Deductive Verification

Ondfej Lengal
SAV'24, FIT VUT v Bmg

14 October 2024

Ondrej Lengal (SAV'24, FIT VUT v Brné) Deductive Verification

Verified Programming

How to write software that is correct?

m First approach

First, write the software.

Then, whack it with whatever you can find (verify & test it, burn it) until no bugs.
m Second approach

» Verified Programming: programming + deductive verification
® j.e., writing codes with annotations

Ondrej Lengél (SAV'24, FIT VUT v Brng) Deductive Verification 14 October 2024 2/68

cautionary tale: binary search

* algorithm first published in 1946, but first correct version didn’t appear until
1962

* in 1988, a survey of 20 textbooks on algorithms found that at least 15 of
them had errors

* Bentley reports giving it as a programming problem to over 100 professional
programmers from Bell Labs and IBM, with 2 hours to produce a correct
program. At least 90% of the solutions were wrong. Dijkstra reported similar
statistics in experiments he performed at many institutions.

* Bentley published a CACM “programming pearl” on binary search and
proving it correct, expanded to 14 pages in “Programming Pearls” (1986).

* Joshua Bloch used Bentley’s code as a basis for the binary search
implementation in the JDK, in 1997.

* in 2006, a bug was found in the JDK code, the same bug that was in Bentley’s
code, which nobody had noticed for 20 years. The same bug was in the C
code Bentley published for the second edition of his book in 2000.

* these are not exactly your average programmers
vy g€ Prog [from slides of Ernie Cohen]

Ondrej Lengél (SAV'24, FIT VUT v Brng) 14 October 2024 3/68

Deductive Verification

the system is accompanied by specification
these are converted into proof obligations (program invariant—a big formula)
the truth of proof obligations imply correctness of the system
» this is discharged by different methods:
® SMT solvers (Z3, STP, cvc5, ...)
® automatic theorem provers (Vampire, Prover9, E, ...)
® interactive theorem provers (Coq, Isabelle, Lean, ...)

m Pros:
> strong correctness guarantees (e.g., program correct “up to bugs in the solver”)
» modularity; can be quite general

m Cons:

» quite manual ~~ expensive, high user expertise needed
» garbage in, garbage out

> not always easy to get counterexamples

> not so strong tool support

Ondrej Lengél (SAV'24, FIT VUT v Brng) Deductive Verification 14 October 2024 4/68

A Bit of History ...

1949: Alan Turing: Checking a Large Routine.
1969: Tony Hoare: An Axiomatic Basis for Computer Programming.
> a formal system for rigorous reasoning about programs

> Floyd-Hoare triples {pre} stmt {post}
® 1967: Robert Floyd: Assigning Meaning to Programs

1971: Tony Hoare: Proof of a Program: FIND

1976: E. Dijkstra: A Discipline of Programming.
> weakest-precondition calculus

m 2000: efficient tool support starts

Ondrej Lengél (SAV'24, FIT VUT v Brng) Deductive Verification 14 October 2024 5/68

Floyd-Hoare Logic

Let us consider the following imperative programming language:

m Expression: F:=n |z | FE1+ FEy | Ey - F5 forn € Z and x € X (set of program variables)
m Conditional: C ::=true | false | F1 = FEy | By < Ey | By < Es
m Statement:

Su= z:=F (assignment)
| S1;59 (sequence)
| if C then S; else S (if)
| while C' do S (while)

A program is a statement.

Ondrej Lengél (SAV'24, FIT VUT v Brng) Deductive Verification 14 October 2024 6/68

Partial Correctness
Partial correctness of programs in Hoare logic is specified using Hoare triples:

{P} S {Q}

where

Ondrej Lengal (SAV'24, FIT VUT v Brné) Deductive Verification

Partial Correctness
Partial correctness of programs in Hoare logic is specified using Hoare triples:

{r} S{Q}
where

m S is a statement of the programming language

m P and @ are formulae in a suitable fragment of logic (usually first-order logic or SMT)
> P is called precondition
» () is called postcondition

Meaning:

m if S is executed from a state (program configuration) satisfying formula P
m and the execution of S terminates,
m then the program state after S terminates satisfies formula @.

Is {r =0} x:=x+ 1 {& = 1} a valid Hoare triple?

Ondrej Lengél (SAV'24, FIT VUT v Brng) Deductive Verification 14 October 2024 7/68

Partial Correctness
Partial correctness of programs in Hoare logic is specified using Hoare triples:

{r} S{Q}
where

m S is a statement of the programming language

m P and @ are formulae in a suitable fragment of logic (usually first-order logic or SMT)
> P is called precondition
» () is called postcondition

Meaning:

m if S is executed from a state (program configuration) satisfying formula P
m and the execution of S terminates,
m then the program state after S terminates satisfies formula @.

Is {r =0} x:=x+ 1 {& = 1} a valid Hoare triple?
{r=0Ay=1}x:=x+1{z=1Ay=2}7

Ondrej Lengél (SAV'24, FIT VUT v Brng) Deductive Verification 14 October 2024 7/68

Partial Correctness
Partial correctness of programs in Hoare logic is specified using Hoare triples:

{r} S{Q}
where

m S is a statement of the programming language

m P and @ are formulae in a suitable fragment of logic (usually first-order logic or SMT)
> P is called precondition
» () is called postcondition

Meaning:

m if S is executed from a state (program configuration) satisfying formula P
m and the execution of S terminates,
m then the program state after S terminates satisfies formula @.

Is {x =0} x:=x+1 {z =1} a valid Hoare triple? {r=0tx=x+1{z=1Vvy=2}7
{r=0Ay=1}x:=x+1{z=1Ay=2}7

Ondrej Lengél (SAV'24, FIT VUT v Brng) Deductive Verification 14 October 2024 7/68

Partial Correctness
Partial correctness of programs in Hoare logic is specified using Hoare triples:

{r} S{Q}
where

m S is a statement of the programming language

m P and @ are formulae in a suitable fragment of logic (usually first-order logic or SMT)
> P is called precondition
» () is called postcondition

Meaning:

m if S is executed from a state (program configuration) satisfying formula P
m and the execution of S terminates,
m then the program state after S terminates satisfies formula @.

Is {x =0} x:=x+1 {z =1} a valid Hoare triple? {r=0tx=x+1{z=1Vvy=2}7
{r=0Ay=1}x:=x+1{z=1Ay=2}7 {z =0} while true do x:=0 {x =1}7

Ondrej Lengal (SAV'24, FIT VUT v Brng) Deductive Verification 14 October 2024 7/68

Total Correctness

m {P} S {Q} does not require S to terminate (partial correctness).
m Hoare triples for total correctness:

[P] S [Q]

Meaning:
> if S is executed from a state (program configuration) satisfying formula P,
> then the execution of S terminates and
> the program state after S terminates satisfies formula Q.

Is [z = 0] while true do x := 0 [z = 1] valid?

In the following we focus only on partial correctness.

Ondrej Lengél (SAV'24, FIT VUT v Brng) Deductive Verification 14 October 2024 8/68

Examples

Example

What are the meanings of the following Hoare triples?

