Deductive Verification

Ondřej Lengál

SAV'25, FIT VUT v Brně

27 October 2025

Verified Programming

How to write software that is correct?

- First approach
 - **I** First, write the software.
 - 2 Then, whack it with whatever you can find (verify & test it, burn it) until no bugs.
- Second approach
 - ► Verified Programming: programming + deductive verification
 - i.e., writing codes with annotations

cautionary tale: binary search

- algorithm first published in 1946, but first correct version didn't appear until 1962
- in 1988, a survey of 20 textbooks on algorithms found that at least 15 of them had errors
- Bentley reports giving it as a programming problem to over 100 professional programmers from Bell Labs and IBM, with 2 hours to produce a correct program. At least 90% of the solutions were wrong. Dijkstra reported similar statistics in experiments he performed at many institutions.
- Bentley published a CACM "programming pearl" on binary search and proving it correct, expanded to 14 pages in "Programming Pearls" (1986).
- Joshua Bloch used Bentley's code as a basis for the binary search implementation in the JDK, in 1997.
- in 2006, a bug was found in the JDK code, the same bug that was in Bentley's code, which nobody had noticed for 20 years. The same bug was in the C code Bentley published for the second edition of his book in 2000.
- these are not exactly your average programmers

[from slides of Ernie Cohen]

Deductive Verification

- the system is accompanied by specification
- these are converted into proof obligations (program invariant—a big formula)
- the truth of proof obligations imply correctness of the system
 - this is discharged by different methods:
 - SMT solvers (Z3, STP, cvc5, ...)
 - automatic theorem provers (Vampire, Prover9, E, ...)
 - interactive theorem provers (Coq, Isabelle, Lean, ...)

Pros:

- strong correctness guarantees (e.g., program correct "up to bugs in the solver")
- modularity; can be quite general

Cons:

- ▶ quite manual → expensive, high user expertise needed
- garbage in, garbage out
- not always easy to get counterexamples
- not so strong tool support

A Bit of History ...

- 1949: Alan Turing: Checking a Large Routine.
- 1969: Tony Hoare: An Axiomatic Basis for Computer Programming.
 - ▶ a formal system for rigorous reasoning about programs
 - ► Floyd-Hoare triples {pre} stmt {post}
 - 1967: Robert Floyd: Assigning Meaning to Programs
- 1971: Tony Hoare: Proof of a Program: FIND
- 1976: E. Dijkstra: A Discipline of Programming.
 - weakest-precondition calculus
- 2000: efficient tool support starts

Floyd-Hoare Logic

Let us consider the following imperative programming language:

- **Expression**: $E := n \mid x \mid E_1 + E_2 \mid E_1 \cdot E_2$ for $n \in \mathbb{Z}$ and $x \in \mathbb{X}$ (set of program variables)
- Conditional: $C ::= \texttt{true} \mid \texttt{false} \mid E_1 = E_2 \mid E_1 \leq E_2 \mid E_1 < E_2$
- Statement:

$$S ::= \quad x := E \qquad \qquad \text{(assignment)}$$

$$\mid \quad S_1; S_2 \qquad \qquad \text{(sequence)}$$

$$\mid \quad \text{if } C \text{ then } S_1 \text{ else } S_2 \qquad \qquad \text{(if)}$$

$$\mid \quad \text{while } C \text{ do } S \qquad \qquad \text{(while)}$$

A program is a statement.

Partial correctness of programs in Hoare logic is specified using Hoare triples:

$$\{P\}$$
 S $\{Q\}$

where

Partial correctness of programs in Hoare logic is specified using Hoare triples:

$$\{P\}$$
 S $\{Q\}$

where

- \blacksquare S is a statement of the programming language
- lacksquare P and Q are formulae in a suitable fragment of logic (usually first-order logic or SMT)
 - ightharpoonup P is called precondition
 - ightharpoonup Q is called postcondition

Meaning:

- lacksquare if S is executed from a state (program configuration) satisfying formula P
- and the execution of S terminates,
- lacktriangle then the program state after S terminates satisfies formula Q.

Example

Partial correctness of programs in Hoare logic is specified using Hoare triples:

$$\{P\}$$
 S $\{Q\}$

where

- lacksquare S is a statement of the programming language
- \blacksquare P and Q are formulae in a suitable fragment of logic (usually first-order logic or SMT)
 - ightharpoonup P is called precondition
 - ightharpoonup Q is called postcondition

Meaning:

- lacksquare if S is executed from a state (program configuration) satisfying formula P
- and the execution of S terminates,
- lacksquare then the program state after S terminates satisfies formula Q.

Example

- Is $\{x=0\}$ $\mathbf{x} := \mathbf{x} + \mathbf{1}$ $\{x=1\}$ a valid Hoare triple?
- 2 $\{x = 0 \land y = 1\}$ x := x + 1 $\{x = 1 \land y = 2\}$?

Partial correctness of programs in Hoare logic is specified using Hoare triples:

$$\{P\}$$
 S $\{Q\}$

where

- lacksquare S is a statement of the programming language
- \blacksquare P and Q are formulae in a suitable fragment of logic (usually first-order logic or SMT)
 - ► P is called precondition
 - ightharpoonup Q is called postcondition

Meaning:

- $lue{}$ if S is executed from a state (program configuration) satisfying formula P
- and the execution of S terminates,
- lacksquare then the program state after S terminates satisfies formula Q.

Example

- **1** Is $\{x=0\}$ x := x+1 $\{x=1\}$ a valid Hoare triple? **3** $\{x=0\}$ x := x+1 $\{x=1 \lor y=2\}$?
- 2 $\{x = 0 \land y = 1\}$ x := x + 1 $\{x = 1 \land y = 2\}$?

Partial correctness of programs in Hoare logic is specified using Hoare triples:

$$\{P\}$$
 S $\{Q\}$

where

- lacksquare S is a statement of the programming language
- \blacksquare P and Q are formulae in a suitable fragment of logic (usually first-order logic or SMT)
 - ▶ *P* is called precondition
 - ightharpoonup Q is called postcondition

Meaning:

- $lue{}$ if S is executed from a state (program configuration) satisfying formula P
- and the execution of S terminates,
- lacksquare then the program state after S terminates satisfies formula Q.

