
Symbolic Execution

Ondřej Lengál

SAV’25, FIT VUT v Brně

3 November 2025

Ondřej Lengál (SAV’25, FIT VUT v Brně) Symbolic Execution 3 November 2025 1 / 23



Manual Testing

users try input vectors, trying to break a program
pros:
▶ complete: a failing input vector can be “easily” executed

• not always easy: concurrency, nondeterministic memory layout, etc.
▶ can be directed to some corner cases

cons:
▶ unsound: problematic coverage of unexpected corner cases
▶ expensive (testers needed)

Ondřej Lengál (SAV’25, FIT VUT v Brně) Symbolic Execution 3 November 2025 2 / 23



Random Testing

generate a lot of random vectors and feed them into a program

pros:
▶ can easily create many inputs

cons:
▶ difficult to cover corner cases
▶ many inputs can exercise the same paths through the program

e.g. QuickCheck for Haskell:

prop_RevRev xs = reverse (reverse xs) == xs

Main> quickCheck prop_RevRev
OK, passed 100 tests.

Ondřej Lengál (SAV’25, FIT VUT v Brně) Symbolic Execution 3 November 2025 3 / 23



Random Testing

generate a lot of random vectors and feed them into a program

pros:
▶ can easily create many inputs

cons:
▶ difficult to cover corner cases
▶ many inputs can exercise the same paths through the program

e.g. QuickCheck for Haskell:

prop_RevRev xs = reverse (reverse xs) == xs

Main> quickCheck prop_RevRev
OK, passed 100 tests.

Ondřej Lengál (SAV’25, FIT VUT v Brně) Symbolic Execution 3 November 2025 3 / 23



Random Testing — Example

char input[10];
read(fd, input, 10);
int counter = 0;
for (size_t i = 0; i < 10, ++i) {

if (input[i] == 'B') {
++counter;

}
}
assert(counter != 10);

difficult to hit the assertion failure:
▶ there needs to be exactly 10 B’s read into input
▶ all possible values of input: 280

▶ P (counter == 10) = 0.000000000000000000000000827 (for uniform distribution)

Ondřej Lengál (SAV’25, FIT VUT v Brně) Symbolic Execution 3 November 2025 4 / 23



Random Testing — Example

char input[10];
read(fd, input, 10);
int counter = 0;
for (size_t i = 0; i < 10, ++i) {

if (input[i] == 'B') {
++counter;

}
}
assert(counter != 10);

difficult to hit the assertion failure:
▶ there needs to be exactly 10 B’s read into input
▶ all possible values of input: 280

▶ P (counter == 10) = 0.000000000000000000000000827 (for uniform distribution)

Ondřej Lengál (SAV’25, FIT VUT v Brně) Symbolic Execution 3 November 2025 4 / 23



Static Analysis

Data flow analysis, abstract interpretation, . . . :

pros:
▶ can analyze all possible runs of programs
▶ sold by companies (AbsInt, Coverity, GrammaTech, etc.)
▶ easy to use (with a catch)

cons:
▶ often unsound (in practice)
▶ abstraction ⇝ false positives (incomplete)

• it can take a lot of effort to sieve through them
▶ does not provide concrete failing input vectors

Ondřej Lengál (SAV’25, FIT VUT v Brně) Symbolic Execution 3 November 2025 5 / 23



Static Analysis — Example

char input[10];
read(fd, input, 10);
int counter = 0;
for (size_t i = 0; i < 10, ++i) {

if (input[i] == 'B') {
++counter;

}
}
assert(counter != 10);

e.g., abstract interpretation might just say that assert is reachable
developer needs to assess whether it is true
abstraction of static analysis can be different than the one used by developer

Ondřej Lengál (SAV’25, FIT VUT v Brně) Symbolic Execution 3 November 2025 6 / 23



Symbolic Execution — A middle ground

Testing: works, but each test tries only one possible execution
▶ we hope that test cases generalize (no guarantees)

assert(f(2) == 21);
assert(f(3) == 42);
assert(f(4) == 63);

Symbolic Execution: generalizes random testing
▶ allows one to assign unknown symbolic values to variables, e.g., y = α
▶ tests may then cover all possible values of the symbolic value

assert(f(y) == 21*(y-1));