{true} S {Q}

Ondrej Lengél (SAV'24, FIT VUT v Brng) Deductive Verification 14 October 2024 9/68

Examples

Example

What are the meanings of the following Hoare triples?

{true} S {Q}
{P} S {true}

Ondrej Lengél (SAV'24, FIT VUT v Brng) Deductive Verification 14 October 2024 9/68

Examples

Example

What are the meanings of the following Hoare triples?
{true} S {Q}
{P} S {true}
[P] S [true]

Ondrej Lengél (SAV'24, FIT VUT v Brng) Deductive Verification 14 October 2024 9/68

Examples

Example

What are the meanings of the following Hoare triples?
{true} S {Q}
{P} S {true}
[P] S [true]
{true} S {false}

Ondrej Lengal (SAV'24, FIT VUT v Brng) Deductive Verification 14 October 2024 9/68

Examples

What are the meanings of the following Hoare triples?
{true} S {Q}
{P} S {true}
[P] S [true]
{true} S {false}
{false} S {Q}

Ondrej Lengal (SAV'24, FIT VUT v Brng) Deductive Verification 14 October 2024 9/68

Examples

Example

What are the meanings of the following Hoare triples?
{true} S {Q}
{P} S {true}
[P] S [true]
{true} S {false}
{false} S {Q}

A\

Are the following Hoare triples valid or invalid?
{i=0An >0} while i<n do i++ {i =n}

Ondrej Lengal (SAV'24, FIT VUT v Brng) Deductive Verification

14 October 2024

9/68

Examples

Example

What are the meanings of the following Hoare triples?
{true} S {Q}
{P} S {true}
[P] S [true]
{true} S {false}
{false} S {Q}

A\

Are the following Hoare triples valid or invalid?
{i=0An >0} while i<n do i++ {i =n}
{i=0An >0} while i<n do i++ {i > n}

Ondrej Lengal (SAV'24, FIT VUT v Brng) Deductive Verification

14 October 2024

9/68

Examples

Example

What are the meanings of the following Hoare triples?
{true} S {Q}
{P} S {true}
[P] S [true]
{true} S {false}
{false} S {Q}

A\

Are the following Hoare triples valid or invalid?
{i=0An >0} while i<n do i++ {i =n}
{i=0An >0} while i<n do i++ {i > n}
{i=0Aj=0An>0} while i<n do {i++; j+=i} {25 =n(l+n)}

Ondrej Lengél (SAV'24, FIT VUT v Brng) Deductive Verification 14 October 2024

9/68

Inference Rules

We write proof rules in Hoare logic as inference rules:

={pr} S {Q}
Meaning:
m If all Hoare triples {P1} S1 {Q1},...,{Pn} Sn {Qn} are provable, then {P} S {Q} is also provable.
premises

————— NAME
In general, inference rules have the format deductions . A rule with no premises is an axiom.
The proof system will have one rule for every statement of our language:

m an axiom for atomic statements: assignments,
m inference rules for composite statements: sequence, if, while
m auxiliary “helper” rules

14 October 2024 10/68

Ondrej Lengél (SAV'24, FIT VUT v Brng) Deductive Verification

Proof Rule (Assignment)

For assignment = := F, we have the following proof rule:

QB =B @ }

where Q[E/x] denotes the formula obtained from @ by substituting all free occurrences of « by E

Example

Which of the following Hoare triples can we prove using this rule?
{y=4}x := 4 {y==}

Ondrej Lengél (SAV'24, FIT VUT v Brng) Deductive Verification 14 October 2024 11/68

Proof Rule (Assignment)

For assignment = := F, we have the following proof rule:

QB =B @ }

where Q[E/x] denotes the formula obtained from @ by substituting all free occurrences of « by E

Example

Which of the following Hoare triples can we prove using this rule?
{y=4}x := 4 {y==}
{r=n—-1}x := x+1 {x =n}

Ondrej Lengél (SAV'24, FIT VUT v Brng) Deductive Verification 14 October 2024 11/68

Proof Rule (Assignment)

For assignment = := F, we have the following proof rule:

QB =B @ }

where Q[E/x] denotes the formula obtained from @ by substituting all free occurrences of « by E

Example

Which of the following Hoare triples can we prove using this rule?
{y=4}x := 4 {y==}
{r=n—-1}x := x+1 {x =n}
{y==ty :=2{y==}

Ondrej Lengél (SAV'24, FIT VUT v Brng) Deductive Verification 14 October 2024 11/68

Proof Rule (Assignment)

For assignment = := F, we have the following proof rule:

QB =B @ }

where Q[E/x] denotes the formula obtained from @ by substituting all free occurrences of « by E

Which of the following Hoare triples can we prove using this rule?
{y=4}x := 4 {y==}
{r=n—-1}x := x+1 {x =n}
{y==ty :=2{y ==}
{z=3}y = x{z=3}

Ondrej Lengél (SAV'24, FIT VUT v Brng) Deductive Verification 14 October 2024 11/68

Proof Rule (Assignment)

For assignment = := F, we have the following proof rule:

ASSGN

F{QIE/xl} v = E{Q}

where Q[E/x] denotes the formula obtained from @ by substituting all free occurrences of « by E

Which of the following Hoare triples can we prove using this rule?
{y=4}x := 4 {y==}
{r=n—-1}x := x+1 {x =n}
{y=aty :=2{y=2}
{z=3}y = x{z=3}
{z=3}y :=x{z=y}

Ondrej Lengél (SAV'24, FIT VUT v Brng) Deductive Verification 14 October 2024

11/68

Strengthening /Weakening

Strengthening/weakening might be necessary in order to be able to apply some rules

Precondition Strengthening Postcondition Weakening

F{PYS{Q) P= P FPYS{Q) @=Q
TRENGTH EAK
H{P} 5{Q} E{P} 5{Q}
Precondition can be always tightened to something | Postcondition can be always relaxed to something
stronger.) weaker.)

Conclusion (generalisation of the two above rules)

P=>P F{P}S{Q} Q=Q
F{P} S {Q}

ConcL

Ondrej Lengél (SAV'24, FIT VUT v Brng) Deductive Verification 14 October 2024 12 /68

Strengthening/Weakening (contd.)

We can now prove the following: {z =3}y := x {z =y}

Ondrej Lengél (SAV'24, FIT VUT v Brng) Deductive Verification 14 October 2024 13/68

Strengthening/Weakening (contd.)

We can now prove the following: {z =3}y := x {z =y}
ASSGN
F{e=yle/ylty = x{z =y}
F{true} y := x{z =y} z =3 = true
F{z=3}y = x{r=y}

STRENGTH

Ondrej Lengél (SAV'24, FIT VUT v Brng)

Deductive Verification

14 October 2024 13/68

Strengthening/Weakening (contd.)

Example

We can now prove the following: {z =3}y := x {z =y}

@ —ge/lly = s lo—g} O

F{true} y := x{z =y} z =3 = true
F{z=3}y = x{r=y}

STRENGTH

A,

Example

Assume = {true} S {x =y A z = 2}. Which of the following can we prove from it?
{true} S {z =y}

A

Ondrej Lengél (SAV'24, FIT VUT v Brng) Deductive Verification 14 October 2024 13/68

Strengthening/Weakening (contd.)