Example

- **1** Is $\{x=0\}$ x := x+1 $\{x=1\}$ a valid Hoare triple? **3** $\{x=0\}$ x := x+1 $\{x=1 \lor y=2\}$?
- **2** $\{x = 0 \land y = 1\}$ x := x + 1 $\{x = 1 \land y = 2\}$? **4** $\{x = 0\}$ while true do x := 0 $\{x = 1\}$?

Total Correctness

- \blacksquare $\{P\}$ S $\{Q\}$ does not require S to terminate (partial correctness).
- Hoare triples for total correctness:

Meaning:

- ightharpoonup if S is executed from a state (program configuration) satisfying formula P,
- **then** the execution of S terminates and
- \blacktriangleright the program state after S terminates satisfies formula Q.

Example

Is
$$[x=0]$$
 while true do $\mathbf{x} := \mathbf{0} \ [x=1]$ valid?

In the following we focus only on partial correctness.

Example

What are the meanings of the following Hoare triples?

Example

- P S $\{true\}$

Example

- [P] S [true]

Example

- P S $\{true\}$
- $\mathbf{3}$ [P] S [true]

Example

- P S $\{true\}$
- [P] S [true]

Example

What are the meanings of the following Hoare triples?

- P S $\{true\}$
- [P] S [true]

Example

Are the following Hoare triples valid or invalid?

 $\blacksquare \ \{i=0 \land n \geq 0\} \ \text{while i<n do i++} \ \{i=n\}$

Example

What are the meanings of the following Hoare triples?

- P S $\{true\}$
- [P] S [true]

Example

Are the following Hoare triples valid or invalid?

- $\blacksquare \ \{i=0 \land n \geq 0\} \ \text{while i<n do i++} \ \{i=n\}$
- $[i=0 \land n \geq 0]$ while i<n do i++ $\{i \geq n\}$

Example

What are the meanings of the following Hoare triples?

- P S $\{true\}$
- [P] S [true]

Example

Are the following Hoare triples valid or invalid?

- $\ \ \, \mathbf{1} \ \, \{i=0 \wedge n \geq 0\} \ \, \text{while i<n do i++} \, \, \{i=n\}$
- 2 $\{i=0 \land n \geq 0\}$ while i<n do i++ $\{i \geq n\}$
- $\{i=0 \land j=0 \land n \geq 0\}$ while i<n do {i++; j+=i} $\{2j=n(1+n)\}$

Inference Rules

We write proof rules in Hoare logic as inference rules:

$$\frac{\vdash \{P_1\} \ S_1 \ \{Q_1\} \ \dots \ \vdash \{P_n\} \ S_n \ \{Q_n\}}{\vdash \{P\} \ S \ \{Q\}}$$

Meaning:

• If all Hoare triples $\{P_1\}$ S_1 $\{Q_1\}$,..., $\{P_n\}$ S_n $\{Q_n\}$ are provable, then $\{P\}$ S $\{Q\}$ is also provable.

In general, inference rules have the format $\frac{premises}{deductions}$ NAME. A rule with no premises is an axiom.

The proof system will have one rule for every statement of our language:

- an axiom for atomic statements: assignments,
- inference rules for *composite* statements: sequence, if, while
- auxiliary "helper" rules

For assignment x := E, we have the following proof rule:

$$\overline{\vdash \{Q[E/x]\}\ x := E\ \{Q\}} \text{ Assgn}$$

where Q[E/x] denotes the formula obtained from Q by substituting all free occurrences of x by E

Example

$$\{y=4\}$$
 x := 4 $\{y=x\}$

For assignment x := E, we have the following proof rule:

$$\overline{\vdash \{Q[E/x]\}\ x := E\ \{Q\}} \text{ Assgn}$$

where Q[E/x] denotes the formula obtained from Q by substituting all free occurrences of x by E

Example

- 1 $\{y=4\}$ x := 4 $\{y=x\}$
- $\{x=n-1\}$ x := x+1 $\{x=n\}$

For assignment x := E, we have the following proof rule:

$$\overline{\vdash \{Q[E/x]\}\ x := E\ \{Q\}} \text{ Assgn}$$

where Q[E/x] denotes the formula obtained from Q by substituting all free occurrences of x by E

Example

- y = 4 x := 4 y = x
- $\{x=n-1\}$ x := x+1 $\{x=n\}$
- $\{y=x\}$ y := 2 $\{y=x\}$

For assignment x := E, we have the following proof rule:

$$\overline{\vdash \{Q[E/x]\}\ x := E\ \{Q\}} \text{ Assgn}$$

where Q[E/x] denotes the formula obtained from Q by substituting all free occurrences of x by E

Example

- $\{y=4\}$ x := 4 $\{y=x\}$
- $\{x=n-1\}$ x := x+1 $\{x=n\}$
- $\{y=x\}$ y := 2 $\{y=x\}$
- 4 $\{z=3\}$ y := x $\{z=3\}$

For assignment x := E, we have the following proof rule:

$$\overline{\vdash \{Q[E/x]\}\ x := E\ \{Q\}} \text{ Assgn}$$

where Q[E/x] denotes the formula obtained from Q by substituting all free occurrences of x by E

Example

- $\{x=n-1\}$ x := x+1 $\{x=n\}$
- $\{y=x\}$ y := 2 $\{y=x\}$
- $\{z=3\}$ y := x $\{z=3\}$
- **5** $\{z=3\}$ y := x $\{x=y\}$

Strengthening/Weakening

Strengthening/weakening might be necessary in order to be able to apply some rules

Precondition Strengthening

$$\frac{\vdash \{P'\} \ S \ \{Q\}}{\vdash \{P\} \ S \ \{Q\}} \xrightarrow{P \Rightarrow P'} \text{Strength}$$

Precondition can be always tightened to something stronger.

Postcondition Weakening

$$\frac{\vdash \{P\} \ S \ \{Q'\}}{\vdash \{P\} \ S \ \{Q\}} \ \text{Weak}$$

Postcondition can be always relaxed to something weaker.

