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Lattices and Fixpoints
A Brief Introduction



Partial Orders

“ Atuple (A, <) is a poset (partially-ordered set) iff Aisasetand <aC A x Ais
a partial order (i.e., a reflexive, transitive, and antisymmetric binary relation) on A.

< An example: Given a set S, (2°, C) is a poset.
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“ Atuple (A, <) is a poset (partially-ordered set) iff Aisasetand <aC A x Ais
a partial order (i.e., a reflexive, transitive, and antisymmetric binary relation) on A.

< An example: Given a set S, (2°, C) is a poset.

% Given a poset (A, <4)and aset B C A,
an element a € A is the greatest lower bound of B (glb/infimum/meet of B, MB) iff
1. Vb e B.a <4 b (“lower bound”) and
2. Va' € A. (Vbe B.a' <4 b) = a <4 a (“greatest”),
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Partial Orders

“ Atuple (A, <) is a poset (partially-ordered set) iff Aisasetand <aC A x Ais
a partial order (i.e., a reflexive, transitive, and antisymmetric binary relation) on A.

< An example: Given a set S, (2°, C) is a poset.

% Given a poset (A, <4)and aset B C A,
an element a € A is the greatest lower bound of B (glb/infimum/meet of B, MB) iff
1. Vb e B.a <4 b (“lower bound”) and
2. Va' € A. (Vbe B.a' <4 b) = a <4 a (“greatest”),
an element a € A is the least upper bound of B (lub/supremum/join of B, LIB) iff
1. Vb e B.b <4 a (“upper bound”) and
2. Va' € A. (WVbe B.b<ad')=— a <a d (“least’),

< An example: For (21*%<} ), 1L{0, {a}, {b}} = {a, b}, and {a} M {b, c} = 0.
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L attices

% A poset (A, <) is a lattice iff each non-empty, finite subset B of A has a lub as well as
aglbin A.

% A poset (A, <4) is a complete lattice iff each subset B of A has a lub as well as a glb in A.
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L attices

% A poset (A, <) is a lattice iff each non-empty, finite subset B of A has a lub as well as
aglbin A.

% A poset (A, <4) is a complete lattice iff each subset B of A has a lub as well as a glb in A.
L4 =TAand T4 = LA are the least and greatest elements of a complete lattice,

respectively.
% Examples:

(2@t} ) is a complete lattice, M corresponds to N, Lito U, L to @, and T to
{a,b,c}.

(N, <) is a lattice with LI being max and M being min, but not a complete lattice
since LIN does not exist in N.

(Noo, <), Wwhere Noo = NU {o0} and Vn € N. n < oo, is a complete lattice.

< Given a poset (A,<4),aset BC Aisachainiff vb,b’ € B.b<a b vV b <ab.
E.g., {0,{a}, {a,b}, {a,b,c}} is a chain wrt. (21¢><} Q).
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Functions on Lattices

% Let (A, <a) and (B, <g) be lattices.

< A function f : A — B is monotonic iff Va,a’ € A. a <1 o' = f(a) <5 f(d).
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Functions on Lattices

<+ Let (A,<4) and (B, <p) be lattices.
< A function f : A — B is monotonic iff Va,a’ € A. a <1 o' = f(a) <5 f(d).

% A function f : A — B is LI-continuous iff for every chain C' C A, we have
f(uC) =u{f(c) | c € C}. Analogously, one can define M-continuous functions.
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Functions on Lattices

<+ Let (A,<4) and (B, <p) be lattices.
< A function f : A — B is monotonic iff Va,a’ € A. a <1 o' = f(a) <5 f(d).

% A function f : A — B is LU-continuous iff for every chain C' C A, we have
f(uC) =u{f(c) | c € C}. Analogously, one can define M-continuous functions.

% An element a € A is a fixpoint of a function f: A — A iff f(a) = «a.

% An example: Consider the function f : Noo — N, defined such that vn € N. f(n) =0
and f(co) = oo.

f is monotonic since (1) Vni,n2 € N. f(n1) =0 <0 = f(n2) and
(2) Vn € N. f(n) =0 < oo = f(00).

f is not Li-continuous since N is a chain and f(UN) = f(oc0) = oo, but
L{f(n) | ne N} =u0{0} =0.

0 is the least fixpoint of f and oo is the greatest fixpoint of f.
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Knaster—Tarski Theorem

< Knaster-Tarski Theorem. Let (A, <4) be a complete lattice and let f : A — A be
a monotonic function. Then the set of fixpoints of f in (A, <4) is also a complete lattice.

% Since complete lattices have the least and the greatest element, the theorem in
particular guarantees the existence of a least and greatest fixpoint of f in A.
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For the more curious:

% In more constructive terms, the least fixpoint of f is the stationary limit of f*(L 4) for «
ranging over the ordinals.

An ordinal is the order type of a well-ordered set.
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Knaster—Tarski Theorem

< Knaster-Tarski Theorem. Let (A, <4) be a complete lattice and let f : A — A be
a monotonic function. Then the set of fixpoints of f in (A, <4) is also a complete lattice.

% Since complete lattices have the least and the greatest element, the theorem in
particular guarantees the existence of a least and greatest fixpoint of f in A.

For the more curious:

% In more constructive terms, the least fixpoint of f is the stationary limit of f*(L 4) for «
ranging over the ordinals.

An ordinal is the order type of a well-ordered set.

Every ordinal can be represented as the set of all smaller ordinals. There is the
zero ordinal, successor ordinals, and limit ordinals. Natural numbers correspond to
the so called finite ordinals (ordering types of finite sets), the set of natural numbers
is the first infinite ordinal, and so on.

f¢ is defined by transfinite induction: f**' = f(f*) and f” for a limit ordinal ~ is
the least upper bound of f° for all ordinals 5 smaller than ~.

% A dual result holds for the greatest fixpoint.
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Kleene Fixpoint Theorem

< Kleene Fixpoint Theorem. Let (A, <) be a complete lattice and f : A — A a function.

* If fis L-continuous, the least fixpoint of fis puf = L{f*(La)|i > 0}.

Introduction — p.7/7



Kleene Fixpoint Theorem

< Kleene Fixpoint Theorem. Let (A, <) be a complete lattice and f : A — A a function.

* If fis L-continuous, the least fixpoint of fis puf = L{f*(La)|i > 0}.

— Moreover, a LI-continuous function is monotone, and hence one in fact
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< Kleene Fixpoint Theorem. Let (A, <) be a complete lattice and f : A — A a function.

If fis L-continuous, the least fixpoint of fis uf = L{f*(La) |i> 0}.

Moreover, a LI-continuous function is monotone, and hence one in fact
computes the supremum of the ascending chain

La<a f(La) <a f(f(La)) < ...
If fis M-continuous, the greatest fixpoint of fis vf = M{f*(Ta)|i > 0}.

Moreover, a r-continuous function is monotone, and hence one in fact
computes the infimum of the descending chain

Ta>af(Ta)>a f(f(Ta)) > ...

% Theorem. For finite complete lattices, every monotonic function is - and LI-continuous.

% Corollary. On finite lattices, the Kleene fixpoint theorem is applicable, hence,
to compute the least fixpoint, start with 1 4 and iteratively apply f till
fr(La) = (La) = uf,
to compute the greatest fixpoint, start with T 4 and iteratively apply f till

fi(Ta)=fH(Ta)=vf.

Introduction — p.7/7



	
	Partial Orders
	Lattices
	Functions on Lattices
	Knaster--Tarski Theorem 
	Kleene Fixpoint Theorem