Example

We can now prove the following: {z =3}y := x {z =y}

@ —ge/lly = s lo—g} O

F{true} y := x{z =y} z =3 = true
F{z=3}y = x{r=y}

STRENGTH

A,

Example

Assume = {true} S {x =y A z = 2}. Which of the following can we prove from it?
{true} S {z =y}
{true} S {z =2}

A

Ondrej Lengél (SAV'24, FIT VUT v Brng) Deductive Verification 14 October 2024 13/68

Strengthening/Weakening (contd.)

Example

We can now prove the following: {z =3}y := x {z =y}

@ —ge/lly = s lo—g} O

F{true} y := x{z =y} z =3 = true
F{z=3}y = x{r=y}

STRENGTH

A,

Example

Assume = {true} S {x =y A z = 2}. Which of the following can we prove from it?
{true} S {z =y}
{true} S {z =2}
{true} S {z > 0}

A

Ondrej Lengél (SAV'24, FIT VUT v Brng) Deductive Verification 14 October 2024 13/68

Strengthening /Weakening (contd.)

Example

We can now prove the following: {z =3}y := x {z =y}

@ —ge/lly = s lo—g} O

F{true} y := x{z =y} z =3 = true
F{z=3}y = x{r=y}

STRENGTH

A,

Example

Assume = {true} S {x =y A z = 2}. Which of the following can we prove from it?
{true} S {z =y}

{true} S {z =2}

{true} S {z > 0}

{true} S {Yu(z = u)}

DENE

A

Ondrej Lengél (SAV'24, FIT VUT v Brng) Deductive Verification 14 October 2024 13/68

Strengthening /Weakening (contd.)

Example

We can now prove the following: {z =3}y := x {z =y}

@ —ge/lly = s lo—g} O

F{true} y := x{z =y} z =3 = true
F{z=3}y = x{r=y}

STRENGTH

A,

Example

Assume = {true} S {x =y A z = 2}. Which of the following can we prove from it?
{true} S {z =y}
{true} S {z =2}
{true} S {z > 0}
{true} S {Yu(z = u)}
{true} S {Fu(z =)}

A

Ondrej Lengél (SAV'24, FIT VUT v Brng) Deductive Verification 14 October 2024

13/68

Proof Rule (Sequence)

For a sequence of two statements S7;.52, we have the following proof rule:

F{P} Si {R} F{R} S {Q} -
F{P} S1;5: {Q}

Often, we need to find an appropriate R.

Prove the correctness of {true} x := 2; y = x {zr =2Ay=2}:

Ondrej Lengél (SAV'24, FIT VUT v Brng) Deductive Verification 14 October 2024 14 /68

Proof Rule (Sequence)

For a sequence of two statements S7;.52, we have the following proof rule:

F{P} Si {R} F{R} S {Q} -
F{P} S1;5: {Q}

Often, we need to find an appropriate R.

Prove the correctness of {true} x := 2; y = x {zr =2Ay=2}:

ASSGN ASSGN
F {true} x := 2 {x =2} F{lz=2}y :=x{z=2Ay=2} o
EQ

F{true} x := 2; y 1= x{a=2Ay=2}

Ondrej Lengél (SAV'24, FIT VUT v Brng) Deductive Verification 14 October 2024 14 /68

Proof Rule (If)

For if C then S; else S5 we have the following proof rule:

F{PAC} S {Q} F{PA-C} S {Q}
F{P} if C then S; else S; {Q}

Ir

Example

Prove the correctness of {true} if x > 0 then y := x else y := -x {y > 0}.

Ondrej Lengél (SAV'24, FIT VUT v Brng) Deductive Verification 14 October 2024

15/68

Proof Rule (If)

For if C then S; else S5 we have the following proof rule:

F{PACYS{Q} F{PA-C}S:{Q}
F{P} if C then S; else S; {Q}

Example

Prove the correctness of {true} if x > 0 then y

x else y := -x {y > 0}.
ASSGN ASSGN
F{z>0}y := x {y >0} F{—2z>0}y := -x {y >0}
STRENGTH
F{zx>0}y := x{y >0} F{zx<0}y := -x{y >0} :
F
F {true} if x > 0 then y := x else y := -x {y > 0}

Ondrej Lengél (SAV'24, FIT VUT v Brng)

Deductive Verification

14 October 2024

15/68

Proof Rule (While)

Consider the following code:

i::=0; 3] :=0;n :=10;
while i < n do {
i=1i+1;
jo=it+gs

}

Which of the following formulae are loop invariants?
1 <n 1< n

For while C do S we have the following proof rule:

Ondrej Lengél (SAV'24, FIT VUT v Brng) Deductive Verification

14 October 2024

16 /68

Proof Rule (While)

Consider the following code:

i::=0; 3] :=0;n :=10;
while i < n do {
i=1i+1;
jo=it+gs

}

Which of the following formulae are loop invariants?
i<n i<n 720
For while C do S we have the following proof rule:

F{PAC} S {P}
F {P} while C' do S {P A—C}

WHILE

“If P is a loop invariant, then P A =C must hold after the loop terminates.”

Ondrej Lengél (SAV'24, FIT VUT v Brng) Deductive Verification

14 October 2024 16 /68

Proof Rule (While)

Prove the correctness of { < n} while x < n do x := x+1 {x > n}.

Ondrej Lengél (SAV'24, FIT VUT v Brng) Deductive Verification 14 October 2024 17 /68

Proof Rule (While)

Prove the correctness of { < n} while x < n do x := x+1 {x > n}.
ASSGN

- xd {:1: = n} STRENGTH

F{z+1<n}x:

F{r<n}x:

F{r<nAz<n}zx :=x+t1{z<n}

- x {a: = n} STRENGTH

xt1{z <nA-(x<n)}

:= x+1 {& > n}

‘WHILE
r<nA-(z<n)=z>n

F{z <n} while x < n do x
F{z <n} while x < n do x

WEAK

v,

Deductive Verification

Ondrej Lengél (SAV'24, FIT VUT v Brng)

14 October 2024

17/68

Exercise

Prove partial correctness of the program below

/¥ Ly =12 } */

X 1= Y;

while (x < 30) {
X 1= X *x 2;
X =X - 2;

}

/¥ Lz =42 F %/

Hint: a suitable candidate for the loop invariant might be the formula
(GneN:z=2"y—2)+2)A(x < 42).

Ondrej Lengél (SAV'24, FIT VUT v Brng) Deductive Verification 14 October 2024 18 /68

How does it work in practice?

In the following, we will be using VCC (A Verifier for Concurrent C):

m available at https://github.com/microsoft/vcc
m can run as a MS Visual Studio plugin (needs older VS)
m currently somewhat orphaned and not industrial-strong
m but used to verify MS Hyper-V hypervisor
» 60 KLOC of operating system-level concurrent C and x64 assembly code
interactive web interface: https://rise4fun.com/Vcc
other systems exist (Frama-C, OpenJML, KeY, ...)