Conclusion (generalisation of the two above rules)

$$\frac{P \Rightarrow P' \qquad \vdash \{P'\} \ S \ \{Q'\} \qquad Q' \Rightarrow Q}{\vdash \{P\} \ S \ \{Q\}} \ \text{Concl}$$

Example

We can now prove the following: $\{z=3\}$ y := x $\{x=y\}$

Example

We can now prove the following: $\{z=3\}$ y := x $\{x=y\}$

$$\frac{ \cfrac{\vdash \{(x=y)[x/y]\} \ \mathtt{y} \ := \ \mathtt{x} \ \{x=y\}}{\vdash \{true\} \ \mathtt{y} \ := \ \mathtt{x} \ \{x=y\}} \underbrace{z=3 \Rightarrow true}_{\text{STRENGTH}} }{ \vdash \{z=3\} \ \mathtt{y} \ := \ \mathtt{x} \ \{x=y\}}$$

Example

We can now prove the following: $\{z=3\}$ y := x $\{x=y\}$

Example

Assume $\vdash \{true\} \ S \ \{x=y \land z=2\}$. Which of the following can we prove from it?

Example

We can now prove the following: $\{z=3\}$ y := x $\{x=y\}$

Example

Assume $\vdash \{true\} \ S \ \{x = y \land z = 2\}$. Which of the following can we prove from it?

- **2** $\{true\}$ S $\{z=2\}$

Example

We can now prove the following: $\{z=3\}$ y := x $\{x=y\}$

Example

Assume $\vdash \{true\} \ S \ \{x = y \land z = 2\}$. Which of the following can we prove from it?

- **2** $\{true\}$ S $\{z=2\}$
- $\{true\}\ S\ \{z>0\}$

Example

We can now prove the following: $\{z=3\}$ y := x $\{x=y\}$

Example

Assume $\vdash \{true\}\ S\ \{x=y \land z=2\}$. Which of the following can we prove from it?

- **1** $\{true\}\ S\ \{x=y\}$
- 2 $\{true\}\ S\ \{z=2\}$
- $\{true\}\ S\ \{z>0\}$

Example

We can now prove the following: $\{z=3\}$ y := x $\{x=y\}$

Example

Assume $\vdash \{true\}\ S\ \{x=y \land z=2\}$. Which of the following can we prove from it?

- **1** $\{true\}\ S\ \{x=y\}$
- 2 $\{true\}\ S\ \{z=2\}$
- $\{true\}\ S\ \{z>0\}$

- 5 $\{true\}$ S $\{\exists u(x=u)\}$

Proof Rule (Sequence)

For a sequence of two statements $S_1; S_2$, we have the following proof rule:

$$\frac{\vdash \{P\} \ S_1 \ \{R\} \qquad \vdash \{R\} \ S_2 \ \{Q\}}{\vdash \{P\} \ S_1; S_2 \ \{Q\}} \ \text{SeQ}$$

Often, we need to find an appropriate R.

Example

Prove the correctness of $\{true\}$ x := 2; y := x $\{x = 2 \land y = 2\}$:

Proof Rule (Sequence)

For a sequence of two statements $S_1; S_2$, we have the following proof rule:

$$\frac{\vdash \{P\} \ S_1 \ \{R\} \qquad \vdash \{R\} \ S_2 \ \{Q\}}{\vdash \{P\} \ S_1; S_2 \ \{Q\}} \ \text{SeQ}$$

Often, we need to find an appropriate R.

Example

Prove the correctness of $\{true\}$ x := 2; y := x $\{x = 2 \land y = 2\}$:

$$\frac{ \vdash \{true\} \ \mathtt{x} \ := \ 2 \ \{x = 2\}}{ \vdash \{true\} \ \mathtt{x} \ := \ 2 \ \mathtt{x} \ := \ \mathtt{x} \ \{x = 2 \land y = 2\}} \xrightarrow{\text{Assgn}} \frac{\text{Assgn}}{\text{Seq}}$$

Proof Rule (If)

For if C then S_1 else S_2 we have the following proof rule:

$$\frac{\vdash \{P \land C\} \ S_1 \ \{Q\} \qquad \vdash \{P \land \neg C\} \ S_2 \ \{Q\}}{\vdash \{P\} \ \text{if} \ C \ \text{then} \ S_1 \ \text{else} \ S_2 \ \{Q\}} \ \text{If}$$

Example

Prove the correctness of $\{true\}$ if x > 0 then y := x else y := -x $\{y \ge 0\}$.

Proof Rule (If)

For if C then S_1 else S_2 we have the following proof rule:

$$\frac{\vdash \{P \land C\} \ S_1 \ \{Q\} \qquad \vdash \{P \land \neg C\} \ S_2 \ \{Q\}}{\vdash \{P\} \ \text{if} \ C \ \text{then} \ S_1 \ \text{else} \ S_2 \ \{Q\}} \ \text{If}$$

Example

Prove the correctness of $\{true\}$ if x > 0 then y := x else y := -x $\{y \ge 0\}$.

Consider the following code:

```
i := 0; j := 0; n := 10;
while i < n do {
  i := i + 1;
  j := i + j;
}</pre>
```

Which of the following formulae are loop invariants?

$$i \le n$$
 $j \ge 0$

For while C do S we have the following proof rule:

Consider the following code:

```
i := 0; j := 0; n := 10;
while i < n do {
   i := i + 1;
   j := i + j;
}</pre>
```

Which of the following formulae are loop invariants?

$$i \le n$$
 $j \ge 0$

For while C do S we have the following proof rule:

$$\frac{ \vdash \{P \land C\} \ S \ \{P\}}{ \vdash \{P\} \ \text{while} \ C \ \text{do} \ S \ \{P \land \neg C\}} \ \text{While}$$

"If P is a loop invariant, then $P \wedge \neg C$ must hold after the loop terminates."

Example

Prove the correctness of $\{x \le n\}$ while x < n do x := x+1 $\{x \ge n\}$.