▶ if an execution path depends on a symbolic value, fork execution

unsigned f(unsigned x) {
return (x > 0)? 21*(x-1) : 13;

}

Ondřej Lengál (SAV’25, FIT VUT v Brně) Symbolic Execution 3 November 2025 7 / 23



Symbolic Execution

can be seen as an execution of a program in a mixed symbolic domain
similar to abstract interpretation (but with significant differences)

Standard execution semantics:

in every step, all variables and allocated memory cells have concrete values
▶ concrete state: configuration of a program

Symbolic execution semantics:

variables and allocated memory cells can also have symbolic values
▶ e.g., α, 2 · β + 3, γ + "Hello World", . . .
▶ symbolic values are usually introduced to represent inputs of the program

operators need to be extended to be able to work with symbolic values

Ondřej Lengál (SAV’25, FIT VUT v Brně) Symbolic Execution 3 November 2025 8 / 23



Symbolic Execution

can be seen as an execution of a program in a mixed symbolic domain
similar to abstract interpretation (but with significant differences)

Standard execution semantics:

in every step, all variables and allocated memory cells have concrete values
▶ concrete state: configuration of a program

Symbolic execution semantics:

variables and allocated memory cells can also have symbolic values
▶ e.g., α, 2 · β + 3, γ + "Hello World", . . .
▶ symbolic values are usually introduced to represent inputs of the program

operators need to be extended to be able to work with symbolic values

Ondřej Lengál (SAV’25, FIT VUT v Brně) Symbolic Execution 3 November 2025 8 / 23



Symbolic Execution (cntd.)

symbolic state is a triple st = (line, store, pc) where:
▶ line ∈ N denotes a program line
▶ store : Mem ⇀ Sym represents (symbolic) values of variables and allocated memory cells

• Mem: the set of memory locations
• Sym: the set of symbolic values (it also contains all concrete values)
• (⇀ denotes partial function)

▶ pc: path condition, a formula of first-order logic (over some suitable theory T that represents program
operations and tests) that accumulates conditions that needed to hold to reach st

• initially set to true
• extended when execution is forked: more formulae are appended using conjunction ∧

Ondřej Lengál (SAV’25, FIT VUT v Brně) Symbolic Execution 3 November 2025 9 / 23



Extending path condition

Let φ be a formula obtained by substituting (symbolic) values of variables into a test

e.g. if store = {x 7→ α, y 7→ 2 · sin β, . . .}, and there is a test

if (3 * x > log(y)) {
stmt1;
...

else {
stmt2;
...

}

we obtain for the if branch

φ : 3 · α > log(2 · sin β)

Ondřej Lengál (SAV’25, FIT VUT v Brně) Symbolic Execution 3 November 2025 10 / 23



Extending path condition

Let φ be a formula obtained by substituting (symbolic) values of variables into a test

e.g. if store = {x 7→ α, y 7→ 2 · sin β, . . .}, and there is a test

if (3 * x > log(y)) {
stmt1;
...

else {
stmt2;
...

}

we obtain for the if branch φ : 3 · α > log(2 · sin β)

Ondřej Lengál (SAV’25, FIT VUT v Brně) Symbolic Execution 3 November 2025 10 / 23



Extending path condition (cntd.)

φ is a formula representing a test in a program (e.g. inside an if statement)
suppose pc is T-satisfiable, then at most one of the following can hold:

1 pc ⇒T φ (the then branch)
2 pc ⇒T ¬φ (the else branch)

where ⇒T denotes logical consequence wrt. theory T
▶ i.e., whether all T-models of pc are also T-models of φ (or ¬φ)

if one of the logical consequences holds, no forking and extension of pc is required
▶ only one branch is feasible

when neither of the consequences holds, we speak about forking execution:
▶ the execution forks because both branches are feasible; pc is then extended as:

1 pc′ := pc ∧ φ (for the then branch)
2 pc′ := pc ∧ ¬φ (for the else branch)

logical consequence is checked using an SMT Solver

Ondřej Lengál (SAV’25, FIT VUT v Brně) Symbolic Execution 3 November 2025 11 / 23



Extending path condition (cntd.)