Ondrej Lengél (SAV'24, FIT VUT v Brng) Deductive Verification 14 October 2024 19/68

https://github.com/microsoft/vcc
https://rise4fun.com/Vcc

Example 1

Let's start with something simple

#include <vcc.h>

unsigned add(unsigned x, unsigned y)
{

unsigned w = x + y;

return w;

}

Ondrej Lengal (SAV'24, FIT VUT v Brné)

Deductive Verification

Example 1

Mi

vee ™

Does this C program always work?
#include <vcc.h>

unsigned addCunsigned x, unsigned y)
{

unsigned w = X + ¥y,

return w;

i

Description Line[Column
3|1 |x + y might overflow. 5 16

= I B WY (N

Verification of add failed. [1.83]

snip(5,16) : error VC80@4: x + y might overflow.
Verification errors in 1 function(s)

Exiting with 3 (1 error(s).)

Ondrej Lengél (SAV'24, FIT VUT v Brng) Deductive Verification

14 October 2024 21/68

Example 1

Fix attempt #1:

#include <vcc.h>

unsigned add(unsigned x, unsigned y)

_(requires x + y <= UINT_MAX) // <-- added precondition
{

unsigned w = x + y;

return w;

}

Ondrej Lengal (SAV'24, FIT VUT v Brné) Deductive Verification

Example 1

VCC

Does this C program always work?

Mi

Research

#include <vcc.h>

1
2
3 unsigned add(unsigned x, unsigned y)
4 _(requires x + y <= UINT_MAX)

51
6 unsigned w = X + y;
7 return w;
8

}

Verification of add succeeded. [1.83]

Ondrej Lengél (SAV'24, FIT VUT v Brng) Deductive Verification 14 October 2024 23/68

Example 1

VCC

Does this C program always work?

Mi

Research

#include <vcc.h>

1
2
3 unsigned add(unsigned x, unsigned y)
4 _(requires x + y <= UINT_MAX)

51
6 unsigned w = X + y;
7 return w;
8

}

Verification of add succeeded. [1.83]

m verifies, but what?

Ondrej Lengél (SAV'24, FIT VUT v Brng) Deductive Verification 14 October 2024 23 /68

Example 1

Fix attempt #2:

#include <vcc.h>

unsigned add(unsigned x, unsigned y)
_(requires x + y <= UINT_MAX)

_(ensures \result == x + y) // <-- added postcondition
{

unsigned w = x + y;

return w;

}

Ondrej Lengal (SAV'24, FIT VUT v Brné) Deductive Verification

Example 1

VCC

Does this C program always work?

Mi

Research

#include <vcc.h>

1
2
3 unsigned add(unsigned x, unsigned y)
4 _(requires x + y <= UINT_MAX)
5 _(ensures \result == x + y)

6 {
7 unsigned w = X + y;
8 return w;
9

}

Verification of add succeeded. [1.88]

m verifies wrt the specification \o/

Ondrej Lengél (SAV'24, FIT VUT v Brng) Deductive Verification 14 October 2024 25 /68

Example 1 — post mortem

What did we do?

First, we tried to verify a code with no annotations
» VCC has a set of default correctness properties
® e.g. no NULL pointer dereference, (over/under)-flows, O-division, ...
> one property was violated
We fixed the violation using a _(requires) annotation
> precondition: formula ¢ holds on entry to to the function (extended C syntax)
We provided an _(ensures 1)) annotation to define what we expect as a result
> postcondition: formula ¢ holds on return from the function (\result is the output)

preconditions + postconditions = function contract

Deductive Verification 14 October 2024

Ondrej Lengél (SAV'24, FIT VUT v Brng)

26/68

Example 1 — post mortem

What happened behind the scenes?
m the function and its specification were converted into

#include <vcc.h>
a formula of the form

unsigned add(unsigned x, unsigned y)

re A — (post A safe
(p ©p) (p fep) _(requires x + y <= UINT_MAX)

> pre is the precondition _(ensures \result == x + y)
> post is the postcondition {
» ©p is a formula representing the function unsigned w = x + y;
» safep represents implicit safety conditions on P return w;

® no overflows, no out-of-bounds array accesses, ... }

v
(1:0+y0 < UINT_MAX A w1 = Zo+yo A res = w1) — (res = zo+tyo Amo+yo < UINT_MAX)

» the formula is tested for validity with an SMT solver

(Z3) that supports the theories

Ondrej Lengél (SAV'24, FIT VUT v Brng) Deductive Verification 14 October 2024 27 /68

Example 2

Suppose we don't believe our compiler’'s implementation of “+": let's write our own!

#include <vcc.h>

unsigned add(unsigned x, unsigned y)
_(requires x + y <= UINT_MAX)

_(ensures \result == x + y)

{
unsigned i = x; // ORIGINAL CODE:
unsigned j = y; // unsigned w = + y;

// return w;
while (i > 0)
{
__i;
++3;

}

return j;

}

Ondrej Lengél (SAV'24, FIT VUT v Brng) Deductive Verification 14 October 2024 28/68

Example 2

VCC

Does this C program always work?
1 #include <vcc.h>

2

10
11
12
13
14
15

3
4
5
6 {
7
8
9

‘Research

unsigned add(unsigned x, unsigned y)

_(requires x + y <= UINT_MAX)
_(ensures \result == x + y)

unsigned i
unsigned j

X5
Ys

while (i > @)
{

-1

++3;

}

return j;

FIT VUT v Brn&)

14 October 2024

29/68

Example 2

VCC

Does this C program always work?
1 #include <vcc.h>
2
3 unsigned add(unsigned x, unsigned y)
_(requires x + y <= UINT_MAX)

‘Research

4
5
6 {

7 unsigned i = x;
8 unsigned j =y;
9

10 while (i > @)

11 {

12 --i;

B wd — _

14 3 Description Line|Column
15 3|1 [++j might overflow. 13 |5

16 return j; @2 |Post condition '\result == x + y' did not verify. 16 |3

173 D3 [(related information) Location of post condition. 5 |13

Ondrej Lengél (SAV'24, FIT VUT v Brng) Deductive Verification 14 October 2024 30/68

Example 2

VCC

Does this C program always work?

1
2
3
4
5
6 {
7
8
9

10
11
12
13
14
15
16

m doesn't verify, but the violation ++j might overflow.

Ondrej Lengal (SAV'24, FIT VUT v Brng)

‘Research

#include <vcc.h>

_(requires x + y <=

_(ensures \result =

unsigned i
unsigned j

while (i >
{
--i;
5

unsigned add(unsigned x, unsigned y)

UINT_MAX)

=X+t ¥)
X3
Y5
Description Line|Column
3|1 [++j might overflow. 13 |5
(32 [Post condition '\result == x + y' did not verify. 16 |3
@3 [(related information) Location of post condition. 5 |13

Deductive Verification

14 October 2024

is spurious. How to get rid of it?