Example

Prove the correctness of $\{x \le n\}$ while x < n do x := x+1 $\{x > n\}$.

$$\frac{\frac{-\{x+1 \leq n\} \text{ x } := \text{ x+1 } \{x \leq n\}}{+\{x < n\} \text{ x } := \text{ x+1 } \{x \leq n\}}}{\text{STRENGTH}} \times \frac{\text{STRENGTH}}{\text{STRENGTH}}}{+\{x \leq n \land x < n\} \text{ x } := \text{ x+1 } \{x \leq n\}} \times \frac{\text{STRENGTH}}{\text{STRENGTH}}}{\text{Frank in the extension of the extension$$

Exercise

Prove partial correctness of the program below

```
/* { y = 12 } */
x := y;
while (x < 30) {
x := x * 2;
x := x - 2;
}
/* { x = 42 } */
```

Hint: a suitable candidate for the loop invariant might be the formula $(\exists n \in \mathbb{N} \colon x = 2^n(y-2) + 2) \land (x \le 42).$

How does it work in practice?

In the following, we will be using **VCC** (A **V**erifier for **C**oncurrent **C**):

- available at https://github.com/microsoft/vcc
- can run as a MS Visual Studio plugin (needs older VS)
- currently somewhat orphaned and not industrial-strong
- but used to verify MS Hyper-V hypervisor
 - ▶ 60 KLOC of operating system-level concurrent C and x64 assembly code
- interactive web interface: https://rise4fun.com/Vcc
- other systems exist (Frama-C, OpenJML, KeY, ...)

Let's start with something simple

```
#include <vcc.h>
unsigned add(unsigned x, unsigned y)
{
  unsigned w = x + y;
  return w;
}
```

Research

VCC

Does this C program always work?

```
1 #include <vcc.h>
2
3 unsigned add(unsigned x, unsigned y)
4 {
5 unsigned w = x + y;
6 return w;
```

		Description	Line	Column
8	1	x + y might overflow.	5	16

```
Verification of add failed. [1.83]
snip(5,16) : error VC8004: x + y might overflow.
Verification errors in 1 function(s)
Exiting with 3 (1 error(s).)
```

```
Fix attempt #1:
#include <vcc.h>
unsigned add(unsigned x, unsigned y)
   _(requires x + y <= UINT_MAX)  // <-- added precondition
{
   unsigned w = x + y;
   return w;
}</pre>
```

Research

VCC

Does this C program always work?

```
#include <vcc.h>

unsigned add(unsigned x, unsigned y)
   _(requires x + y <= UINT_MAX)

{
   unsigned w = x + y;
   return w;
}</pre>
```

Verification of add succeeded. [1.83]

Research

VCC

```
Does this C program always work?
```

```
#include <vcc.h>

unsigned add(unsigned x, unsigned y)
   _(requires x + y <= UINT_MAX)

{
   unsigned w = x + y;
   return w;
}</pre>
```

```
Verification of add succeeded. [1.83]
```

verifies, but what?

```
Fix attempt #2:
#include <vcc.h>
unsigned add(unsigned x, unsigned y)
   _(requires x + y <= UINT_MAX)
   _(ensures \result == x + y)  // <-- added postcondition
{
   unsigned w = x + y;
   return w;
}</pre>
```

VCC Research

```
Does this C program always work?
```

```
#include <vcc.h>

unsigned add(unsigned x, unsigned y)
    _(requires x + y <= UINT_MAX)
    _(ensures \result == x + y)

{
    unsigned w = x + y;
    return w;
}</pre>
```

```
Verification of add succeeded. [1.88]
```

verifies wrt the specification \o/

Example 1 — post mortem

What did we do?

- I First, we tried to verify a code with no annotations
 - ► VCC has a set of default correctness properties
 - e.g. no NULL pointer dereference, (over/under)-flows, 0-division, . . .
 - one property was violated
- **2** We fixed the violation using a _(requires φ) annotation
 - **precondition**: formula φ holds on entry to to the function (extended C syntax)
- f 3 We provided an _(ensures ψ) annotation to define what we expect as a result
 - **postcondition**: formula ψ holds on return from the function (\result is the output)

preconditions + postconditions = function contract

Example 1 — post mortem

What happened behind the scenes?

the function and its specification were converted into a formula of the form

$$(pre \land \varphi_P) \rightarrow (post \land safe_P)$$

- pre is the precondition
- post is the postcondition
- $ightharpoonup \varphi_P$ is a formula representing the function
- \blacktriangleright safe $_{P}$ represents implicit safety conditions on P
 - no overflows, no out-of-bounds array accesses, . . .

```
(x_0+y_0 \leq \mathtt{UINT\_MAX} \wedge w_1 = x_0+y_0 \wedge res = w_1) \rightarrow (res = x_0+y_0 \wedge x_0+y_0 \leq \mathtt{UINT\_MAX})
```

the formula is tested for validity with an SMT solver (Z3) that supports the theories

```
#include <vcc.h>
unsigned add(unsigned x, unsigned y)
  _(requires x + y <= UINT_MAX)
  _(ensures \result == x + y)
{
  unsigned w = x + y;
  return w;
}

\( \res = x_0 + y_0 \land x_0 + y_0 \leq UINT_MAX \right)
\)</pre>
```

Suppose we don't believe our compiler's implementation of "+": let's write our own!

```
#include <vcc.h>
unsigned add(unsigned x, unsigned y)
  (requires x + y <= UINT MAX)</pre>
  (ensures \result == x + y)
  unsigned i = x;  // ORIGINAL CODE:
  unsigned j = y; // unsigned w = x + y;
                     // return w:
  while (i > 0)
   --i:
    ++j;
  return j;
```

VCC

Research

```
Does this C program always work?
```

```
#include <vcc.h>
  unsigned add(unsigned x, unsigned y)
    _(requires x + y <= UINT_MAX)
    6
    unsigned i = x;
8
    unsigned j = y;
9
10
    while (i > 0)
11
12
      --i:
13
14
15
16
    return i:
17
```

Research

VCC

17 }

```
Does this C program always work?
```

```
#include <vcc.h>
   unsigned add(unsigned x, unsigned y)
     _(requires x + y \le UINT_MAX)
     _(ensures \result == x + y)
 6
     unsigned i = x;
 8
     unsigned j = y;
 9
10
     while (i > 0)
11
12
       --i:
13
       ++j;
14
15
16
     return j;
```

		Description	Line	Columr
6	1	++j might overflow.	13	5
6	9 2	Post condition '\result == x + y' did not verify.	16	3
6	3	(related information) Location of post condition.	5	13

