
Face and speech classification
SUR - Machine Learning and Recognition

Samuel Kuchta xkucht11
Marián Zimmermann xzimme03

Obsah
1 Solutions 2

1.1 Audio-Based Speaker Recognition Systems . 2
1.1.1 Core Components . 2
1.1.2 Feature Extraction Pipeline . 2
1.1.3 Performance Metrics . 2

1.2 CNN for images . 3
1.2.1 Improvement suggestions . 3

2 Installation and run 4
2.1 Run audio models . 4
2.2 CNN . 4

3 Figures 5

1

1 Solutions

1.1 Audio-Based Speaker Recognition Systems
1.1.1 Core Components

The system implements two distinct models for speaker recognition:

• per class Gaussian Model (Misleadingly called GMM in code):

p(x|λs) = N (x|µs,Σs) (1)

• KMeans with Speaker Mapping:

ŷ = argmax
s

K∑
i=1

I(ci = s) (2)

1.1.2 Feature Extraction Pipeline

• Signal Processing:

– MFCC extraction (13 coefficients)

– Delta (∆) and double-delta (∆∆) coefficients

• Augmentation:

– Gaussian noise: x̃ = x+ ϵ, ϵ ∼ N (0, 0.005)

– Random gain: x̃ = x · 10(g/20), g ∼ U(−10, 10)

• Temporal Aggregation:

– Mean & standard deviation

– 25th/75th percentiles

1.1.3 Performance Metrics

Metric Single-Gaussian KMeans
Accuracy on dev 45.16% (28/62) 22.58% (14/62)

2

1.2 CNN for images
First step was creating simple CNN with 4 layers. 2 convolutionals for feature extraction and 2 fully connected
for classification with RelU as activation function and cross-entropy as loss function. It was trained and
evaluated on given data, with 20 epochs, as the loss was not decreasing much further. The accuracy on
validation data was 40%. Low accuracy was probably cause due to small amount of data.

This problem was adressed by adding cross-validation. Althought due to high amount of classes and small
amount of data it proved not to be effective, so it was not used.

To further improve the generalization of the model, data augmentation was added. Different augmentations
were tested:

• Gaussian noise

• Brightness

• Rotation

Each image in the given datasets was augmented by these augmentations. After observing the loss and accuracy
rotating augmentation was removed as it was greatly reducing accuracy of the model, given the fact that the
image had to be either resized or parts of the image had to be completely cut. So it was proceeded only with
Gaussian noise and Brightness, which was the model able to learn.

Final step was adding PCA and LDA, which also turned out to be a problem, as it lead to bad generalization,
once again, the high amount of classes might be the problem.

1.2.1 Improvement suggestions

It would be possible to increase accuracy by creating a pipeline, where at first would be detected the gender
of the target.

3

2 Installation and run
Before installing there should be data prepared in following directories relative to root of unpacked zip:

• /train - target training data

• /dev - non target training data

• /eval - evaluation set

Additionaly, due to size of the models, they need to be downloaded from cloud and put into root directory
https://nextcloud.fit.vutbr.cz/s/eEEtBce3GwxKnw2.

To install and reproduce results:

• Install libraries with pip install -r requirements.txt

• Run face CNN prediction using python face_detection.py --eval

2.1 Run audio models
$ python audio.py --train_folder <folder>

--test_folder <folder>
--audio_gmm / --audio_kmeans
[--augment]
[--train]

examples:
--train_folder train --test_folder dev --audio_gmm --train --augment
--train_folder train --test_folder eval --audio_kmeans > kmeans.txt

2.2 CNN
To train and save the model you can run python face_detection.py –train in src directory. The model
will be saved in src directory. To augment the data you can run python augmentation.py input_file
output_file –noise –brightness –rotate and choose type of augmentation.

4

https://nextcloud.fit.vutbr.cz/s/eEEtBce3GwxKnw2

3 Figures

Obrázek 1: GMM components.

5

Obrázek 2: GMM components augmented.

6

Obrázek 3: GMM features.

7

Obrázek 4: GMM features augmented.

Obrázek 5: K-Means cluster analysis.

8

Obrázek 6: K-Means cluster analysis augmented.

9

	Solutions
	Audio-Based Speaker Recognition Systems
	Core Components
	Feature Extraction Pipeline
	Performance Metrics

	CNN for images
	Improvement suggestions

	Installation and run
	Run audio models
	CNN

	Figures