φ is a formula representing a test in a program (e.g. inside an if statement)
suppose pc is T-satisfiable, then at most one of the following can hold:

1 pc ⇒T φ (the then branch)
2 pc ⇒T ¬φ (the else branch)

where ⇒T denotes logical consequence wrt. theory T
▶ i.e., whether all T-models of pc are also T-models of φ (or ¬φ)

if one of the logical consequences holds, no forking and extension of pc is required
▶ only one branch is feasible

when neither of the consequences holds, we speak about forking execution:
▶ the execution forks because both branches are feasible; pc is then extended as:

1 pc′ := pc ∧ φ (for the then branch)
2 pc′ := pc ∧ ¬φ (for the else branch)

logical consequence is checked using an SMT Solver

Ondřej Lengál (SAV’25, FIT VUT v Brně) Symbolic Execution 3 November 2025 11 / 23



Example of symbolic execution
int power(x, y)
{
1: int z = 1;

2: int j = 1;

3: while (y - j >= 0)
{

4: z *= x

5: ++j;
}

6: return z
}

line x y z j pc

Ondřej Lengál (SAV’25, FIT VUT v Brně) Symbolic Execution 3 November 2025 12 / 23



Symbolic execution — high level algorithm

1 symState := (line : 0, store : ∅, pc : true) // initial symbolic state
2 workSet := {symState}
3 while workSet ̸= ∅:
4 st := workSet.getAndRemove() // many ways to implement
5 st′ := symbolically execute from st until a fork to l1 and l2 with condition φ, or EXIT,
6 while checking for errors and modifying store accordingly
7 if st′.line == EXIT: continue
8 workSet.add((line : l1, store : st′.store, pc : st′.pc ∧ φ))
9 workSet.add((line : l2, store : st′.store, pc : st′.pc ∧ ¬φ))

Ondřej Lengál (SAV’25, FIT VUT v Brně) Symbolic Execution 3 November 2025 13 / 23



Symbolic execution tree

paths taken in a symbolic execution can be expressed using a symbolic execution tree

control points of the program are nodes
statements are edges
tests that are not logical conseq. of the pc for the branch above them have two outgoing edges:
▶ true (for then)
▶ false (for else)

properties of the tree:

for every terminal leaf L, there are concrete (non-symbolic) inputs that can navigate execution to L
▶ a terminal leaf corresponds to a finished path

every two terminal nodes have distinct path conditions, i.e., pc1 ∧ pc2 is T-UNSAT

Ondřej Lengál (SAV’25, FIT VUT v Brně) Symbolic Execution 3 November 2025 14 / 23



Symbolic execution for verification

program verification:

every assume(φ) (in function contracts) will update pc′ := pc ∧ φ
every assert(φ) will test whether pc ⇒T φ, if not: report error
during execution of a program (or in preprocessing), more statements are added, e.g.:

▶ for a fixed-size array a of size N, every access a[x] where x has a symbolic value changes:
assert(x < N && x >= 0);

a[x] = y; --> a[x] = y;
▶ every integer division is checked for zero-division:

assert(x != 0);
y = 42 / x; --> y = 42 / x;

▶ pointer accesses are checked for nullptr:
assert(x != nullptr);

y = *x; --> y = *x;
(checking for dereference of undefined memory locations is more difficult)

▶ etc.

Ondřej Lengál (SAV’25, FIT VUT v Brně) Symbolic Execution 3 November 2025 15 / 23



Symbolic execution for verification

program verification:

every assume(φ) (in function contracts) will update pc′ := pc ∧ φ
every assert(φ) will test whether pc ⇒T φ, if not: report error
during execution of a program (or in preprocessing), more statements are added, e.g.:
▶ for a fixed-size array a of size N, every access a[x] where x has a symbolic value changes:

assert(x < N && x >= 0);
a[x] = y; --> a[x] = y;

▶ every integer division is checked for zero-division:
assert(x != 0);

y = 42 / x; --> y = 42 / x;
▶ pointer accesses are checked for nullptr:

assert(x != nullptr);
y = *x; --> y = *x;
(checking for dereference of undefined memory locations is more difficult)

▶ etc.

