
Static Analysis and Verification
SAV 2024/2025

Tomáš Vojnar
vojnar@fit.vutbr.cz

Brno University of Technology
Faculty of Information Technology

Božetěchova 2, 612 00 Brno

Introduction – p.1/23

Automata-based

LTL Model Checking

Introduction – p.2/23

Introduction

❖ We need to check whether M |= ϕ holds for a Kripke structure M and an LTL formula ϕ.

❖ We are going to use an automata-theoretic approach to solve the above problem.

❖ The semantics of LTL formulae is defined over infinite paths—hence, when considering

labelling of states as letters, we need to work with infinite words over the alphabet 2AP .

❖ We need a suitable kind of automata to represent languages of infinite words: we are

going to use the so-called Büchi automata (BA) and their variants (called, in general,

ω-automata).

• At the first glance, Büchi automata look like ordinary finite automata, but they

accept infinite words by looping through accepting states.

Introduction – p.3/23

Introduction

❖ We need to check whether M |= ϕ holds for a Kripke structure M and an LTL formula ϕ.

❖ We are going to use an automata-theoretic approach to solve the above problem.

❖ The semantics of LTL formulae is defined over infinite paths—hence, when considering

labelling of states as letters, we need to work with infinite words over the alphabet 2AP .

❖ We need a suitable kind of automata to represent languages of infinite words: we are

going to use the so-called Büchi automata (BA) and their variants (called, in general,

ω-automata).

• At the first glance, Büchi automata look like ordinary finite automata, but they

accept infinite words by looping through accepting states.

• We transform a Kripke structure M to a BA BM accepting words that correspond to

the paths in
⋃

s0∈S0
Π(M, s0) when only the labelling of the states is considered.

Introduction – p.3/23

Introduction

❖ We need to check whether M |= ϕ holds for a Kripke structure M and an LTL formula ϕ.

❖ We are going to use an automata-theoretic approach to solve the above problem.

❖ The semantics of LTL formulae is defined over infinite paths—hence, when considering

labelling of states as letters, we need to work with infinite words over the alphabet 2AP .

❖ We need a suitable kind of automata to represent languages of infinite words: we are

going to use the so-called Büchi automata (BA) and their variants (called, in general,

ω-automata).

• At the first glance, Büchi automata look like ordinary finite automata, but they

accept infinite words by looping through accepting states.

• We transform a Kripke structure M to a BA BM accepting words that correspond to

the paths in
⋃

s0∈S0
Π(M, s0) when only the labelling of the states is considered.

• We translate an LTL formula ϕ into a BA B¬ϕ accepting words corresponding to

paths π such that π 6|= ϕ. (We do not refer to any concrete M and consider paths in

all Kripke structures.)

Introduction – p.3/23

Introduction

❖ We need to check whether M |= ϕ holds for a Kripke structure M and an LTL formula ϕ.

❖ We are going to use an automata-theoretic approach to solve the above problem.

❖ The semantics of LTL formulae is defined over infinite paths—hence, when considering

labelling of states as letters, we need to work with infinite words over the alphabet 2AP .

❖ We need a suitable kind of automata to represent languages of infinite words: we are

going to use the so-called Büchi automata (BA) and their variants (called, in general,

ω-automata).

• At the first glance, Büchi automata look like ordinary finite automata, but they

accept infinite words by looping through accepting states.

• We transform a Kripke structure M to a BA BM accepting words that correspond to

the paths in
⋃

s0∈S0
Π(M, s0) when only the labelling of the states is considered.

• We translate an LTL formula ϕ into a BA B¬ϕ accepting words corresponding to

paths π such that π 6|= ϕ. (We do not refer to any concrete M and consider paths in

all Kripke structures.)

• We check that L(BM) ∩ L(B¬ϕ) = ∅.
Introduction – p.3/23

Büchi Automata

for use in LTL Model Checking

Introduction – p.4/23

Büchi automata

❖ A (non-deterministic) Büchi automaton B is a tuple B = (Q,Σ, δ, Q0, F) where

• Q is a finite set of states,

• Σ is a finite alphabet,

• δ ⊆ Q× Σ×Q is the transition relation,

• Q0 ⊆ Q is the set of initial states,

• F ⊆ Q is the set of accepting states.

Introduction – p.5/23

Büchi automata

❖ A (non-deterministic) Büchi automaton B is a tuple B = (Q,Σ, δ, Q0, F) where

• Q is a finite set of states,

• Σ is a finite alphabet,

• δ ⊆ Q× Σ×Q is the transition relation,

• Q0 ⊆ Q is the set of initial states,

• F ⊆ Q is the set of accepting states.

❖ Provided (q1, a, q2) ∈ δ, we often write q1
a

−→ q2.

Introduction – p.5/23

Büchi automata

❖ A (non-deterministic) Büchi automaton B is a tuple B = (Q,Σ, δ, Q0, F) where

• Q is a finite set of states,

• Σ is a finite alphabet,

• δ ⊆ Q× Σ×Q is the transition relation,

• Q0 ⊆ Q is the set of initial states,

• F ⊆ Q is the set of accepting states.

❖ Provided (q1, a, q2) ∈ δ, we often write q1
a

−→ q2.

❖ The language of a BA B = (Q,Σ, δ, Q0, F) is defined as follows:

• A run ̺ of B over an infinite word w = a0a1a2 . . . ∈ Σω is an infinite sequence

q0q1q2 . . . ∈ Qω of states such that q0 ∈ Q0 and ∀i.qi
ai−→ qi+1.

