cl(ϕ). (ψ1 U ψ2) 6∈ q1 ∧ ψ1 ∈ q1 =⇒ (ψ1 U ψ2) 6∈ q2.
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Constructing Bϕ
Given an LTL formula ϕ built over atomic propositions from AP using the basic connectives ¬, ∨,

X , U, the generalised BA Bϕ = (Q,2AP , δ,Q0,F) is defined as follows:
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1 q2 6= q0,
2 a = q2 ∩ AP,
3 ∀(X ψ) ∈ cl(ϕ). (X ψ) ∈ q1 ⇐⇒ ψ ∈ q2.
4 ∀(ψ1 U ψ2) ∈ cl(ϕ). (ψ1 U ψ2) ∈ q1 ∧ ψ2 6∈ q1 =⇒ (ψ1 U ψ2) ∈ q2.
5 ∀(ψ1 U ψ2) ∈ cl(ϕ). (ψ1 U ψ2) 6∈ q1 ∧ ψ1 ∈ q1 =⇒ (ψ1 U ψ2) 6∈ q2.

F = {{q ∈ Q \ {q0} | ψ2 ∈ q ∨ (ψ1 U ψ2) 6∈ q} | (ψ1 U ψ2) ∈ cl(ϕ)}.
◮ Guarantees that each until (once encountered) will reach its end (i.e., a state where its right operand

holds).
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5 ∀(ψ1 U ψ2) ∈ cl(ϕ). (ψ1 U ψ2) 6∈ q1 ∧ ψ1 ∈ q1 =⇒ (ψ1 U ψ2) 6∈ q2.

F = {{q ∈ Q \ {q0} | ψ2 ∈ q ∨ (ψ1 U ψ2) 6∈ q} | (ψ1 U ψ2) ∈ cl(ϕ)}.
◮ Guarantees that each until (once encountered) will reach its end (i.e., a state where its right operand

holds).

We have that L(Bϕ) = {ℓ(s0)ℓ(s1)ℓ(s2) . . . | there is a KS M = (S,S0,R, ℓ) over AP such that

s0 ∈ S0, s0s1s2 . . . ∈ Π(M, s0), and M, s0s1s2 . . . |= ϕ}.
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An Example of Translating from LTL to BA

Consider ϕ = p U q:
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An Example of Translating from LTL to BA

Consider ϕ = p U q:

◮ cl(ϕ) = {p,¬p, q,¬q, ϕ,¬ϕ}.

Automata-Based LTL Model Checking — 19 / 22



An Example of Translating from LTL to BA

Consider ϕ = p U q:

◮ cl(ϕ) = {p,¬p, q,¬q, ϕ,¬ϕ}.

◮ Consistent subsets of cl(ϕ):
• q1 = {ϕ, p, q},

• q2 = {ϕ, p,¬q},

• q3 = {ϕ,¬p, q},

• q4 = {¬ϕ, p,¬q},

• q5 = {¬ϕ,¬p,¬q},
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An Example of Translating from LTL to BA

Consider ϕ = p U q:

◮ cl(ϕ) = {p,¬p, q,¬q, ϕ,¬ϕ}.

◮ Consistent subsets of cl(ϕ):
• q1 = {ϕ, p, q},

• q2 = {ϕ, p,¬q},

• q3 = {ϕ,¬p, q},

• q4 = {¬ϕ, p,¬q},

• q5 = {¬ϕ,¬p,¬q},

◮ Bϕ is shown on the right

(not all labels are shown)

◮ F = {{q1, q3, q4, q5}}.

.
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The Top Level of

the LTL MC Algorithm
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A Naive LTL MC Algorithm

A naı̈ve procedure:

1 generate the KS M for the given system to be verified and the atomic observations AP of interest,

2 translate M to the BA BM ,

3 negate the given LTL formula ϕ to be checked and translate the negation into the BA B¬ϕ,

4 construct the product BA BM × B¬ϕ representing the language L(BM) ∩ L(B¬ϕ),

5 check language emptiness of BM × B¬ϕ:

• if L(BM × B¬ϕ) is empty, ϕ holds for the given system,

• otherwise return a path corresponding to some element from the intersection as a counterexample to the
property being checked.

Automata-Based LTL Model Checking — 21 / 22



On-the-Fly LTL MC Algorithm

Differences of on-the-fly model checking from the naı̈ve procedure:

◮ Do not generate the KS M and the BA BM first, only then constructing the product with the negated

property BA, followed by checking its emptiness.
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On-the-Fly LTL MC Algorithm

Differences of on-the-fly model checking from the naı̈ve procedure:

◮ Do not generate the KS M and the BA BM first, only then constructing the product with the negated

property BA, followed by checking its emptiness.

◮ Instead, construct B¬ϕ and use it to control the construction of BM and the product BM × B¬ϕ while
continuously checking for accepting loops:
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Differences of on-the-fly model checking from the naı̈ve procedure:

◮ Do not generate the KS M and the BA BM first, only then constructing the product with the negated

property BA, followed by checking its emptiness.

◮ Instead, construct B¬ϕ and use it to control the construction of BM and the product BM × B¬ϕ while
continuously checking for accepting loops:

• if an accepting loop is detected, immediately stop and print out a counterexample without generating further
states (faulty systems tend to have many strange states due to not obeying the intended invariants),
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On-the-Fly LTL MC Algorithm

Differences of on-the-fly model checking from the naı̈ve procedure:

◮ Do not generate the KS M and the BA BM first, only then constructing the product with the negated

property BA, followed by checking its emptiness.

◮ Instead, construct B¬ϕ and use it to control the construction of BM and the product BM × B¬ϕ while
continuously checking for accepting loops:

• if an accepting loop is detected, immediately stop and print out a counterexample without generating further
states (faulty systems tend to have many strange states due to not obeying the intended invariants),

• when some transition from the state of BM that is currently being explored cannot be composed with the
currently executable transitions of B¬ϕ, do not follow it (no counterexample can be reached via the
transition—hence, the sub-state space reachable (exclusively) via it needs not be explored).
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On-the-Fly LTL MC Algorithm

Differences of on-the-fly model checking from the naı̈ve procedure:

◮ Do not generate the KS M and the BA BM first, only then constructing the product with the negated

property BA, followed by checking its emptiness.

◮ Instead, construct B¬ϕ and use it to control the construction of BM and the product BM × B¬ϕ while
continuously checking for accepting loops:

• if an accepting loop is detected, immediately stop and print out a counterexample without generating further
states (faulty systems tend to have many strange states due to not obeying the intended invariants),

• when some transition from the state of BM that is currently being explored cannot be composed with the
currently executable transitions of B¬ϕ, do not follow it (no counterexample can be reached via the
transition—hence, the sub-state space reachable (exclusively) via it needs not be explored).

◮ Combine the on-the-fly generation of states of M with suitable state space reduction techniques, e.g.,

• partial order reduction (exploring only some interleavings of the concurrent processes running in the verified
system) or

• symmetry reduction (do not explore states that are indistinguishable from some already generated states wrt
the property being checked),

• bit-state hashing (do not distinguish states with the same hash), . . .

Automata-Based LTL Model Checking — 22 / 22