30/68

INVARIANTS

» T

INVARIANTS EVERYWHERE

Ondrej Lengél (SAV'24, FIT VUT v Brng) Deductlve Verification 14 October 2024

Example 2
Fix #1:

unsigned add(unsigned x, unsigned y)
_(requires x + y <= UINT_MAX)
_(ensures \result == x + y)
{
unsigned i = x; // ORIGINAL CODE:
unsigned j = y; // unsigned w = ¢ + y;
// return w;

while (i > 0)

_(invariant i + j == x + y) // <-- added tnvariant
{

__i;

++3;

}

return j;

Ondrej Lengal (SAV'24, FIT VUT v Brné) Deductive Verification

Example 2

VCC

Does this C program always work?

1 #include <vcc.h>

2

‘Research

3 unsigned add(unsigned x, unsigned y)

{

© o ~N O U

10
1
12
13
14
15
16
17
18 }

_(requires x + y <= UINT_MAX)
_(ensures \result == x + y)

unsigned i = x;
unsigned j = y;

while (i > 0)

_Cinvariant i + j == x + y)
{

i

++3;

}

return j;

|Verification of add succeeded. [0.78]

m verifies wrt the specification \o/

FIT VUT v Brn&) Deductive Verification

14 October 2024

33/68

Example 2 — post mortem

What did we do?

We substituted implementation of a function with a different one
> the contract is still the same

The new implementation cannot be verified as is
» unbounded loops cannot be easily transformed into a static formula

We needed to provide a loop invariant: _(invariant I) where [is a formula s.t.
» I holds every time the loop head is reached (before evaluating the loop test)

Ondrej Lengél (SAV'24, FIT VUT v Brng) Deductive Verification 14 October 2024

34/68

Example 2 — post mortem

while (C)
_(invariant I)

{
// Body
}

We can then substitute the loop by

_(assert I)
_(assume I && !'C)

but we also need to check validity of the formula
(I AN pg)—= (I N safeg)

m ¢p is a formula representing the loop body
m safep represents implicit safety conditions on the loop body

—->

Ondrej Lengél (SAV'24, FIT VUT v Brng) Deductive Verification 14 October 2024

35/68

Example 3

unsigned lsearch(int elt, int *ar, unsigned sz)

_(ensures \result != UINT_MAX ==> ar[\result] == elt)

_(ensures \forall unsigned i; i < sz && i < \result ==> ar[i] != elt)
{

unsigned 1i;

for (i = 0; 1 < sz; 1= 1)

{

if (ar[i] == elt) return i;

}

return UINT_MAX;

Ondrej Lengél (SAV'24, FIT VUT v Brng) Deductive Verification 14 October 2024 36 /68

Example 3

VCC

Does this C program always work?

unsigned lsearch(int elt, int *ar, unsigned sz)
_(ensures \result != UINT_MAX ==> ar[\result] == elt)

icrosoft

‘Research

1

3

4 .

5 { L]

6 unsigned i;

7 for (1 =0; 1 <sz; i=1)

& {

9 i 1tD return ij; L

0 } "

11

12 return UINT_MAX;

13 }

Description Line|Column

(3|1 |Assertion 'arl[il is thread local' did not verify. 9 |9
(32 [Post condition '\forall unsigned i; i < sz & i < \result ==> ar[i] != elt)' did not verify. [9 23
(33 [(related information) Location of post condition. 4 |13

Ondrej Lengél (SAV'24, FIT VUT v Brng) Deductive Verification 14 October 2024 37/68

Example 3

Fix #1:

unsigned lsearch(int elt, int *ar, unsigned sz)
_(requires \thread_local_array(ar, sz)) // <-- added precondition
_(ensures \result != UINT_MAX ==> ar[\result] == elt)
_(ensures \forall unsigned i; i < sz && i < \result ==> ar[i] != elt)

{
unsigned 1ij;
for (i = 0; 1 < sz; i = 1)
{
if (ar[i] == elt) return i;

}

return UINT_MAX;

Ondrej Lengél (SAV'24, FIT VUT v Brng) Deductive Verification 14 October 2024 38/68

Example 3

VCC

Does this C program always work?

Research

1 unsigned lsearch(int elt, int *ar, unsigned sz)

2 _(requires \thread_local_array(ar, sz))

3 _(ensures \result != UINT_MAX ==> ar[\result] == elt)

4 _(ensures \forall unsigned i; i < sz 8& i < \result ==> ar[i] != elt)
514

6 unsigned i;

7 for (1 =0; i <sz;i=1)

8 {

9

0 3}
11
12 return UINT_MAX;
13 }
Description Line|Column
(A1 [Post condition '\forall unsigned i; i < sz & i < \result ==> ar[i] != elt)' did not verify. |9 23
(32 |(related information) Location of post condition. 4 |13

Ondrej Lengél (SAV'24, FIT VUT v Brng) Deductive Verification 14 October 2024 39/68

Example 3

VCC

Does this C program always work?

Research

1 unsigned lsearch(int elt, int *ar, unsigned sz)

2 _(requires \thread_local_array(ar, sz))

3 _(ensures \result != UINT_MAX ==> ar[\result] == elt)

4 _(ensures \forall unsigned i; i < sz 8& i < \result ==> ar[i] != elt)
514

6 unsigned i;

7 for (1 =0; i <sz;i=1)

8 {

9

0 3}
11
12 return UINT_MAX;
13 }
Description Line|Column
(A1 [Post condition '\forall unsigned i; i < sz & i < \result ==> ar[i] != elt)' did not verify. |9 23
(32 |(related information) Location of post condition. 4 |13

m still doesn’t verify

Ondrej Lengél (SAV'24, FIT VUT v Brng) Deductive Verification 14 October 2024 39/68

Example 3

Fix #2: Let's provide a loop invariant!

unsigned lsearch(int elt, int *ar, unsigned sz)
_(requires \thread_local_array(ar, sz))
_(ensures \result != UINT_MAX ==> ar[\result] == elt)
_(ensures \forall unsigned i; i < sz && i < \result ==> ar[i] != elt)
{
unsigned 1i;
for (i = 0; 1 < sz; i = 1)
_(invariant \forall unsigned j; j < i ==> ar[j] != elt) // <-- added invariant
{
if (ar[i] == elt) return i;

}

return UINT_MAX;

Ondrej Lengél (SAV'24, FIT VUT v Brng) Deductive Verification 14 October 2024 40 /68

Example 3

VCC

Does this C program always work?
1 unsigned lsearch(int elt, int *ar, unsigned sz)

Mic

Research

2 _(requires \thread_local_array(ar, sz))

3 _(ensures \result != UINT_MAX ==> ar[\result] == elt)

4 _(ensures \forall unsigned i; i < sz & i < \result ==> ar[i] != elt)
514

6 unsigned 1i;

7 for (1 =0; 1 <sz; 1 =1)

8 _(invariant \forall unsigned j; j < i ==> ar[j] != elt)
9 {

10 if (ar[i] == elt) return i;

11 }

12

13 return UINT_MAX;

14 3}

Verification of lsearch succeeded. [2.19]

Ondrej Lengél (SAV'24, FIT VUT v Brng) Deductive Verification 14 October 2024 41 /68

Example 3

VCC

Does this C program always work?
1 unsigned lsearch(int elt, int *ar, unsigned sz)

Mic

Research

2 _(requires \thread_local_array(ar, sz))

3 _(ensures \result != UINT_MAX ==> ar[\result] == elt)

4 _(ensures \forall unsigned i; i < sz & i < \result ==> ar[i] != elt)
514

6 unsigned 1i;

7 for (1 =0; 1 <sz; 1 =1)

8 _(invariant \forall unsigned j; j < i ==> ar[j] != elt)
9 {

10 if (ar[i] == elt) return i;

11 }

12

13 return UINT_MAX;

14 3}

Verification of lsearch succeeded. [2.19]

m Verifies! Great!!!! ...oris it?