Introduction – p.5/23

Büchi automata

❖ A (non-deterministic) Büchi automaton B is a tuple B = (Q,Σ, δ, Q0, F) where

• Q is a finite set of states,

• Σ is a finite alphabet,

• δ ⊆ Q× Σ×Q is the transition relation,

• Q0 ⊆ Q is the set of initial states,

• F ⊆ Q is the set of accepting states.

❖ Provided (q1, a, q2) ∈ δ, we often write q1
a

−→ q2.

❖ The language of a BA B = (Q,Σ, δ, Q0, F) is defined as follows:

• A run ̺ of B over an infinite word w = a0a1a2 . . . ∈ Σω is an infinite sequence

q0q1q2 . . . ∈ Qω of states such that q0 ∈ Q0 and ∀i.qi
ai−→ qi+1.

• A run ̺ is accepting iff inf(̺) ∩ F 6= ∅ where inf(̺) is the set of states that appear

infinitely often in ̺.

Introduction – p.5/23

Büchi automata

❖ A (non-deterministic) Büchi automaton B is a tuple B = (Q,Σ, δ, Q0, F) where

• Q is a finite set of states,

• Σ is a finite alphabet,

• δ ⊆ Q× Σ×Q is the transition relation,

• Q0 ⊆ Q is the set of initial states,

• F ⊆ Q is the set of accepting states.

❖ Provided (q1, a, q2) ∈ δ, we often write q1
a

−→ q2.

❖ The language of a BA B = (Q,Σ, δ, Q0, F) is defined as follows:

• A run ̺ of B over an infinite word w = a0a1a2 . . . ∈ Σω is an infinite sequence

q0q1q2 . . . ∈ Qω of states such that q0 ∈ Q0 and ∀i.qi
ai−→ qi+1.

• A run ̺ is accepting iff inf(̺) ∩ F 6= ∅ where inf(̺) is the set of states that appear

infinitely often in ̺.

• The language of B is defined as

L(B) = {w ∈ Σω | there is an accepting run of B over w}.

Introduction – p.5/23

Two Examples of BA

a

b

b

a

Introduction – p.6/23

Two Examples of BA

a

b

b

a

A BA accepting the language of infinite words over Σ = {a, b}
in which b appears infinitely often.

Introduction – p.6/23

Two Examples of BA

a

b

b

a

A BA accepting the language of infinite words over Σ = {a, b}
in which b appears infinitely often.

a,b

b

a

Introduction – p.6/23

Two Examples of BA

a

b

b

a

A BA accepting the language of infinite words over Σ = {a, b}
in which b appears infinitely often.

a,b

b

a

A BA accepting the language of infinite words over Σ = {a, b}
in which ba appears infinitely often.

Introduction – p.6/23

ω-Regular Languages

❖ When dealing with BA with Σ = 2AP , we often describe (sets of) transitions using

propositional formulae:

• e.g., for AP = {p, q, r}, we may write a transition labelled with p∧¬q instead of two

transitions labelled with {p} and {p, r}.

Introduction – p.7/23

ω-Regular Languages

❖ When dealing with BA with Σ = 2AP , we often describe (sets of) transitions using

propositional formulae:

• e.g., for AP = {p, q, r}, we may write a transition labelled with p∧¬q instead of two

transitions labelled with {p} and {p, r}.

❖ An example: the following BA describes the set of words over 2AP , AP = {p, q, r},

such that q may appear (if at all) at even occurrences of p only:

~p /\ ~q

p

p /\ ~q

~p /\ ~q

Introduction – p.7/23

ω-Regular Languages

❖ When dealing with BA with Σ = 2AP , we often describe (sets of) transitions using

propositional formulae:

• e.g., for AP = {p, q, r}, we may write a transition labelled with p∧¬q instead of two

transitions labelled with {p} and {p, r}.

❖ An example: the following BA describes the set of words over 2AP , AP = {p, q, r},

such that q may appear (if at all) at even occurrences of p only:

~p /\ ~q

p

p /\ ~q

~p /\ ~q

❖ The above language is not expressible using LTL.

• BA have a strictly higher expressive power than LTL.

• The languages that are accepted by some BA are called ω-regular.

Introduction – p.7/23

Alternative Accepting Conditions

❖ Several other forms of accepting conditions replacing the simple set of accepting states

F are in use:

• generalised Büchi: F ⊆ 2Q—a run ̺ is accepting iff ∀F ∈ F . inf(̺) ∩ F 6= ∅.

Introduction – p.8/23

Alternative Accepting Conditions

❖ Several other forms of accepting conditions replacing the simple set of accepting states

F are in use:

• generalised Büchi: F ⊆ 2Q—a run ̺ is accepting iff ∀F ∈ F . inf(̺) ∩ F 6= ∅.

• Muller: F ⊆ 2Q—a run ̺ is accepting iff ∃F ∈ F . inf(̺) = F .

Introduction – p.8/23

Alternative Accepting Conditions

❖ Several other forms of accepting conditions replacing the simple set of accepting states

F are in use:

• generalised Büchi: F ⊆ 2Q—a run ̺ is accepting iff ∀F ∈ F . inf(̺) ∩ F 6= ∅.

• Muller: F ⊆ 2Q—a run ̺ is accepting iff ∃F ∈ F . inf(̺) = F .