16

17 }

VCC Research

```
Does this C program always work?
```

```
1 #include <vcc.h>
   unsigned add(unsigned x, unsigned y)
     _(requires x + y \le UINT_MAX)
     _(ensures \result == x + y)
 6
     unsigned i = x;
 8
     unsigned j = y;
 9
10
     while (i > 0)
11
12
       --i:
13
       ++j;
14
15
```

			Description	Line	Columr
(8	1	++j might overflow.	13	5
(8	2	Post condition '\result == x + y' did not verify.	16	3
(8	3	(related information) Location of post condition.	5	13

doesn't verify, but the violation ++j might overflow. is spurious. How to get rid of it?

return j;


```
Fix #1:
unsigned add(unsigned x, unsigned y)
 (requires x + y <= UINT_MAX)</pre>
 (ensures \result == x + y)
 unsigned i = x; // ORIGINAL CODE:
 unsigned j = y; // unsigned w = x + y;
                     // return w:
 while (i > 0)
   (invariant i + j == x + y) // <-- added invariant
   --i:
   ++j;
 return j;
```

VCC Research

```
Does this C program always work?
      #include <vcc.h>
    3 unsigned add(unsigned x, unsigned y)
        _(requires x + y \le UINT_MAX)
        _(ensures \result == x + y)
        unsigned i = x;
        unsigned j = y;
   10
        while (i > 0)
   11
          _(invariant i + j == x + y)
   12
   13
          --i:
          ++j;
   15
   16
        return i;
   18 }
```

Verification of add succeeded. [0.78]

■ verifies wrt the specification \o/

Example 2 — post mortem

What did we do?

- We substituted implementation of a function with a different one
 - the contract is still the same
- 2 The new implementation cannot be verified as is
 - unbounded loops cannot be easily transformed into a static formula
- We needed to provide a **loop invariant**: $\underline{\hspace{0.1cm}}$ (invariant I) where I is a formula s.t.
 - ▶ I holds every time the loop head is reached (before evaluating the loop test)

Example 2 — post mortem

```
while (C)
  _(invariant I)
{
    // Body
}
```

We can then substitute the loop by

```
_(assert I)
_(assume I && !C)
```

but we also need to check validity of the formula

$$(I \land \varphi_B) \to (I \land safe_B)$$

- ullet φ_B is a formula representing the loop body
- lacksquare safe_B represents implicit safety conditions on the loop body

```
unsigned lsearch(int elt, int *ar, unsigned sz)
  (ensures \result != UINT MAX ==> ar[\result] == elt)
  _(ensures \forall unsigned i; i < sz && i < \result ==> ar[i] != elt)
  unsigned i:
  for (i = 0; i < sz; i = 1)
   if (ar[i] == elt) return i;
  return UINT MAX:
```

VCC

Research

Does this C program always work?

```
1 unsigned lsearch(int elt, int *ar, unsigned sz)
     _(ensures \result != UINT_MAX ==> ar[\result] == elt)
     _(ensures \forall unsigned i; i < sz && i < \result ==> ar[i] != elt)
 5 {
     unsigned i:
     for (i = 0; i < sz; i = 1)
 9
       if (ar[i] == elt) return i;
10
11
12
     return UINT_MAX:
13
                                                                                                        Line Column
    Description
   Assertion 'ar[i] is thread local' did not verify.
    Post condition '\forall unsigned i; i < sz && i < \result ==> ar[i] != elt)' did not verifv.
                                                                                                             23
    (related information) Location of post condition.
                                                                                                             13
```

```
Fix #1:
unsigned lsearch(int elt, int *ar, unsigned sz)
 (requires \thread local array(ar, sz)) // <-- added precondition
 _(ensures \result != UINT_MAX ==> ar[\result] == elt)
  (ensures \forall unsigned i; i < sz && i < \result ==> ar[i] != elt)
 unsigned i:
 for (i = 0; i < sz; i = 1)
   if (ar[i] == elt) return i;
 return UINT MAX;
```

Research

VCC

```
Does this C program always work?
      unsigned lsearch(int elt, int *ar, unsigned sz)
        _(requires \thread_local_array(ar, sz))
        _(ensures \result != UINT_MAX ==> ar[\result] == elt)
        _(ensures \forall unsigned i; i < sz && i < \result ==> ar[i] != elt)
    5 {
        unsianed i:
        for (i = 0; i < sz; i = 1)
          if (ar[i] == elt) return i;
    9
   10
   11
   12
        return UINT_MAX;
   13 }
      Description
                                                                                                         Line Column
       Post condition '\forall unsigned i: i < sz && i < \result ==> ar[i] != elt)' did not verify. 9
                                                                                                              23
       (related information) Location of post condition.
                                                                                                              13
```

VCC

Research

```
Does this C program always work?
```

```
1 unsigned lsearch(int elt, int *ar, unsigned sz)
2    _(requires \thread_local_array(ar, sz))
3    _(ensures \result != UINT_MAX ==> ar[\result] == elt)
4    _(ensures \forall unsigned i; i < sz && i < \result ==> ar[i] != elt)
5    {
6         unsigned i;
7         for (i = 0; i < sz; i = 1)
8         {
9             if (ar[i] == elt) return i;
10         }
11
12         return UINT_MAX;</pre>
```

13 }				
		Description	Line	Column
×	1	Post condition '\forall unsigned i; i < sz $\&\&$ i < \result ==> ar[i] != elt)' did not verify.	9	23
×	2	(related information) Location of post condition.	4	13

still doesn't verify

Fix #2: Let's provide a loop invariant! unsigned lsearch(int elt, int *ar, unsigned sz) (requires \thread local array(ar, sz)) (ensures \result != UINT MAX ==> ar[\result] == elt) (ensures \forall unsigned i; i < sz && i < \result ==> ar[i] != elt) unsigned i; for (i = 0: i < sz: i = 1)(invariant \forall unsigned j; j < i ==> ar[j] != elt) // <-- added invariant if (ar[i] == elt) return i: return UINT MAX;

Research

VCC

```
Does this C program always work?
    1 unsigned lsearch(int elt, int *ar, unsigned sz)
    2 _(requires \thread_local_array(ar, sz))
        _(ensures \result != UINT_MAX ==> ar[\result] == elt)
        _(ensures \forall unsigned i; i < sz && i < \result ==> ar[i] != elt)
    5 {
        unsigned i:
        for (i = 0; i < sz; i = 1)
          _(invariant \forall unsigned j; i < i ==> ar[i] != elt)
    9
   10
          if (ar[i] == elt) return i;
   11
   12
   13
        return UINT_MAX:
   14 }
```

Verification of lsearch succeeded, [2.19]

Research

Does this C program always work?