Ondrej Lengél (SAV'24, FIT VUT v Brng) Deductive Verification 14 October 2024 41 /68

Example 3

Fix #3: provide a termination requirement

unsigned lsearch(int elt, int *ar, unsigned sz)
_(requires \thread_local_array(ar, sz))
_(ensures \result != UINT_MAX ==> ar[\result] == elt)
_(ensures \forall unsigned i; i < sz && i < \result ==> ar[i] != elt)
_(decreases 0) // <-- added termination requirement

{
unsigned 1ij;
for (i = 0; 1 < sz; i = 1)
_(invariant \forall unsigned j; j < i ==> ar[j] != elt)
{
if (ar[i] == elt) return i;

}

return UINT_MAX;

Ondrej Lengél (SAV'24, FIT VUT v Brng) Deductive Verification 14 October 2024 42 /68

Example 3

VCC

Does this C program always work?

1 unsigned lsearch(int elt, int *ar, unsigned sz)
2 _(requires \thread_local_array(ar, sz))

Microsoft

Research

3 _(ensures \result != UINT_MAX ==> ar[\result] == elt)

4 _(ensures \forall unsigned i; i < sz & i < \result ==> ar[i] != elt)

5 _(decreases @)

6 {

7 unsigned i;

8 for (i=0;i<szi=1

9 _Cinvariant \forall unsigned j; j < i ==> ar[j] != elt)

10 {

11 if (ar[i] == elt) return i;

12 3

13

14 return UINT_MAX;

15 }

Description Line|Column

3|1 |[the loop fails to decrease termination measure. 8 |3

m Ooops: the loop fails to decrease termination measure.

Ondrej Lengél (SAV'24, FIT VUT v Brng) Deductive Verification 14 October 2024 43 /68

Example 3

Fix #4: fix the code

unsigned lsearch(int elt, int *ar, unsigned sz)
_(requires \thread_local_array(ar, sz))
_(ensures \result != UINT_MAX ==> ar[\result] == elt)
_(ensures \forall unsigned i; i < sz && i < \result ==> ar[i] != elt)
_(decreases 0)

{
unsigned 1ij;
for (i = 0; 1 < sz; i += 1) // <-- code fiz
_(invariant \forall unsigned j; j < i ==> ar[j] != elt)
{
if (ar[i] == elt) return i;
}

return UINT_MAX;

Ondrej Lengél (SAV'24, FIT VUT v Brng) Deductive Verification 14 October 2024 44 /68

Example 3

VCC

Does this C program always work?
1 unsigned lsearch(int elt, int *ar, unsigned sz)

‘Research

2 _(requires \thread_local_array(ar, sz))

3 _(ensures \result != UINT_MAX ==> ar[\result] == elt)

4 _(ensures \forall unsigned i; i < sz && i < \result ==> ar[i] != elt)
5 _(decreases 0)

6 {

7 unsigned 1i;

8 for (1 =0; i <sz; 1 += 1)

9 _(invariant \forall unsigned j; j < i ==> ar[j] != elt)
10 {

11 if (ar[i] == elt) return i;

12}

13

14 return UINT_MAX;

15 }

Verification of lsearch succeeded. [3.41]

m Verifies!

Ondrej Lengél (SAV'24, FIT VUT v Brng) Deductive Verification 14 October 2024 45 /68

Example 3 — post mortem
What did we do?
® our annotations got more complex:

unsigned lsearch(int elt, int *ar, unsigned sz)
_(requires \thread_local_array(ar, sz))
_(ensures \result != UINT_MAX ==> ar[\result] == elt)

_(ensures \forall unsigned i; i < sz && i < \result ==> ar[i] != elt)
_(decreases 0)

m ==>, <==: implication, <==>: equivalence, \forall: V, \exists: 3 — quantifiers (typed)

m thread_local_array(ar, sz): ar points to (at least) sz items of the type of *a, which are
“owned"” by this thread

m _(decreases 0): simply states that 1search terminates

> for more complex code, termination measure needs to be provided on loops
» the measure should decrease in every iteration of the loop

> for recursive procedures, termination measure should decrease in every call

Ondrej Lengél (SAV'24, FIT VUT v Brng)

Deductive Verification 14 October 2024 46 /68

Example 3 — post mortem

m partial correctness: every answer returned by a program is correct
m total correctness: above + the algorithm also terminates

Ondrej Lengél (SAV'24, FIT VUT v Brng) Deductive Verification 14 October 2024 47 /68

Example 4

unsigned bsearch(int elt, int *ar, unsigned sz)
_(requires \thread_local_array(ar, sz))
_(ensures \result != UINT_MAX ==> ar[\result] == elt)
_(ensures \forall unsigned i; i < sz && i < \result ==> ar[i] != elt)
_(decreases 0)

{
if (sz == 0) return UINT_MAX;
unsigned left = 0;
unsigned right = sz - 1;
while (left < right) {
unsigned mid = (left + right) / 2;
if (ar[mid] < elt) {
left = mid + 1;
} else if (ar[mid] > elt) {
right = mid - 1;
} else {
return mid;
¥
}
return UINT_MAX;
¥

Ondrej Lengél (SAV'24, FIT VUT v Brng) Deductive Verification 14 October 2024 48 /68

Example 4

VCC

Does this C program always work?

1 unsigned bsearch(int elt, int *ar, unsigned sz)
2 _(requires \thread_local_array(ar, sz))

‘Research

3 _(ensures \result != UINT_MAX ==> ar[\result] == elt)

4 _(ensures \forall unsigned i; i < sz && i < \result ==> ar[i] != elt) =

5 _(decreases 0)

6 {

7 if (sz == 0) return UINT_MAX;

8 unsigned left = 0;

9 unsigned right = sz - 1;

10

1L while Cleft < right) { .

12 unsigned mid = (left + right) / 2; =

13 if Qarfmid] < elt) { r

14 left = mid + 1;

15 } else if (ar[mid] > elt) {

16 right = mid - 1; Description Line|Column!
17 } else { 31 [left + right might overflow. 12 |21
18 return mid; |2 |Assertion 'ar[mid] is thread local' did not verify. 13 |9
19 } T (A3 |mid - 1 might overflow. 16 [15
0 3[4 [the loop fa%ls to decrease Ferminz‘atir‘)n measure. i i i 11 |3
21 return UINT_MAX: 5 |Post cond%tmn '\foral'L uns}gned i; 1 < sz g&ll < \result ==> ar[i] != elt)' did not verify. |18 |7
2 3 - ’ 6 (related information) Location of post condition. 4 13

Ondrej Lengal (SAV" T Deductive Verification 14 October 2024 49 /68

Example 5

unsigned add(unsigned x, unsigned y)
_(ensures \result == x + y);

unsigned super_add(unsigned x, unsigned y, unsigned z)
_(ensures \result == x + y + z)
{
unsigned w = add(x, y);
w = add(w, z);
return w;

}

Ondrej Lengél (SAV'24, FIT VUT v Brng) Deductive Verification

Example 5

‘Research

VCC

Does this C program always work?