• Streett: F ⊆ 2Q × 2Q—a run ̺ is accepting iff

∀(E,F) ∈ F . inf(̺) ∩ E 6= ∅ =⇒ inf(̺) ∩ F 6= ∅.

Introduction – p.8/23

Alternative Accepting Conditions

❖ Several other forms of accepting conditions replacing the simple set of accepting states

F are in use:

• generalised Büchi: F ⊆ 2Q—a run ̺ is accepting iff ∀F ∈ F . inf(̺) ∩ F 6= ∅.

• Muller: F ⊆ 2Q—a run ̺ is accepting iff ∃F ∈ F . inf(̺) = F .

• Streett: F ⊆ 2Q × 2Q—a run ̺ is accepting iff

∀(E,F) ∈ F . inf(̺) ∩ E 6= ∅ =⇒ inf(̺) ∩ F 6= ∅.

• Rabin: F ⊆ 2Q × 2Q—a run ̺ is accepting iff

∃(E,F) ∈ F . inf(̺) ∩ E = ∅ ∧ inf(̺) ∩ F 6= ∅.

Introduction – p.8/23

Alternative Accepting Conditions

❖ Several other forms of accepting conditions replacing the simple set of accepting states

F are in use:

• generalised Büchi: F ⊆ 2Q—a run ̺ is accepting iff ∀F ∈ F . inf(̺) ∩ F 6= ∅.

• Muller: F ⊆ 2Q—a run ̺ is accepting iff ∃F ∈ F . inf(̺) = F .

• Streett: F ⊆ 2Q × 2Q—a run ̺ is accepting iff

∀(E,F) ∈ F . inf(̺) ∩ E 6= ∅ =⇒ inf(̺) ∩ F 6= ∅.

• Rabin: F ⊆ 2Q × 2Q—a run ̺ is accepting iff

∃(E,F) ∈ F . inf(̺) ∩ E = ∅ ∧ inf(̺) ∩ F 6= ∅.

• parity: states of B are labelled with colours from the set C = {0, . . . , k} by

a function c : Q→ C. A run ρ is accepting iff min{c(q) | q ∈ inf(̺)} is even

(alternative definitions for max/odd).

Introduction – p.8/23

Alternative Accepting Conditions

❖ Several other forms of accepting conditions replacing the simple set of accepting states

F are in use:

• generalised Büchi: F ⊆ 2Q—a run ̺ is accepting iff ∀F ∈ F . inf(̺) ∩ F 6= ∅.

• Muller: F ⊆ 2Q—a run ̺ is accepting iff ∃F ∈ F . inf(̺) = F .

• Streett: F ⊆ 2Q × 2Q—a run ̺ is accepting iff

∀(E,F) ∈ F . inf(̺) ∩ E 6= ∅ =⇒ inf(̺) ∩ F 6= ∅.

• Rabin: F ⊆ 2Q × 2Q—a run ̺ is accepting iff

∃(E,F) ∈ F . inf(̺) ∩ E = ∅ ∧ inf(̺) ∩ F 6= ∅.

• parity: states of B are labelled with colours from the set C = {0, . . . , k} by

a function c : Q→ C. A run ρ is accepting iff min{c(q) | q ∈ inf(̺)} is even

(alternative definitions for max/odd).

• Emerson-Lei: states of B are labelled with sets of colours from C and the
acceptance condition is given by an arbitrary Boolean formula ϕ over atoms of the

form inf(ci) for ci ∈ C. A run ρ is accepting iff inf(̺) is a model of ϕ.

Introduction – p.8/23

Alternative Accepting Conditions

❖ Several other forms of accepting conditions replacing the simple set of accepting states

F are in use:

• generalised Büchi: F ⊆ 2Q—a run ̺ is accepting iff ∀F ∈ F . inf(̺) ∩ F 6= ∅.

• Muller: F ⊆ 2Q—a run ̺ is accepting iff ∃F ∈ F . inf(̺) = F .

• Streett: F ⊆ 2Q × 2Q—a run ̺ is accepting iff

∀(E,F) ∈ F . inf(̺) ∩ E 6= ∅ =⇒ inf(̺) ∩ F 6= ∅.

• Rabin: F ⊆ 2Q × 2Q—a run ̺ is accepting iff

∃(E,F) ∈ F . inf(̺) ∩ E = ∅ ∧ inf(̺) ∩ F 6= ∅.

• parity: states of B are labelled with colours from the set C = {0, . . . , k} by

a function c : Q→ C. A run ρ is accepting iff min{c(q) | q ∈ inf(̺)} is even

(alternative definitions for max/odd).

• Emerson-Lei: states of B are labelled with sets of colours from C and the
acceptance condition is given by an arbitrary Boolean formula ϕ over atoms of the

form inf(ci) for ci ∈ C. A run ρ is accepting iff inf(̺) is a model of ϕ.

• transition-based acceptance: as above, but states are substituted with transitions.

Introduction – p.8/23

Alternative Accepting Conditions

❖ Several other forms of accepting conditions replacing the simple set of accepting states

F are in use:

• generalised Büchi: F ⊆ 2Q—a run ̺ is accepting iff ∀F ∈ F . inf(̺) ∩ F 6= ∅.

• Muller: F ⊆ 2Q—a run ̺ is accepting iff ∃F ∈ F . inf(̺) = F .

• Streett: F ⊆ 2Q × 2Q—a run ̺ is accepting iff

∀(E,F) ∈ F . inf(̺) ∩ E 6= ∅ =⇒ inf(̺) ∩ F 6= ∅.