Ondřej Lengál (SAV’25, FIT VUT v Brně) Symbolic Execution 3 November 2025 15 / 23



Symbolic execution for verification

program verification:

every assume(φ) (in function contracts) will update pc′ := pc ∧ φ
every assert(φ) will test whether pc ⇒T φ, if not: report error
during execution of a program (or in preprocessing), more statements are added, e.g.:
▶ for a fixed-size array a of size N, every access a[x] where x has a symbolic value changes:

assert(x < N && x >= 0);
a[x] = y; --> a[x] = y;

▶ every integer division is checked for zero-division:
assert(x != 0);

y = 42 / x; --> y = 42 / x;

▶ pointer accesses are checked for nullptr:
assert(x != nullptr);

y = *x; --> y = *x;
(checking for dereference of undefined memory locations is more difficult)

▶ etc.

Ondřej Lengál (SAV’25, FIT VUT v Brně) Symbolic Execution 3 November 2025 15 / 23



Symbolic execution for verification

program verification:

every assume(φ) (in function contracts) will update pc′ := pc ∧ φ
every assert(φ) will test whether pc ⇒T φ, if not: report error
during execution of a program (or in preprocessing), more statements are added, e.g.:
▶ for a fixed-size array a of size N, every access a[x] where x has a symbolic value changes:

assert(x < N && x >= 0);
a[x] = y; --> a[x] = y;

▶ every integer division is checked for zero-division:
assert(x != 0);

y = 42 / x; --> y = 42 / x;
▶ pointer accesses are checked for nullptr:

assert(x != nullptr);
y = *x; --> y = *x;
(checking for dereference of undefined memory locations is more difficult)

▶ etc.

Ondřej Lengál (SAV’25, FIT VUT v Brně) Symbolic Execution 3 November 2025 15 / 23



Search strategies

given by the implementation of workSet.getAndRemove()

if stack: DFS
▶ can easily get stuck in some part of the program

if queue: BFS
▶ usually better, but still not guided by any higher-level knowledge

more complex strategies:
▶ try to steer the search (using priorities) towards assertion failures
▶ reasoning on the control flow graph (CFG) of the program

randomness: we don’t know which paths to take. . . why not pick them randomly?
1 pick next path uniformly at random
2 randomly restart search if nothing interesting found for a while
3 when choosing between two paths with the same priority, flip a coin

Ondřej Lengál (SAV’25, FIT VUT v Brně) Symbolic Execution 3 November 2025 16 / 23



Search strategies

given by the implementation of workSet.getAndRemove()

if stack: DFS
▶ can easily get stuck in some part of the program

if queue: BFS
▶ usually better, but still not guided by any higher-level knowledge

more complex strategies:
▶ try to steer the search (using priorities) towards assertion failures
▶ reasoning on the control flow graph (CFG) of the program

randomness: we don’t know which paths to take. . . why not pick them randomly?
1 pick next path uniformly at random
2 randomly restart search if nothing interesting found for a while
3 when choosing between two paths with the same priority, flip a coin

Ondřej Lengál (SAV’25, FIT VUT v Brně) Symbolic Execution 3 November 2025 16 / 23



Search strategies

given by the implementation of workSet.getAndRemove()

if stack: DFS
▶ can easily get stuck in some part of the program

if queue: BFS
▶ usually better, but still not guided by any higher-level knowledge

more complex strategies:
▶ try to steer the search (using priorities) towards assertion failures
▶ reasoning on the control flow graph (CFG) of the program

randomness: we don’t know which paths to take. . . why not pick them randomly?
1 pick next path uniformly at random
2 randomly restart search if nothing interesting found for a while
3 when choosing between two paths with the same priority, flip a coin

Ondřej Lengál (SAV’25, FIT VUT v Brně) Symbolic Execution 3 November 2025 16 / 23



Search strategies

given by the implementation of workSet.getAndRemove()

if stack: DFS
▶ can easily get stuck in some part of the program

if queue: BFS
▶ usually better, but still not guided by any higher-level knowledge

more complex strategies:
▶ try to steer the search (using priorities) towards assertion failures
▶ reasoning on the control flow graph (CFG) of the program

randomness: we don’t know which paths to take. . . why not pick them randomly?
1 pick next path uniformly at random
2 randomly restart search if nothing interesting found for a while
3 when choosing between two paths with the same priority, flip a coin

Ondřej Lengál (SAV’25, FIT VUT v Brně) Symbolic Execution 3 November 2025 16 / 23