1 unsigned add(unsigned x, unsigned y)

2 _(ensures \result == x + y);

3

4 unsigned super_add(unsigned x, unsigned y, unsigned z)
_(ensures \result == x +y + 2z)

unsigned w = add(x, y);
w = add(w, z);

9 return w;

10 }

5
6 {
7
8

Verification of super_add succeeded. [2.88]

m Verifies!

14 October 2024 51/68

Example 5

How about when we add an implementation of add?

unsigned add(unsigned x, unsigned y)
_(ensures \result == x + y);

unsigned super_add(unsigned x, unsigned y, unsigned z)
_(ensures \result == x + y + 2)
{
unsigned w = add(x, y);
w = add(w, z);
return w;

}

unsigned add(unsigned x, unsigned y) // <-- added implementation

{

return x + y;

}

Ondrej Lengél (SAV'24, FIT VUT v Brng) Deductive Verification 14 October 2024 52 /68

Example 5

VCC

Does this C program always work?

M

Research

unsigned add(unsigned x, unsigned y)
_(ensures \result == x + y);

1
2
3
4 unsigned super_add(unsigned x, unsigned y, unsigned z)
5 _(ensures \result == X +y + 2z)

6 {

7 unsigned w = add(x, y);

8 w = add(w, 2);

9 return w;

12 unsigned add(unsigned x, unsigned y)
13 {
14 return x + y;
15 3}
[T [pescription [Line[Column|
@1 |x + y might overflow. |14 |10 |

14 October 2024 53 /68

Example 5

VCC

Does this C program always work?

M

Research

unsigned add(unsigned x, unsigned y)
_(ensures \result == x + y);

1
2
3
4 unsigned super_add(unsigned x, unsigned y, unsigned z)
5 _(ensures \result == X +y + 2z)

6 {

7 unsigned w = add(x, y);

8 w = add(w, 2);

9 return w;

12 unsigned add(unsigned x, unsigned y)
13 {
14 return x + y;
15 3}
[T [pescription [Line[Column|
@1 |x + y might overflow. |14 |10 |

14 October 2024 53 /68

Example 5

unsigned add(unsigned x, unsigned y)
_(requires x + y <= UINT_MAX) // <-— added precondition
_(ensures \result == x + y);

unsigned super_add(unsigned x, unsigned y, unsigned z)
_(ensures \result == x + y + z)
{
unsigned w = add(x, y);
w = add(w, z);
return w;

}

unsigned add(unsigned x, unsigned y)

{

return x + y;

}

Ondrej Lengél (SAV'24, FIT VUT v Brng) Deductive Verification 14 October 2024 54 /68

Example 5

vee ™

Does this C program always work?
unsigned add(unsigned x, unsigned y)

_(requires x _+ y <= UINT_MAX) n

_(ensures \result == x + y);

1
2
3
4
5 unsigned super_add(unsigned x, unsigned y, unsigned z)
6 _(ensures \result == x + y + z)

7

8

9

{ -
unsigned w = add(x, y); ul
w = add(w, 2);
10 return w;
1 3}
12
13 unsigned add(unsigned x, unsigned y)
14 {
15 return x +y;
16 }
Description Line|Column
3|1 |Call 'add(x, y)' did not verify. 8 16
32 (related information) Precondition: 'x + y <= Oxffffffff'. 2 14
(33 [call 'add(w, z)' did not verify. 9 7
3|4 [(related information) Precondition: 'x + y <= Oxffffffff'. 2 14

14 October 2024 55 /68

Example 5

vee ™

Does this C program always work?
unsigned add(unsigned x, unsigned y)

_(requires x _+ y <= UINT_MAX) n

_(ensures \result == x + y);

1
2
3
4
5 unsigned super_add(unsigned x, unsigned y, unsigned z)
6 _(ensures \result == x + y + z)

7

8

9

{ -
unsigned w = add(x, y); ul
w = add(w, 2);
10 return w;
1 3}
12
13 unsigned add(unsigned x, unsigned y)
14 {
15 return x +y;
16 }
Description Line|Column
3|1 |Call 'add(x, y)' did not verify. 8 16
32 (related information) Precondition: 'x + y <= Oxffffffff'. 2 14
(33 [call 'add(w, z)' did not verify. 9 7
3|4 [(related information) Precondition: 'x + y <= Oxffffffff'. 2 14

m Not enough. ..

14 October 2024 55 /68

Example 5

unsigned add(unsigned x, unsigned y)
_(requires x + y <= UINT_MAX)
_(ensures \result == x + y);

unsigned super_add(unsigned x, unsigned y, unsigned z)
_(requires x + y + z <= UINT_MAX) // <-- added precondition
_(ensures \result == x + y + 2)
{
unsigned w = add(x, y);
w = add(w, 2z);
return w;

}

unsigned add(unsigned x, unsigned y)

{

return x + y;

}

Ondrej Lengél (SAV'24, FIT VUT v Brng) Deductive Verification 14 October 2024 56 /68

Example 5

vce ™

Does this C program always work?

unsigned add(unsigned x, unsigned y)
_(requires x + y <= UINT_MAX)
_(ensures \result == x + y);

_(requires x + y + z <= UINT_MAX)
_(ensures \result == x +y + z)
{
unsigned w = add(x, y);
10 w = add(w, z);
11 return w;
12 }

1
2
3
4
5 unsigned super_add(unsigned x, unsigned y, unsigned z)
6
7
8
9

14 unsigned add(unsigned x, unsigned y)
15 {

16 return x + y;

17 }

Verification of add succeeded. [1.81]
Verification of super_add succeeded. [0.00]

14 October 2024 57 /68

Example 5

vce ™

Does this C program always work?

unsigned add(unsigned x, unsigned y)
_(requires x + y <= UINT_MAX)
_(ensures \result == x + y);

_(requires x + y + z <= UINT_MAX)
_(ensures \result == x +y + z)
{
unsigned w = add(x, y);
10 w = add(w, z);
11 return w;
12 }

1
2
3
4
5 unsigned super_add(unsigned x, unsigned y, unsigned z)
6
7
8
9

14 unsigned add(unsigned x, unsigned y)
15 {

16 return x + y;

17 }

Verification of add succeeded. [1.81]
Verification of super_add succeeded. [0.00]

m Verifies!