• Rabin: F ⊆ 2Q × 2Q—a run ̺ is accepting iff

∃(E,F) ∈ F . inf(̺) ∩ E = ∅ ∧ inf(̺) ∩ F 6= ∅.

• parity: states of B are labelled with colours from the set C = {0, . . . , k} by

a function c : Q→ C. A run ρ is accepting iff min{c(q) | q ∈ inf(̺)} is even

(alternative definitions for max/odd).

• Emerson-Lei: states of B are labelled with sets of colours from C and the
acceptance condition is given by an arbitrary Boolean formula ϕ over atoms of the

form inf(ci) for ci ∈ C. A run ρ is accepting iff inf(̺) is a model of ϕ.

• transition-based acceptance: as above, but states are substituted with transitions.

❖ All the above conditions yield automata of equal expressive power.
Introduction – p.8/23

Deterministic BA

❖ When considering the basic Büchi acceptance condition, deterministic BA are strictly

less powerful than ordinary (non-deterministic) BA.

a,b

b

b

Introduction – p.9/23

Deterministic BA

❖ When considering the basic Büchi acceptance condition, deterministic BA are strictly

less powerful than ordinary (non-deterministic) BA.

a,b

b

b

❖ The above BA expressing the language of words over Σ = {a, b} in which eventually

only b appears (i.e., (a+ b)∗bω) does not have a deterministic variant:

❖ Deterministic and non-deterministic Muller, Streett, Rabin, parity, and Emerson-Lei
automata have the same expressive power.

Introduction – p.9/23

Complementation of BA

❖ The automata-theoretic approach to LTL model checking could be formulated as

checking whether L(BM) ⊆ L(Bϕ), which would naturally reduce to using

complementation to check L(BM) ⊆ L(Bϕ) as L(BM) ∩ L(Bϕ) = ∅.

Introduction – p.10/23

Complementation of BA

❖ The automata-theoretic approach to LTL model checking could be formulated as

checking whether L(BM) ⊆ L(Bϕ), which would naturally reduce to using

complementation to check L(BM) ⊆ L(Bϕ) as L(BM) ∩ L(Bϕ) = ∅.

❖ Due to the non-equivalent power of deterministic and non-deterministic BA,

complementation is much more complicated than for finite-word finite automata.

❖ However, BA are still closed wrt complementation:

• One can complement BA, e.g., using the so-called Safra construction going

through deterministic Rabin automata.

– The complement of a BA with n states using this way has 2O(n log(n)) states.

(more precisely, 12nn2n for Safra (Rabin) and 2nnn! for Piterman (parity))

Introduction – p.10/23

Complementation of BA

❖ The automata-theoretic approach to LTL model checking could be formulated as

checking whether L(BM) ⊆ L(Bϕ), which would naturally reduce to using

complementation to check L(BM) ⊆ L(Bϕ) as L(BM) ∩ L(Bϕ) = ∅.

❖ Due to the non-equivalent power of deterministic and non-deterministic BA,

complementation is much more complicated than for finite-word finite automata.

❖ However, BA are still closed wrt complementation:

• One can complement BA, e.g., using the so-called Safra construction going

through deterministic Rabin automata.

– The complement of a BA with n states using this way has 2O(n log(n)) states.

(more precisely, 12nn2n for Safra (Rabin) and 2nnn! for Piterman (parity))

• There are other procedures for complementation (the lower bound is Ω(1
n
(0.76n)n))

– Ramsey-based, determinization-based, rank-based (tight: O(n(0.76n)n)),
slice-based, learning-based, subset-tuple construction, semideterm.-based,

decomposition-based (+ specialized procedures for subclasses)

Introduction – p.10/23

Complementation of BA

❖ The automata-theoretic approach to LTL model checking could be formulated as

checking whether L(BM) ⊆ L(Bϕ), which would naturally reduce to using

complementation to check L(BM) ⊆ L(Bϕ) as L(BM) ∩ L(Bϕ) = ∅.

❖ Due to the non-equivalent power of deterministic and non-deterministic BA,

complementation is much more complicated than for finite-word finite automata.

❖ However, BA are still closed wrt complementation:

• One can complement BA, e.g., using the so-called Safra construction going

through deterministic Rabin automata.

– The complement of a BA with n states using this way has 2O(n log(n)) states.

(more precisely, 12nn2n for Safra (Rabin) and 2nnn! for Piterman (parity))

• There are other procedures for complementation (the lower bound is Ω(1
n
(0.76n)n))

– Ramsey-based, determinization-based, rank-based (tight: O(n(0.76n)n)),
slice-based, learning-based, subset-tuple construction, semideterm.-based,

decomposition-based (+ specialized procedures for subclasses)

❖ To avoid the complex complementation of BA, complementation is usually done on the

level of formulae, and the model checking checks that L(BM) ∩ L(B¬ϕ) = ∅.
Introduction – p.10/23

Emptiness of BA

❖ Emptiness of a given BA B can be checked in the following way:

• compute the SCCs of B, which can be done using the algorithm of Tarjan in time

linear in the size of B,

• check whether there is a non-trivial SCC that contains an accepting state and is

reachable from some initial state.

❖ The above procedure can be done in time O(|Q|+ |δ|).

Introduction – p.11/23

Emptiness of BA

❖ Emptiness of a given BA B can be checked in the following way:

• compute the SCCs of B, which can be done using the algorithm of Tarjan in time

linear in the size of B,

• check whether there is a non-trivial SCC that contains an accepting state and is

reachable from some initial state.