VCC

```
1 unsigned lsearch(int elt, int *ar, unsigned sz)
   2 _(requires \thread_local_array(ar, sz))
       _(ensures \result != UINT_MAX ==> ar[\result] == elt)
       _(ensures \forall unsigned i; i < sz && i < \result ==> ar[i] != elt)
   5 {
       unsigned i:
       for (i = 0; i < sz; i = 1)
         _(invariant \forall unsigned j; i < i ==> ar[i] != elt)
  10
         if (ar[i] == elt) return i;
  11
  12
  13
       return UINT_MAX:
  14 }
Verification of Isearch succeeded, [2.19]
```

■ Verifies! Great!!!! ...or is it?

Fix #3: provide a termination requirement

```
unsigned lsearch(int elt, int *ar, unsigned sz)
  (requires \thread local array(ar, sz))
 (ensures \result != UINT MAX ==> ar[\result] == elt)
 _(ensures \forall unsigned i; i < sz && i < \result ==> ar[i] != elt)
                         // <-- added termination requirement
 (decreases 0)
 unsigned i:
 for (i = 0; i < sz; i = 1)
   (invariant \forall unsigned j; j < i ==> ar[j] != elt)
   if (ar[i] == elt) return i;
 return UINT MAX:
```

VCC Research

```
Does this C program always work?
      unsigned lsearch(int elt, int *ar, unsigned sz)
        (requires \thread local array(ar. sz))
        _(ensures \result != UINT_MAX ==> ar[\result] == elt)
        _(ensures \forall unsigned i: i < sz && i < \result ==> arΓil != elt)
        _(decreases 0)
    6 {
        unsigned i:
        for (i = 0: i < sz: i = 1)
          _(invariant \forall unsigned j; j < i \Longrightarrow ar[j] != elt)
   10
   11
          if (ar[i] == elt) return i;
   12
   13
   14
        return UINT_MAX:
   15 }
       Description
                                                                                                              Line Column
       the loop fails to decrease termination measure.
```

Ooops: the loop fails to decrease termination measure.

Fix #4: fix the code

```
unsigned lsearch(int elt, int *ar, unsigned sz)
 (requires \thread local array(ar, sz))
 (ensures \result != UINT MAX ==> ar[\result] == elt)
 _(ensures \forall unsigned i; i < sz && i < \result ==> ar[i] != elt)
 (decreases 0)
 unsigned i:
 for (i = 0; i < sz; i += 1) // <-- code fix
   (invariant \forall unsigned j; j < i ==> ar[j] != elt)
   if (ar[i] == elt) return i:
 return UINT MAX:
```

Research

VCC

```
Does this C program always work?
```

```
1 unsigned lsearch(int elt, int *ar, unsigned sz)
     _(requires \thread_local_array(ar, sz))
     _(ensures \result != UINT_MAX ==> ar[\result] == elt)
     _(ensures \forall unsigned i; i < sz && i < \result ==> ar[i] != elt)
     _(decreases 0)
 6
     unsigned i;
     for (i = 0; i < sz; i += 1)
       _(invariant \forall unsigned j: i < i \Longrightarrow ar[i] != elt)
10
11
       if (ar[i] == elt) return i;
12
13
14
     return UINT_MAX:
15 }
```

Verification of Isearch succeeded, [3.41]

Verifies!

Example 3 — post mortem

What did we do?

our annotations got more complex:

```
unsigned lsearch(int elt, int *ar, unsigned sz)
   _(requires \thread_local_array(ar, sz))
   _(ensures \result != UINT_MAX ==> ar[\result] == elt)
   _(ensures \forall unsigned i; i < sz && i < \result ==> ar[i] != elt)
   _(decreases 0)
```

- ==>, <==: implication, <==>: equivalence, \forall: ∀, \exists: ∃ quantifiers (typed)
- thread_local_array(ar, sz): ar points to (at least) sz items of the type of *a, which are "owned" by this thread
- _ (decreases 0): simply states that lsearch terminates
 - ▶ for more complex code, termination measure needs to be provided on loops
 - ▶ the measure should decrease in every iteration of the loop
 - ▶ for recursive procedures, termination measure should decrease in every call

Example 3 — post mortem

- **partial correctness**: every answer returned by a program is correct
- total correctness: above + the algorithm also terminates

```
unsigned bsearch(int elt, int *ar, unsigned sz)
  (requires \thread local array(ar, sz))
  _(ensures \result != UINT_MAX ==> ar[\result] == elt)
  (ensures \forall unsigned i: i < sz && i < \result ==> ar[i] != elt)
  (decreases 0)
  if (sz == 0) return UINT MAX;
  unsigned left = 0;
  unsigned right = sz - 1;
  while (left < right) {</pre>
    unsigned mid = (left + right) / 2;
    if (ar[mid] < elt) {</pre>
      left = mid + 1:
    } else if (ar[mid] > elt) {
      right = mid - 1:
    } else {
      return mid:
  return UINT_MAX;
```

VCC Re-

Research

```
Does this C program always work?
      unsigned bsearch(int elt. int *ar. unsigned sz)
        _(requires \thread_local_array(ar, sz))
        _(ensures \result != UINT_MAX ==> ar[\result] == elt)
         _(ensures \forall unsigned i; i < sz && i < \result ==> ar[i] != elt)
         (decreases 0)
         if (sz == 0) return UINT_MAX:
         unsigned left = 0:
         unsigned right = sz - 1;
         while (left < right) {
           unsigned mid = (left + right) / 2;
           if (ar[mid] < elt) {
           left = mid + 1:
   14
   15
           } else if (ar[mid] > elt) {
            right = mid - 1:
                                                                                                                              Line Column
   16
                                   Description
                                   left + right might overflow.
                                                                                                                                  21
           } else {
                                   Assertion 'ar[mid] is thread local' did not verify.
   18
             return mid;
                                   mid - 1 might overflow.
   19
                                   the loop fails to decrease termination measure.
   20
                                   Post condition '\forall unsigned i: i < sz && i < \result ==> ar[i] != elt)' did not verify. 18
         return UINT MAX:
                                    (related information) Location of post condition.
                                                                                                                                  13
   22 3
```

```
unsigned add(unsigned x, unsigned y)
  _(ensures \result == x + y);

unsigned super_add(unsigned x, unsigned y, unsigned z)
  _(ensures \result == x + y + z)
{
  unsigned w = add(x, y);
  w = add(w, z);
  return w;
}
```