14 October 2024 57 /68

Example 5 — post mortem
What happened?

unsigned add(unsigned x, unsigned y)

m super_add was using add in its body _(requires x + y <= UINT_MAX)

m during verification of super_add, the call to add was -(ensures \result == x + y);
substituted by its contract: unsigned super_add(unsigned x, unsigned y,
_(assert add_requires) // precondition :Eiﬁ‘;ﬁ;ﬁ:s\ie;uitli ;=+UBI,NE'I;U;X>
_(assume add_ensures) // postcondition t

m validity of all asserts and super_add’s postcondition needed to w““iliﬁi‘(iw‘f :)?dd(x’ v
be checked: return w;

for add(x, y):
(z +y + z < UINT_MAX) — (x + y < UINT_MAX)
for add(w, z):
(x+y+2z < UINT_MAX A wy = 2+y) — (w1 +2z < UINT_MAX)
super_add's postcondition:

(z4y+z < UINT_MAX A wy = 24y A we = wi+2) — (we = z+y+2)

Ondrej Lengél (SAV'24, FIT VUT v Brng) Deductive Verification 14 October 2024 58 /68

Example 6

void swap(int* x, int* y)
_(ensures *x == \old(kxy) && *y == \old(*x))

{
int z = *x;
*X = Xy,
*y = Z;

}

Ondrej Lengal (SAV'24, FIT VUT v Brné) Deductive Verification

Example 6

VCC

Does this C program always work?

Microsoft

Research

1 void swap(int* x, int* y)

2 _(ensures *x == \old(*y) && *y == \old(*x))

3 9

4

5 |

6 n

7}

Description Line|Column

3|1 |Assertion 'x is thread local' did not verify. 4 12
(32 |Assertion 'x is writable' did not verify. 5 |4
33 |Assertion 'y is thread local' did not verify. 5 9
3|4 |Assertion 'y is writable' did not verify. 6 4

Ondrej Lengal (SAV'24, FIT VUT v Brng) Deductive Verification 14 October 2024 60 /68

Example 6

VCC

Does this C program always work?

Microsoft

Research

1 void swap(int* x, int* y)

2 _(ensures *x == \old(*y) && *y == \old(*x))

3 9

4

5 |

6 n

7}

Description Line|Column

3|1 |Assertion 'x is thread local' did not verify. 4 12
(32 |Assertion 'x is writable' did not verify. 5 |4
33 |Assertion 'y is thread local' did not verify. 5 9
3|4 |Assertion 'y is writable' did not verify. 6 4

m side effect

Ondrej Lengal (SAV'24, FIT VUT v Brng) Deductive Verification 14 October 2024 60 /68

Example 6

void swap(int* x, int* y)
_(writes x)
_(writes y)
_(ensures *x == \old(kxy) && *y == \old(*x))

int z = *x;
*xX = *y;
*y = Z;

Ondrej Lengal (SAV'24, FIT VUT v Brné) Deductive Verification

Example 6

VCC

Does this C program always work?
1 void swap(int* x, int* y)
2 _(writes x)
_(writes y)
_(ensures *x == \old(*y) && *y == \old(*x))
{
int z = *x;

Ky — Ky
X ="Y,

Mi

Research

¥y — 7.
Yy =2

}
Verification of swap succeeded. [2.64]

O oo N O U W

Ondrej Lengal (SAV'24, FIT VUT v Brng) Deductive Verification 14 October 2024 62 /68

Example 6

VCC

Does this C program always work?
1 void swap(int* x, int* y)
2 _(writes x)
_(writes y)
_(ensures *x == \old(*y) && *y == \old(*x))
{
int z = *x;

Ky — Ky
X ="Y,

Mi

Research

¥y — 7.
Yy =2

}
Verification of swap succeeded. [2.64]

O oo N O U W

m _(writes x) talks about a side-effect

Ondrej Lengél (SAV'24, FIT VUT v Brng) Deductive Verification 14 October 2024 62 /68

Example 7

#define RADIX ((unsigned)(-1) + ((\natural)1l))
#define LUINT_MAX ((unsigned)(-1) + (unsigned)(-1) * ((unsigned)(-1) + ((\natural)1)))
typedef struct LongUint {
_(ghost \natural val)
unsigned low, high;
_(invariant val == low + high * RADIX) // coupling invariant
} LongUint;

void luint_inc(LongUint* x)
_(maintains \wrapped(x))
_(writes x)
_(requires x->val + 1 < LUINT_MAX)
_(ensures x->val == \old(x->val) + 1)
{
_(unwrapping x) {
if (x->low == UINT_MAX) {
++(x->high) ;
x->1low = O;
} else {
++(x->1low) ;
}
_(ghost x->val = x->val + 1)
}
}

Ondrej Lengal (SA

Example 7

icrosoft-

‘Research

VCC

Does this C program always work?
1 #define RADIX ((unsigned)(-1) + ((\natural)1))
2 #define LUINT_MAX ((unsigned)(-1) + (unsigned)(-1) * ((unsigned)(-1) + ((\natural)1)))
3 typedef struct LongUint {
4 _(ghost \natural val)
5 unsigned low, high;
6 _(invariant val == low + high * RADIX) // coupling invariant
7 } LongUint;
8
9

void luint_inc(LongUint* x)
10 _(maintains \wrapped(x))
11 _(writes x)
12 _(requires x->val + 1 < LUINT_MAX)

13 _(ensures x->val \old(x->val) + 1)

14 {

15 _Cunwrapping x) {

16 if (x->low = UINT_MAX) {

17 ++(x->high);

18 x->low = 0;

19 } else {

20 ++(x->1ow);

21 L
22 _(ghost x->val = x->val + 1)

Verification of LongUint#adm succeeded. [2.39]
Verification of luint_inc succeeded. [0.03]

Deductive Verification 14 October 2024 64 /68

Ondrej Lengal (SAV"

Example 7 — post mortem

What did we do?

m we needed to provide a data structure invariant via _(invariant Inv)
» it describes what need to hold about the data structure in a consistent state

> the invariant talks about a ghost variable
® helps with verification but is not part of the compiled program
® can have an “ideal” type (e.g., \natural, \integer, ...)
® or can also be an inductive (functional-style) data type, e.g.
_(datatype List { case nil(); case cons(int v, List 1); })
> we needed to use _(unwrapping x) { ... } for the block of code where the invariant is temporarily
broken

Ondrej Lengél (SAV'24, FIT VUT v Brng) Deductive Verification 14 October 2024 65 /68

Further issues

m concurrency (atomic actions, shared state)

m hardware

m assembly code (need to model instructions using function contract)
m talking about memory (possible aliasings)

Ondrej Lengél (SAV'24, FIT VUT v Brng) Deductive Verification 14 October 2024 66 /68

Other Tools

m Dafny: a full programming language with support for specifications

m Why3: a programming language (WhyML) + specifications

m Frama-C (Jessie plug-in): deductive verification of C + ACSL annotations

m KeY: Java + JML annotations

m Prusti: Rust

m IVy: specification and implementation of protocols

m Ada, Eiffel, ...: programming languages with in-built support for specifications

Ondrej Lengél (SAV'24, FIT VUT v Brng) Deductive Verification 14 October 2024 67 /68

Used materials from

m Ernie Cohen, Amazon (former Microsoft)
m Isil Dillig, University of Texas, Austin

Ondrej Lengal (SAV'24, FIT VUT v Brné) Deductive Verification