❖ The above procedure can be done in time O(|Q|+ |δ|).

❖ Nested depth-first search—two interleaved depth-first searches:

• The outer DFS searches for accepting states and the inner DFS tries to find a loop

on the encountered, fully-expanded by the outer DFS, accepting states (while

going through states not visited by the inner DFS).

Introduction – p.11/23

Emptiness of BA

❖ Emptiness of a given BA B can be checked in the following way:

• compute the SCCs of B, which can be done using the algorithm of Tarjan in time

linear in the size of B,

• check whether there is a non-trivial SCC that contains an accepting state and is

reachable from some initial state.

❖ The above procedure can be done in time O(|Q|+ |δ|).

❖ Nested depth-first search—two interleaved depth-first searches:

• The outer DFS searches for accepting states and the inner DFS tries to find a loop

on the encountered, fully-expanded by the outer DFS, accepting states (while

going through states not visited by the inner DFS).

• Note: A naive two-phase DFS (first find accepting states, then search from each of

them for a loop) gives time complexity O(|Q|.(|Q|+ |δ|)).

Introduction – p.11/23

Emptiness of BA

❖ Emptiness of a given BA B can be checked in the following way:

• compute the SCCs of B, which can be done using the algorithm of Tarjan in time

linear in the size of B,

• check whether there is a non-trivial SCC that contains an accepting state and is

reachable from some initial state.

❖ The above procedure can be done in time O(|Q|+ |δ|).

❖ Nested depth-first search—two interleaved depth-first searches:

• The outer DFS searches for accepting states and the inner DFS tries to find a loop

on the encountered, fully-expanded by the outer DFS, accepting states (while

going through states not visited by the inner DFS).

• Note: A naive two-phase DFS (first find accepting states, then search from each of

them for a loop) gives time complexity O(|Q|.(|Q|+ |δ|)).

❖ In the literature, various improved versions of both the SCC-based as well as the

nested DFS have been proposed: these are beyond the scope of this lecture.

Introduction – p.11/23

Product of BA

❖ Given two BA B1, B2, constructing a BA accepting the language L(B1) ∩ L(B2) is easy.

❖ However, one has to be careful of the fact that accepting states may be reached in B1

and B2 at different times.

• Have two copies of the cross product of the transition graphs of B1 and B2.

• For q11 ∈ F1, redirect each transition going from a state (q11 , q
2
1) to (q12 , q

2
2) in the first

copy of the cross product to go from (q11 , q
2
1) in the first copy to (q12 , q

2
2) in the

second copy.

• Redirect in a similar fashion transitions from the second copy back to the first one.

• Consider as accepting the states (q1, q2) of the second copy where q2 ∈ F2.

Introduction – p.12/23

Product of BA

❖ Given two BA B1, B2, constructing a BA accepting the language L(B1) ∩ L(B2) is easy.

❖ However, one has to be careful of the fact that accepting states may be reached in B1

and B2 at different times.

• Have two copies of the cross product of the transition graphs of B1 and B2.

• For q11 ∈ F1, redirect each transition going from a state (q11 , q
2
1) to (q12 , q

2
2) in the first

copy of the cross product to go from (q11 , q
2
1) in the first copy to (q12 , q

2
2) in the

second copy.

• Redirect in a similar fashion transitions from the second copy back to the first one.

• Consider as accepting the states (q1, q2) of the second copy where q2 ∈ F2.

❖ In the LTL model checking procedure, the construction of the product may be simplified

since BM for a Kripke structure M will have all states accepting:

• Hence, no need to create two copies of the cross product.

• One can consider as accepting the states of the cross product in which the B¬ϕ

component reaches an accepting state.

Introduction – p.12/23

From Kripke Structures

to Büchi Automata

Introduction – p.13/23

From KS to BA

❖ We transform a given Kripke structure M = (S, S0, R, L) over atomic propositions from

AP to the Büchi automaton BM = (S ∪ {q0}, 2
AP , δ, {q0}, S ∪ {q0}) where

• q0 6∈ S and

• δ is the smallest relation such that

– if (s1, s2) ∈ R, then (s1, L(s2), s2) ∈ δ and

– if s0 ∈ S0, then (q0, L(s0), s0) ∈ δ.

❖ We have that L(BM) = {L(s0)L(s1)L(s2) . . . | s0 ∈ S0 ∧ s0s1s2 . . . ∈ Π(M, s0)}.

Introduction – p.14/23

From KS to BA

❖ We transform a given Kripke structure M = (S, S0, R, L) over atomic propositions from

AP to the Büchi automaton BM = (S ∪ {q0}, 2
AP , δ, {q0}, S ∪ {q0}) where

• q0 6∈ S and

• δ is the smallest relation such that

– if (s1, s2) ∈ R, then (s1, L(s2), s2) ∈ δ and

– if s0 ∈ S0, then (q0, L(s0), s0) ∈ δ.

❖ We have that L(BM) = {L(s0)L(s1)L(s2) . . . | s0 ∈ S0 ∧ s0s1s2 . . . ∈ Π(M, s0)}.

❖ An example:

s0 s1

s2

{p,q} {p}

{q}

s0 s1

s2

{p,q} {p}

{q}

q0

{p,q}

{p}

{q}

{q}

Introduction – p.14/23

From LTL Formulae

to Büchi Automata

Introduction – p.15/23

The Idea of Going from LTL to BA

❖ We consider the basic connectives (¬, ∨, X, U) only and we skip the use of the implicit

A path quantifier at the beginning of the formulae.