Search strategies

coverage-guided heuristics:
▶ try to visit statements not seen before
▶ increments statement’s score when hit
▶ pick a statement with lowest score
▶ can be difficult to find how to get to a statement

(undecidable)
generational search (hybrid of BFS + coverage-guided):
▶ GEN 0: pick one program path at random, run to completion
▶ GEN n + 1: take pc from GEN n and negate one branch condition, repeat
▶ modification: negate all branch conditions, get several paths
▶ often used with concolic execution

combined search:
▶ run multiple searches at once

Ondřej Lengál (SAV’25, FIT VUT v Brně) Symbolic Execution 3 November 2025 17 / 23



Search strategies

coverage-guided heuristics:
▶ try to visit statements not seen before
▶ increments statement’s score when hit
▶ pick a statement with lowest score
▶ can be difficult to find how to get to a statement (undecidable)

generational search (hybrid of BFS + coverage-guided):
▶ GEN 0: pick one program path at random, run to completion
▶ GEN n + 1: take pc from GEN n and negate one branch condition, repeat
▶ modification: negate all branch conditions, get several paths
▶ often used with concolic execution

combined search:
▶ run multiple searches at once

Ondřej Lengál (SAV’25, FIT VUT v Brně) Symbolic Execution 3 November 2025 17 / 23



Search strategies

coverage-guided heuristics:
▶ try to visit statements not seen before
▶ increments statement’s score when hit
▶ pick a statement with lowest score
▶ can be difficult to find how to get to a statement (undecidable)

generational search (hybrid of BFS + coverage-guided):
▶ GEN 0: pick one program path at random, run to completion
▶ GEN n + 1: take pc from GEN n and negate one branch condition, repeat
▶ modification: negate all branch conditions, get several paths
▶ often used with concolic execution

combined search:
▶ run multiple searches at once

Ondřej Lengál (SAV’25, FIT VUT v Brně) Symbolic Execution 3 November 2025 17 / 23



Search strategies

coverage-guided heuristics:
▶ try to visit statements not seen before
▶ increments statement’s score when hit
▶ pick a statement with lowest score
▶ can be difficult to find how to get to a statement (undecidable)

generational search (hybrid of BFS + coverage-guided):
▶ GEN 0: pick one program path at random, run to completion
▶ GEN n + 1: take pc from GEN n and negate one branch condition, repeat
▶ modification: negate all branch conditions, get several paths
▶ often used with concolic execution

combined search:
▶ run multiple searches at once

Ondřej Lengál (SAV’25, FIT VUT v Brně) Symbolic Execution 3 November 2025 17 / 23



Issues

we need to test logical consequence pc ⇒T φ between path conditions and tests
▶ reasoning in some theories is still challenging for SMT solvers

• e.g., arithmetic over natural numbers, string variables w/ operations, . . .

fixed-size/precision integer and floating-point variables in concrete execution:
▶ are often represented using “ideal” symbolic values from N or R
▶ more faithful representation uses theory of FixedSizeBitVectors and FloatingPoint

problems modelling memory:
▶ checking for invalid memory accesses a[x] where

• a is an array and
• x has a symbolic value

▶ unsatisfactory solution:
• ite(v(x) = 1, v(a[1]), ite(v(x) = 2, v(a[2]), . . .))

▶ theory of arrays
▶ even more problems with dynamic data structures

• model the whole memory as a big array? . . . does not scale

Ondřej Lengál (SAV’25, FIT VUT v Brně) Symbolic Execution 3 November 2025 18 / 23



Issues

we need to test logical consequence pc ⇒T φ between path conditions and tests
▶ reasoning in some theories is still challenging for SMT solvers

• e.g., arithmetic over natural numbers, string variables w/ operations, . . .
fixed-size/precision integer and floating-point variables in concrete execution:
▶ are often represented using “ideal” symbolic values from N or R
▶ more faithful representation uses theory of FixedSizeBitVectors and FloatingPoint

problems modelling memory:
▶ checking for invalid memory accesses a[x] where

• a is an array and
• x has a symbolic value

▶ unsatisfactory solution:
• ite(v(x) = 1, v(a[1]), ite(v(x) = 2, v(a[2]), . . .))