VCC Research

```
Does this C program always work?
    unsigned add(unsigned x, unsigned y)
    __(ensures \result == x + y);
    unsigned super_add(unsigned x, unsigned y, unsigned z)
    __(ensures \result == x + y + z)
    {
        unsigned w = add(x, y);
        w = add(w, z);
        return w;
    }
}
```

Verification of super_add succeeded. [2.88]

Verifies!

How about when we add an implementation of add?

```
unsigned add(unsigned x, unsigned y)
 (ensures \result == x + y);
unsigned super_add(unsigned x, unsigned y, unsigned z)
 \_(ensures \ \ x + y + z)
 unsigned w = add(x, y);
 w = add(w, z);
 return w:
unsigned add(unsigned x, unsigned y) // <-- added implementation
 return x + y;
```

VCC

Research

```
Does this C program always work?
      unsigned add(unsigned x, unsigned y)
        _(ensures \result == x + y);
      unsigned super_add(unsigned x, unsigned y, unsigned z)
        _(ensures \result == x + y + z)
    6 {
        unsigned w = add(x, y);
        w = add(w, z);
        return w:
   10 }
   11
      unsigned add(unsigned x, unsigned v)
   13 {
        return x + v:
   15 }
       Description
                                                                                                                             Line Column
      x + y might overflow.
                                                                                                                             14
                                                                                                                                 10
```

VCC

Research

```
Does this C program always work?
      unsigned add(unsigned x, unsigned y)
        _(ensures \result == x + y);
      unsigned super_add(unsigned x, unsigned y, unsigned z)
        _(ensures \result == x + y + z)
    6 {
        unsigned w = add(x, y):
        w = add(w, z);
        return w:
   10 }
   11
      unsigned add(unsigned x, unsigned v)
   13 {
        return x + v:
   15 }
       Description
                                                                                                                             Line Column
      x + y might overflow.
                                                                                                                             14
                                                                                                                                  10
```

Ouch!

```
unsigned add(unsigned x, unsigned y)
 (requires x + y <= UINT MAX) // <-- added precondition
 (ensures \result == x + y);
unsigned super add(unsigned x, unsigned y, unsigned z)
 (ensures \result == x + y + z)
 unsigned w = add(x, y);
 w = add(w, z):
 return w:
unsigned add(unsigned x, unsigned y)
 return x + y;
```

VCC

Does this C program always work?

Research

	10	J		
		Description	Line	Column
×	1	Call 'add(x, y)' did not verify.	8	16
×	2	<pre>(related information) Precondition: 'x + y <= 0xfffffffff'.</pre>	2	14
	3	Call 'add(w, z)' did not verify.	9	7
×	4	<pre>(related information) Precondition: 'x + y <= 0xfffffffff'.</pre>	2	14

VCC Research

```
Does this C program always work?
```

```
unsigned add(unsigned x, unsigned y)
    __(requires x + y <= UINT_MAX)
    __(ensures \result == x + y);

unsigned super_add(unsigned x, unsigned y, unsigned z)
    __(ensures \result == x + y + z)

{
unsigned w = add(x, y);

w = add(w, z);

return w;

}

unsigned add(unsigned x, unsigned y)

return x + y;

return x + y;

return x + y;

return x + y;

</pre>
```

	10	J		
		Description	Line	Column
×	1	Call 'add(x, y)' did not verify.	8	16
\sim	2	<pre>(related information) Precondition: 'x + y <= 0xfffffffff'.</pre>	2	14
×	3	Call 'add(w, z)' did not verify.	9	7
×	4	<pre>(related information) Precondition: 'x + y <= 0xfffffffff'.</pre>	2	14

■ Not enough...

```
unsigned add(unsigned x, unsigned y)
  _(requires x + y <= UINT_MAX)
  (ensures \result == x + y);
unsigned super_add(unsigned x, unsigned y, unsigned z)
  _(requires x + y + z <= UINT_MAX) // <-- added precondition
  (ensures \result == x + y + z)
  unsigned w = add(x, y);
  w = add(w, z);
  return w:
unsigned add(unsigned x, unsigned y)
  return x + y;
```

VCC Research

```
Does this C program always work?
```

```
unsigned add(unsigned x, unsigned y)
     _(requires x + y \le UINT_MAX)
     _(ensures \result == x + y);
  unsigned super_add(unsigned x, unsigned y, unsigned z)
     \_(requires x + y + z \le UINT_MAX)
     _(ensures \result == x + y + z)
 8 {
     unsigned w = add(x, y):
     w = add(w, z);
11
     return w:
12 }
13
14 unsigned add(unsigned x, unsigned v)
15 {
16
    return x + y;
17 }
```

```
Verification of add succeeded. [1.81]
Verification of super_add succeeded. [0.00]
```

VCC Research

```
Does this C program always work?
      unsigned add(unsigned x, unsigned y)
        _(requires x + y \le UINT_MAX)
        _(ensures \result == x + y);
      unsigned super_add(unsigned x, unsigned y, unsigned z)
        \_(requires x + y + z \le UINT_MAX)
        _(ensures \result == x + y + z)
    8 {
        unsigned w = add(x, y):
        w = add(w, z);
   11
        return w:
   12 }
   13
   14 unsigned add(unsigned x, unsigned v)
   15 {
   16
        return x + y;
   17 }
```

```
Verification of add succeeded. [1.81]
Verification of super_add succeeded. [0.00]
```

Verifies!

Example 5 — post mortem

What happened?