❖ We introduce a state q for each consistent subset of the set of subformulae of the given

formula and their negations: these are assumed to hold in q.

❖ We add transitions according to the observed changes in the validity of atomic

propositions (the sets of the new valid atomic propositions will label the transitions) and

according to the temporal operators that appear in the formulae present in the states.

❖ We use generalised BA: one accepting condition for each until.

• The generalised BA may be converted to plain BA in a similar way as in the product

construction (just using as many copies as the number of accepting conditions is).

❖ Various alternative, more optimised constructions have been studied (and are available

in tools such as ltl2ba).

Introduction – p.16/23

The FL Closure of a Formula

❖ Let ϕ be an LTL formula built over atomic propositions from AP using the connectives

¬, ∨, X, and U . The Fischer-Ladner (FL) closure cl(ϕ) of ϕ is defined inductively on the

structure of ϕ (assuming that ¬¬ϕ ≡ ϕ):

• cl(p) = {p,¬p} for p ∈ AP ,

• cl(¬ϕ) = cl(ϕ) ∪ {¬ϕ},

• cl(ϕ1 ∨ ϕ2) = cl(ϕ1) ∪ cl(ϕ2) ∪ {ϕ1 ∨ ϕ2,¬(ϕ1 ∨ ϕ2)},

• cl(X ϕ) = cl(ϕ) ∪ {X ϕ,¬X ϕ},

• cl(ϕ1 U ϕ2) = cl(ϕ1) ∪ cl(ϕ2) ∪ {ϕ1 U ϕ2,¬(ϕ1 U ϕ2)},

Introduction – p.17/23

The FL Closure of a Formula

❖ Let ϕ be an LTL formula built over atomic propositions from AP using the connectives

¬, ∨, X, and U . The Fischer-Ladner (FL) closure cl(ϕ) of ϕ is defined inductively on the

structure of ϕ (assuming that ¬¬ϕ ≡ ϕ):

• cl(p) = {p,¬p} for p ∈ AP ,

• cl(¬ϕ) = cl(ϕ) ∪ {¬ϕ},

• cl(ϕ1 ∨ ϕ2) = cl(ϕ1) ∪ cl(ϕ2) ∪ {ϕ1 ∨ ϕ2,¬(ϕ1 ∨ ϕ2)},

• cl(X ϕ) = cl(ϕ) ∪ {X ϕ,¬X ϕ},

• cl(ϕ1 U ϕ2) = cl(ϕ1) ∪ cl(ϕ2) ∪ {ϕ1 U ϕ2,¬(ϕ1 U ϕ2)},

❖ Example:

cl((pUq) ∨ (¬pUq)) =



















(pUq) ∨ (¬pUq), ¬((pUq) ∨ (¬pUq)),

(pUq), ¬(pUq),

(¬pUq), ¬(¬pUq),

p,¬p, q,¬q



















Introduction – p.17/23

Consistent Sets of Formulae

❖ We want to restrict the construction to sets of formulae that do not contain contradictory

formulae (i.e., formulae that can never hold together).

❖ Given an LTL formula ϕ with the chosen basic connectives, we call a set q ⊆ cl(ϕ)

consistent iff the following conditions hold:

1. ∀ψ ∈ cl(ϕ). ψ ∈ q ⇐⇒ ¬ψ 6∈ q.

2. ∀(ψ1 ∨ ψ2) ∈ cl(ϕ). (ψ1 ∨ ψ2) ∈ q ⇐⇒ ψ1 ∈ q ∨ ψ2 ∈ q.

3. ∀(ψ1 U ψ2) ∈ cl(ϕ). ψ2 ∈ q =⇒ (ψ1 U ψ2) ∈ q.

4. ∀(ψ1 U ψ2) ∈ cl(ϕ). (ψ1 U ψ2) ∈ q ∧ ψ2 6∈ q =⇒ ψ1 ∈ q.

Introduction – p.18/23

Constructing Bϕ

❖ Given an LTL formula ϕ built over atomic propositions from AP using the basic

connectives ¬, ∨, X, U , the generalised BA Bϕ = (Q, 2AP , δ, Q0,F) is defined as follows:

• Q = {q0} ∪ {q ⊆ cl(ϕ) | q is consistent}, q0 6∈ 2cl(ϕ), and Q0 = {q0}.

Introduction – p.19/23

Constructing Bϕ

❖ Given an LTL formula ϕ built over atomic propositions from AP using the basic

connectives ¬, ∨, X, U , the generalised BA Bϕ = (Q, 2AP , δ, Q0,F) is defined as follows:

• Q = {q0} ∪ {q ⊆ cl(ϕ) | q is consistent}, q0 6∈ 2cl(ϕ), and Q0 = {q0}.

• δ ⊆ Q× 2AP ×Q satisfies the following conditions:

– (q0, a, q) ∈ δ iff

1. q 6= q0,
2. ϕ ∈ q, and
3. a = q ∩AP .

Introduction – p.19/23

Constructing Bϕ

❖ Given an LTL formula ϕ built over atomic propositions from AP using the basic

connectives ¬, ∨, X, U , the generalised BA Bϕ = (Q, 2AP , δ, Q0,F) is defined as follows:

• Q = {q0} ∪ {q ⊆ cl(ϕ) | q is consistent}, q0 6∈ 2cl(ϕ), and Q0 = {q0}.

