
SUR

Filip Banák
xbanak01@stud.fit.vutbr.cz

May 4, 2025

1 Audio data

1.1 Feature extraction
The features being classified are MFCCs. But before
MFCCs are extracted, some preprocessing happens.

A simple voice detection algorithm is applied to ex-
tract voiced frames only. First, FFmpeg’s silenceremove
effect is applied on the ends of the signal, to remove dig-
ital zeros and frames that are undeniably just silent.

Then, audio is framed into non-overlapping windows,
and either the logarithm of energy or the 0th MFCC
is extracted from each window. The resulting sequence
is smoothed using a median filter and normalized into
interval [0, 1]. By default the 0th MFCC is used.

The first second of the recording is cut if it’s not voiced
as loudly as the rest on average.

Sound is then pre-emphasized, and an empirically cho-
sen threshold of 0.5 is used to pick frames with (not pre-
emphasized) energy greater than this threshold as voiced,
the rest is discarded.

You can visualize this process and adjust some of its
parameters interactively in the data notebook.

After the voiced recording is obtained, MFCCs are ex-
tracted, and for each recording, the mean of its coeffi-
cients is subtracted, to discard systematic effects of the
recording devices.

First 23 shifted MFCCs are then used as features.

1.2 K-NearestNeighbors Model
The number of feature vectors of each class is first bal-
anced by reduction. The number of vectors of classes
that have more than the class with the least amount of
vectors are reduced to have the same amount, vectors to
keep are chosen randomly, without replacement.

An index for euclidean distances is then built using
this reduced set. To obtain class probabilities of a single
recording, the following is done.

The recording goes through exactly the same feature
extraction process as the reference data. K is set to 3.
For each frame, KNN are found. Then scores for every
label are initialized to zero. For every frame the 1st
NN gets K points, the 2nd gets K-1 points, and so on
until the Kth gets just a single point. The total score of
each label is then divided by the total sum of scores of
all labels. This produces a quantity that is interpreted
as a probability for the purpose of classification. The

probability of a single class is thus determined by the
number of occurrences in KNN and their distances.

More ranking strategies are implemented, but the one
described above seems to perform best.

Trained using the original training and validation split,
this classifier achieves accuracy of about 80%.

1.3 Gaussian Mixture Model

For classification using GMM, the training data is bal-
anced and features are extracted in the same way as for
KNN classification. The priors for each class are uniform.

To obtain class probabilities of a single recording, the
following is done. The recording goes through exactly
the same feature extraction process as the reference data.
For each frame, the GMM likelihood of each class is
evaluated. Then the simplifying but false assumption
of frame-independence is applied and the likelihoods are
multiplied across frames and with the priors, producing
a posterior probability for each class.

The best configuration found empirically makes up
each GMM from two components using full covariance
matrices. I tried modeling using diagonal covariance ma-
trices, after applying LDA with no reduction of dimen-
sionality, and while the diagonal strategy worked better
with than without LDA, it did not work as well as the
full strategy.

Trained using the original training and validation split,
using 100 EM iterations, this classifier achieves accuracy
of >= 90%.

1.4 Hyperparameters

I tried playing with different combinations of described
preprocessing steps, enabling and disabling voice acti-
vation detection, preemphasis, balancing, choosing be-
tween energy and 0th MFCC, different numbers of near-
est neighbors. The combination described in individual
classifiers seemed to work best more consistently than
the others, but none of this led to a significant improve-
ment. Maybe a more thorough search using crossvalida-
tion could help, but was not executed.

1

mailto:xbanak01@stud.fit.vutbr.cz


2 Image data

2.1 Convolutional NN Model

For image classification, a convolution neural network
model was employed. The basic architecture is the one
from ResNet models with bottleneck blocks. It is most
similar to the ResNet50 model, but the number of chan-
nels in each layer was reduced.

Unfortunately, the results are poor. Given the very
limited amount of training data, I could not get the
validation set classification accuracy above about 20%.
I tried many combinations of different data augmenta-
tions, adding dropout layers, changing the number of
channels and blocks, using learning rate scheduling.

I was able to achieve perfect accuracy on training data,
thus overfitting. I was able to overcome overfitting, using
more augmentations and limiting model capacity, but
that did not improve validation accuracy.

I am not sure what more could have been done, besides
completely changing the architecture, to mitigate this. I
failed to force the model to generalize.

AdamW was chosen as the optimizer, with no weight
decay. Learning rate scheduling was also applied, de-
creasing it if the training loss plateaued. An optimizer
step was taken after each epoch. Specific numbers are in
the notebook.

Trained using the original training and validation split,
this classifier achieves accuracy of about 20%. I am not
very proud of this one.

3 Reproduction

The project is implemented in Python, but with some
additional dependencies. Everything interesting is in
IPython notebooks (the latest cell outputs are included).

• UV Python package manager

• FFmpeg (read details below)

Tested on Linux only, with Python 3.13 (UV can down-
load a build automatically).

3.1 UV

Please install UV using the instructions linked above.
Then change directory to SRC and run the following com-
mands.

• uv sync --all-groups

• uv run ipython kernel install --user --env
VIRTUAL_ENV $(pwd)/.venv --name=project

This will install all needed dependencies (inlcuding
JupyterLab, registering project kernel) except FFmpeg.

3.2 FFmpeg
FFmpeg is needed as a backend for PyTorch Audio and to
apply some effects. But PyTorch and the desired effects
support only some specific versions. The easiest way,
that will be presented here, is to download a prebuilt
FFmpeg distribution with shared libraries.

The webpage linked above contains a link to "64-bit
static and shared builds", under releases download the
shared build of version 6.1 (like this one).

Download and extract it somewhere, the distribution
should contain a lib directory. The path to this di-
rectory needs to be stored in the LD_LIBRARY_PATH en-
vironment variable when running JupyterLab, so that
PyTorch knows where to look for our FFmpeg shared
libraries.

3.3 Run
The following command will open JupyterLab with all
needed dependencies discoverable. Make sure to replace
the path to the lib folder of FFmpeg with your down-
loaded one.
LD_LIBRARY_PATH=ffmpeg-n6.1/lib uv run jupyter
lab

To reproduce results, use notebooks voice-knn,
voice-gmm and image. Make sure to select the project
kernel. Also, make sure the data is present in the direc-
tories hard-coded in the notebooks.

The voice detection step is interactively visualized in
the data notebook.

2

https://docs.astral.sh/uv/getting-started/installation/#standalone-installer
https://ffmpeg.org/download.html
https://github.com/BtbN/FFmpeg-Builds/releases
https://github.com/BtbN/FFmpeg-Builds/releases
https://github.com/BtbN/FFmpeg-Builds/releases/download/latest/ffmpeg-n6.1-latest-linux64-gpl-shared-6.1.tar.xz

	Audio data
	Feature extraction
	K-NearestNeighbors Model
	Gaussian Mixture Model
	Hyperparameters

	Image data
	Convolutional NN Model

	Reproduction
	UV
	FFmpeg
	Run