- super_add was using add in its body
- during verification of super_add, the call to add was substituted by its contract:

```
_(assert add_requires) // precondition
_(assume add_ensures) // postcondition
```

- validity of all asserts and super_add's postcondition needed to be checked:
- 1 for add(x, y):

$$(x+y+z \leq \mathtt{UINT_MAX}) \to (x+y \leq \mathtt{UINT_MAX})$$

2 for add(w, z):

$$(x+y+z \leq \mathtt{UINT_MAX} \, \wedge \, w_1 = x+y) \to (w_1+z \leq \mathtt{UINT_MAX})$$

super_add's postcondition:

```
(x+y+z \leq \mathtt{UINT\_MAX} \wedge w_1 = x+y \wedge w_2 = w_1+z) \rightarrow (w_2 = x+y+z)
```

```
unsigned add(unsigned x, unsigned y)
   _(requires x + y <= UINT_MAX)
   _(ensures \result == x + y);

unsigned super_add(unsigned x, unsigned y,
   _(requires x + y + z <= UINT_MAX)
   _(ensures \result == x + y + z)
{
   unsigned w = add(x, y);
   w = add(w, z);
   return w;</pre>
```

```
void swap(int* x, int* y)
  _(ensures *x == \old(*y) && *y == \old(*x))
{
  int z = *x;
  *x = *y;
  *y = z;
}
```

Research

VCC

Does this C program always work?

```
1 void swap(int* x, int* y)
2   _(ensures *x == \old(*y) && *y == \old(*x))
3 {
4   int z = *x;
5   *x = *y;
6   *y = z;
7 }
```

		Description	Line	Column
\otimes	1	Assertion 'x is thread local' did not verify.	4	12
\otimes	2	Assertion 'x is writable' did not verify.	5	4
\otimes	3	Assertion 'y is thread local' did not verify.	5	9
8	4	Assertion 'y is writable' did not verify.	6	4

Research

VCC

Does this C program always work?

```
1 void swap(int* x, int* y)
2   _(ensures *x == \old(*y) && *y == \old(*x))
3 {
4   int z = *x;
5   *x = *y;
6   *y = z;
7 }
```

		Description	Line	Column
\otimes	1	Assertion 'x is thread local' did not verify.	4	12
\otimes	2	Assertion 'x is writable' did not verify.	5	4
\otimes	3	Assertion 'y is thread local' did not verify.	5	9
\otimes	4	Assertion 'y is writable' did not verify.	6	4

■ side effect

```
void swap(int* x, int* y)
   _(writes x)
   _(writes y)
   _(ensures *x == \old(*y) && *y == \old(*x))
{
   int z = *x;
   *x = *y;
   *y = z;
}
```

Research

VCC

Does this C program always work?

```
1 void swap(int* x, int* y)
2    __(writes x)
3    __(writes y)
4    __(ensures *x == \old(*y) && *y == \old(*x))
5    {
6      int z = *x;
7      *x = *y;
8      *y = z;
9    }
```

Verification of swap succeeded. [2.64]

Research

VCC

Does this C program always work?

```
void swap(int* x, int* y)

(writes x)

(writes y)

(ensures *x == \old(*y) && *y == \old(*x))

{
  int z = *x;

  *x = *y;

  *y = z;

}
```

Verification of swap succeeded. [2.64]

(writes x) talks about a side-effect

```
#define RADIX ((unsigned)(-1) + ((\natural)1))
#define LUINT MAX ((unsigned)(-1) + (unsigned)(-1) * ((unsigned)(-1) + ((\natural)1)))
typedef struct LongUint {
  _(ghost \natural val)
  unsigned low, high;
  (invariant val == low + high * RADIX) // coupling invariant
} LongUint:
void luint inc(LongUint* x)
  (maintains \wrapped(x))
  (writes x)
  (requires x->val + 1 < LUINT MAX)
  (ensures x\rightarrow val == \old(x\rightarrow val) + 1)
  _(unwrapping x) {
    if (x->low == UINT MAX) {
      ++(x->high):
      x->low = 0:
    } else {
      ++(x->low):
    _(ghost x->val = x->val + 1)
```

VCC Research

```
Does this C program always work?
    1 #define RADIX ((unsigned)(-1) + ((\natural)1))
    2 #define LUINT_MAX ((unsigned)(-1) + (unsigned)(-1) * ((unsigned)(-1) + ((\natural)1)))
    3 typedef struct LongUint {
        _(ghost \natural val)
    5 unsigned low, high;
    6 _(invariant val == low + high * RADIX) // coupling invariant
    7 } LongUint:
    9 void luint_inc(LongUint* x)
        (maintains \wrapped(x))
        _(writes x)
        (requires x->val + 1 < LUINT MAX)
        _(ensures x->val == \old(x->val) + 1)
   14 {
   15
        _(unwrapping x) {
          if (x->low == UINT MAX) {
          ++(x->hiah);
           x \rightarrow low = 0:
   18
   19
          } else {
   20
            ++(x->low);
   21
   22
          _(ahost x->val = x->val + 1)
```

```
Verification of LongUint#adm succeeded. [2.39]
Verification of luint_inc succeeded. [0.03]
```

Example 7 — post mortem

What did we do?

- we needed to provide a data structure invariant via _(invariant Inv)
 - it describes what need to hold about the data structure in a consistent state
 - ▶ the invariant talks about a ghost variable
 - helps with verification but is not part of the compiled program
 - can have an "ideal" type (e.g., \natural, \integer, ...)
 - or can also be an inductive (functional-style) data type, e.g.
 _(datatype List { case nil(); case cons(int v, List 1); })
 - we needed to use _(unwrapping x) { ... } for the block of code where the invariant is temporarily broken

Further issues

- concurrency (atomic actions, shared state)
- hardware
- assembly code (need to model instructions using function contract)
- talking about memory (possible aliasings)

Other Tools

- Dafny: a full programming language with support for specifications
- Why3: a programming language (WhyML) + specifications
- Frama-C (Jessie plug-in): deductive verification of C + ACSL annotations
- **KeY**: Java + JML annotations
- Prusti: Rust
- IVy: specification and implementation of protocols
- Ada, Eiffel, . . . : programming languages with in-built support for specifications

Used materials from

- Ernie Cohen, Amazon (former Microsoft)
- Işıl Dillig, University of Texas, Austin