• δ ⊆ Q× 2AP ×Q satisfies the following conditions:

– (q0, a, q) ∈ δ iff

1. q 6= q0,
2. ϕ ∈ q, and
3. a = q ∩AP .

– (q1, a, q2) ∈ δ for q1 6= q0 iff

1. q2 6= q0,
2. a = q2 ∩AP ,

3. ∀(X ψ) ∈ cl(ϕ). (X ψ) ∈ q1 ⇐⇒ ψ ∈ q2.

4. ∀(ψ1 U ψ2) ∈ cl(ϕ). (ψ1 U ψ2) ∈ q1 ∧ ψ2 6∈ q1 =⇒ (ψ1 U ψ2) ∈ q2.

5. ∀(ψ1 U ψ2) ∈ cl(ϕ). (ψ1 U ψ2) 6∈ q1 ∧ ψ1 ∈ q1 =⇒ (ψ1 U ψ2) 6∈ q2.

Introduction – p.19/23

Constructing Bϕ

❖ Given an LTL formula ϕ built over atomic propositions from AP using the basic

connectives ¬, ∨, X, U , the generalised BA Bϕ = (Q, 2AP , δ, Q0,F) is defined as follows:

• Q = {q0} ∪ {q ⊆ cl(ϕ) | q is consistent}, q0 6∈ 2cl(ϕ), and Q0 = {q0}.

• δ ⊆ Q× 2AP ×Q satisfies the following conditions:

– (q0, a, q) ∈ δ iff

1. q 6= q0,
2. ϕ ∈ q, and
3. a = q ∩AP .

– (q1, a, q2) ∈ δ for q1 6= q0 iff

1. q2 6= q0,
2. a = q2 ∩AP ,

3. ∀(X ψ) ∈ cl(ϕ). (X ψ) ∈ q1 ⇐⇒ ψ ∈ q2.

4. ∀(ψ1 U ψ2) ∈ cl(ϕ). (ψ1 U ψ2) ∈ q1 ∧ ψ2 6∈ q1 =⇒ (ψ1 U ψ2) ∈ q2.

5. ∀(ψ1 U ψ2) ∈ cl(ϕ). (ψ1 U ψ2) 6∈ q1 ∧ ψ1 ∈ q1 =⇒ (ψ1 U ψ2) 6∈ q2.

• F = {{q ∈ Q \ {q0} | ψ2 ∈ q ∨ (ψ1 U ψ2) 6∈ q} | (ψ1 U ψ2) ∈ cl(ϕ)}.

– Guarantees that each until (once encountered) will reach its end (i.e., a state

where its right operand holds).

Introduction – p.19/23

Constructing Bϕ

❖ Given an LTL formula ϕ built over atomic propositions from AP using the basic

connectives ¬, ∨, X, U , the generalised BA Bϕ = (Q, 2AP , δ, Q0,F) is defined as follows:

• Q = {q0} ∪ {q ⊆ cl(ϕ) | q is consistent}, q0 6∈ 2cl(ϕ), and Q0 = {q0}.

• δ ⊆ Q× 2AP ×Q satisfies the following conditions:

– (q0, a, q) ∈ δ iff

1. q 6= q0,
2. ϕ ∈ q, and
3. a = q ∩AP .

– (q1, a, q2) ∈ δ for q1 6= q0 iff

1. q2 6= q0,
2. a = q2 ∩AP ,

3. ∀(X ψ) ∈ cl(ϕ). (X ψ) ∈ q1 ⇐⇒ ψ ∈ q2.

4. ∀(ψ1 U ψ2) ∈ cl(ϕ). (ψ1 U ψ2) ∈ q1 ∧ ψ2 6∈ q1 =⇒ (ψ1 U ψ2) ∈ q2.

5. ∀(ψ1 U ψ2) ∈ cl(ϕ). (ψ1 U ψ2) 6∈ q1 ∧ ψ1 ∈ q1 =⇒ (ψ1 U ψ2) 6∈ q2.

• F = {{q ∈ Q \ {q0} | ψ2 ∈ q ∨ (ψ1 U ψ2) 6∈ q} | (ψ1 U ψ2) ∈ cl(ϕ)}.

– Guarantees that each until (once encountered) will reach its end (i.e., a state

where its right operand holds).

❖ We have that L(Bϕ) = {L(s0)L(s1)L(s2) . . . | there is a KS M = (S, S0, R, L) over AP

such that s0 ∈ S0, s0s1s2 . . . ∈ Π(M, s0), and M, s0s1s2 . . . |= ϕ}.
Introduction – p.19/23

An Example of Translating from LTL to BA

❖ Consider ϕ = p U q:

Introduction – p.20/23

An Example of Translating from LTL to BA

❖ Consider ϕ = p U q:

• cl(ϕ) = {p,¬p, q,¬q, ϕ,¬ϕ}.

Introduction – p.20/23

An Example of Translating from LTL to BA

❖ Consider ϕ = p U q:

• cl(ϕ) = {p,¬p, q,¬q, ϕ,¬ϕ}.

• Consistent subsets of cl(ϕ):

– q1 = {ϕ, p, q},

– q2 = {ϕ, p,¬q},

– q3 = {ϕ,¬p, q},

– q4 = {¬ϕ, p,¬q},

– q5 = {¬ϕ,¬p,¬q},

Introduction – p.20/23

An Example of Translating from LTL to BA

❖ Consider ϕ = p U q:

• cl(ϕ) = {p,¬p, q,¬q, ϕ,¬ϕ}.