▶ theory of arrays
▶ even more problems with dynamic data structures

• model the whole memory as a big array? . . . does not scale

Ondřej Lengál (SAV’25, FIT VUT v Brně) Symbolic Execution 3 November 2025 18 / 23



Issues

we need to test logical consequence pc ⇒T φ between path conditions and tests
▶ reasoning in some theories is still challenging for SMT solvers

• e.g., arithmetic over natural numbers, string variables w/ operations, . . .
fixed-size/precision integer and floating-point variables in concrete execution:
▶ are often represented using “ideal” symbolic values from N or R
▶ more faithful representation uses theory of FixedSizeBitVectors and FloatingPoint

problems modelling memory:
▶ checking for invalid memory accesses a[x] where

• a is an array and
• x has a symbolic value

▶ unsatisfactory solution:
• ite(v(x) = 1, v(a[1]), ite(v(x) = 2, v(a[2]), . . .))

▶ theory of arrays
▶ even more problems with dynamic data structures

• model the whole memory as a big array? . . . does not scale

Ondřej Lengál (SAV’25, FIT VUT v Brně) Symbolic Execution 3 November 2025 18 / 23



Issues

path explosion:
▶ when symbolic execution keeps forking
▶ e.g. on cycles without a fixed number of iterations
▶ cf. bounded model checking (BMC)

imprecision: reasons
▶ pointer manipulation
▶ SMT solver limitations
▶ complex arithmetic operations (hashing, encryption, etc.)
▶ system/library calls (e.g. libc):

• can contain native code
• very complicated (e.g. call of malloc)
• using a simpler version can be advantageous (e.g., newlib, a version of libc for embedded systems)
• need to make a model (a lot of work)

Ondřej Lengál (SAV’25, FIT VUT v Brně) Symbolic Execution 3 November 2025 19 / 23



Issues

path explosion:
▶ when symbolic execution keeps forking
▶ e.g. on cycles without a fixed number of iterations
▶ cf. bounded model checking (BMC)

imprecision: reasons
▶ pointer manipulation
▶ SMT solver limitations
▶ complex arithmetic operations (hashing, encryption, etc.)
▶ system/library calls (e.g. libc):

• can contain native code
• very complicated (e.g. call of malloc)
• using a simpler version can be advantageous (e.g., newlib, a version of libc for embedded systems)
• need to make a model (a lot of work)

Ondřej Lengál (SAV’25, FIT VUT v Brně) Symbolic Execution 3 November 2025 19 / 23



Concolic testing

concolic = concrete + symbolic
program is executed at the same time on symbolic and concrete inputs
▶ program is given concrete inputs I, which are shadowed by symbolic values

• the symbolic values generalize the concrete inputs
▶ execution of the program is instrumented: computation of path condition
▶ when a path terminates

• choose a decision point d in its path condition pc = φ ∧ d ∧ ψ
• obtain a new path condition prefix pc′ = φ ∧ ¬d
• generate new inputs I′ |= pc′

• re-run the program with I′ as its inputs
for system calls, use the concrete value
▶ symbolic-ness is lost at such calls

no need to call SMT solver at conditions

Ondřej Lengál (SAV’25, FIT VUT v Brně) Symbolic Execution 3 November 2025 20 / 23



Tools
KLEE: symbolic execution of LLVM bitcode
Pex: symbolic execution for .NET
CREST: concolic testing of C programs
SAGE: targets file parsers (e.g., .doc, .jpeg)
▶ used daily in Microsoft Win, Office, . . .
▶ found 100s of bugs in 100s of apps

Ondřej Lengál (SAV’25, FIT VUT v Brně) Symbolic Execution 3 November 2025 21 / 23



Tools

Mergepoint: static analysis + SE
Otter: symbolic execution for C
▶ provide a line number
▶ Otter will try to get there

Symbiotic: symbiosis of several approaches:
1 program instrumentation (adding monitors for various properties)
2 static program slicing (removing statements that are irrelevant to the property)
3 symbolic execution based on KLEE

PyEx: symbolic execution of Python programs

Ondřej Lengál (SAV’25, FIT VUT v Brně) Symbolic Execution 3 November 2025 22 / 23



Used materials from

Jan Strejček, Masaryk University
Michael Hicks, University of Maryland

Ondřej Lengál (SAV’25, FIT VUT v Brně) Symbolic Execution 3 November 2025 23 / 23