• Consistent subsets of cl(ϕ):

– q1 = {ϕ, p, q},

– q2 = {ϕ, p,¬q},

– q3 = {ϕ,¬p, q},

– q4 = {¬ϕ, p,¬q},

– q5 = {¬ϕ,¬p,¬q},

• Bϕ is shown on the right

(not all labels are shown):

.

Introduction – p.20/23

An Example of Translating from LTL to BA

❖ Consider ϕ = p U q:

• cl(ϕ) = {p,¬p, q,¬q, ϕ,¬ϕ}.

• Consistent subsets of cl(ϕ):

– q1 = {ϕ, p, q},

– q2 = {ϕ, p,¬q},

– q3 = {ϕ,¬p, q},

– q4 = {¬ϕ, p,¬q},

– q5 = {¬ϕ,¬p,¬q},

• Bϕ is shown on the right

(not all labels are shown):

.

• F = {{q1, q3, q4, q5}}.

Introduction – p.20/23

The Top Level of

the LTL MC Algorithm

Introduction – p.21/23

A Naive LTL MC Algorithm

❖ A naïve procedure:

1. generate the KS M for the given system to be verified and the atomic observations

AP of interest,

2. translate M to the BA BM ,

3. negate the given LTL formula ϕ to be checked and translate the negation into the

BA B¬ϕ,

4. construct the product BA BM × B¬ϕ representing the language L(BM) ∩ L(B¬ϕ),

5. check language emptiness of BM × B¬ϕ:

• if L(BM × B¬ϕ) is empty, ϕ holds for the given system,

• otherwise return a path corresponding to some element from the intersection

as a counterexample to the property being checked.

Introduction – p.22/23

On-the-Fly LTL MC Algorithm

❖ Differences of on-the-fly model checking from the naïve procedure:

• Do not generate the KS M and the BA BM first, only then constructing the product

with the negated property BA, followed by checking its emptiness.

Introduction – p.23/23

On-the-Fly LTL MC Algorithm

❖ Differences of on-the-fly model checking from the naïve procedure:

• Do not generate the KS M and the BA BM first, only then constructing the product

with the negated property BA, followed by checking its emptiness.

• Instead, construct B¬ϕ and use it to control the construction of BM and the product

BM × B¬ϕ while continuously checking for accepting loops:

Introduction – p.23/23

On-the-Fly LTL MC Algorithm

❖ Differences of on-the-fly model checking from the naïve procedure:

• Do not generate the KS M and the BA BM first, only then constructing the product

with the negated property BA, followed by checking its emptiness.

• Instead, construct B¬ϕ and use it to control the construction of BM and the product

BM × B¬ϕ while continuously checking for accepting loops:

– if an accepting loop is detected, immediately stop and print out

a counterexample without generating further states (faulty systems tend to

have many strange states due to not obeying the intended invariants),

Introduction – p.23/23

On-the-Fly LTL MC Algorithm

❖ Differences of on-the-fly model checking from the naïve procedure:

• Do not generate the KS M and the BA BM first, only then constructing the product

with the negated property BA, followed by checking its emptiness.

• Instead, construct B¬ϕ and use it to control the construction of BM and the product

BM × B¬ϕ while continuously checking for accepting loops:

– if an accepting loop is detected, immediately stop and print out

a counterexample without generating further states (faulty systems tend to

have many strange states due to not obeying the intended invariants),

– when some transition from the state of BM that is currently being explored

cannot be composed with the currently executable transitions of B¬ϕ, do not

follow it (no counterexample can be reached via the transition—hence, the

sub-state space reachable (exclusively) via it needs not be explored).

Introduction – p.23/23

On-the-Fly LTL MC Algorithm

❖ Differences of on-the-fly model checking from the naïve procedure:

• Do not generate the KS M and the BA BM first, only then constructing the product

with the negated property BA, followed by checking its emptiness.

• Instead, construct B¬ϕ and use it to control the construction of BM and the product

BM × B¬ϕ while continuously checking for accepting loops:

– if an accepting loop is detected, immediately stop and print out

a counterexample without generating further states (faulty systems tend to

have many strange states due to not obeying the intended invariants),

– when some transition from the state of BM that is currently being explored

cannot be composed with the currently executable transitions of B¬ϕ, do not

follow it (no counterexample can be reached via the transition—hence, the

sub-state space reachable (exclusively) via it needs not be explored).

• Combine the on-the-fly generation of states of M with suitable state space

reduction techniques, e.g.,

– partial order reduction (exploring only some interleavings of the concurrent

processes running in the verified system) or

– symmetry reduction (do not explore states that are indistinguishable from

some already generated states wrt the property being checked),

– bit-state hashing (do not distinguish states with the same hash), ...
Introduction – p.23/23

	
	Introduction
	
	B"{u}chi automata
	Two Examples of BA
	$omega $-Regular Languages
	Alternative Accepting Conditions
	Deterministic BA
	Complementation of BA
	Emptiness of BA
	Product of BA
	
	From KS to BA
	
	The Idea of Going from LTL to BA
	The FL Closure of a Formula
	Consistent Sets of Formulae
	Constructing $mathcal {B}_varphi $
	mbox {An Example of Translating from LTL to BA}hspace *{-4mm}
	
	mbox {A Naive LTL MC Algorithm}hspace *{-4mm}
	mbox {On-the-Fly LTL MC Algorithm}hspace *{-4mm}

